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Codes over Finite Ring Zk, MacWilliams Identity

and Theta Function
Zhiyong Zheng3,1,2, Fengxia Liu∗1,2,3 and Kun Tian∗3,1,2

Abstract

In this paper, we study linear codes over Zk based on lattices and theta functions. We obtain the complete weight enumerators
MacWilliams identity and the symmetrized weight enumerators MacWilliams identity based on the theory of theta function. We
extend the main work by Bannai, Dougherty, Harada and Oura to the finite ring Zk for any positive integer k and present the
complete weight enumerators MacWilliams identity in genus g. When k = p is a prime number, we establish the relationship
between the theta function of associated lattices over a cyclotomic field and the complete weight enumerators with Hamming
weight of codes, which is an analogy of the results by G. Van der Geer and F. Hirzebruch since they showed the identity with
the Lee weight enumerators.

Index Terms

Linear code, lattice, MacWilliams identity, theta function, modular form.

I. INTRODUCTION

THE interplay between coding theory and lattice theory has been a subject of profound significance in information

transmission for several decades. Since the seminal work which established explicit connections between binary codes

and lattices, this synergy has catalyzed advancements across both fields. Lattices derived from codes inherit algebraic structures

that preserve optimal packing densities, while codes constructed via lattice projections benefit from geometric insights. Over

decades, researchers have systematically extended this correspondence to broader algebraic frameworks. These extensions not

only deepen theoretical understanding but also enhance practical applications in cryptography, quantization, and network coding.

The foundational work about the relationship between binary codes and lattices was presented by Conway et al. [9] in 1988.

Bonnecaze et al. [5] marked a pivotal shift by constructing lattices from linear codes over Z4, revealing properties analogous to

those of binary codes. Subsequent efforts generalized this framework to rings Z2k for arbitrary k in [11], enabling systematic

explorations of self-dual codes and their related lattices. A significant milestone emerged with Bannai et al. [2], who established

correspondences between Type II codes over Z2k and even unimodular lattices. A construction of even unimodular lattices is

given using Type II codes in their work. There are also many works about the self-dual or type II codes over Zk when k is

the power of 2 or an even number (cf. [1], [4], [6], [10], [20], [31], [34], [41], [45]). For example, Harada [13], [14], [15]

provided some ways for constructing self-dual or Type II codes in high dimensions or proved the existence of extremal Type

II codes in some special cases.

The MacWilliams theorem for linear codes over a finite field Fq establishes an identity that relates the weight enumerators

of a code to the weight enumerators of its dual code (cf. [27]). It was also demonstrated that the MacWilliams identity admits

numerous generalizations. The first direction is focusing on some special codes over a finite field, such as the MacWilliams

identities for binary codes, convolutional codes, cyclic codes and so on (cf. [3], [24], [26], [29], [35], [38]). The second

direction involves generalizing the finite field Fq to some finite rings, such as Zk, the Galois rings and the Frobenius rings (cf.

[23], [42], [43]). For instance, in [22], Klemm generalized the MacWilliams identity for codes defined over the finite rings

Zk in 1987. Some other works could be found in [33], [37]. The third direction involves generalizing the weight enumerators

to include more than two variables, such as the Lee and complete weight enumerators for codes over a finite field or a finite

ring (cf. [7], [19], [25], [40], [44]). The first complete weight enumerators identity for codes over a finite field was provided

by MacWilliams [28] in 1972. Wan [39] provided the complete weight enumerators MacWilliams identity for codes over

the Galois rings and Siap [36] proposed that for codes over the matrix rings. Zheng et al. [47] gave the complete weight

enumerators MacWilliams identity for codes over Zn
k [ξ] with a positive integer k and a root ξ of an irreducible polynomial.

Despite these achievements, critical limitations persisted. Previous results on the complete MacWilliams identities for codes

over Zk are mostly focused on special cases. For example, Bannai et al. [2] only gave the complete weight enumerators

MacWilliams identity in genus g for codes over Zk when k is an even number. Hirzebruch only showed that the MacWilliams

identity with the Lee weight enumerator when k = p is a prime number based on the ring of algebraic integers over a
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cyclotomic field (cf. [16], [17], [18]). The case of an arbitrary positive integer k remained unresolved. These lead us to strong

limitations in previous approaches that relied on parity constraints.

In this paper, we fill these gaps through a unified framework for linear codes over Zk with an arbitrary positive integer

k. Our contributions are multifaceted. By defining k auxiliary theta functions, we establish an explicit relation between the

theta function of the lattice associated with code C ⊂ Zn
k and the complete weight enumerators of C (Theorem 1), from

which the complete MacWilliams identity arises naturally. This is a modification of the result by F. Hirzebruch since he

constructed the identity with the Lee weight enumerators (cf. [16], [17], [18]). We derive the complete weight enumerators and

the symmetrized weight enumerators MacWilliams identity for codes over Zk using the theory of theta functions (Theorem 2),

thereby providing a novel interpretation in comparison with traditional proofs. We establish the complete weight enumerator

MacWilliams identity in genus g (Theorem 3) which is valid for all positive integers k. This significantly extends Theorem

5.1 of Bannai et al. in [2], which required k to be even. This result not only unifies fragmented results of previous works but

also provides more deep relations between codes, lattices, and theta functions. We give the relationship between the complete

weight enumerators with Hamming weight of codes in Fn
p and the theta function of associated lattices over a cyclotomic field

(Theorem 4), which is a generalization of the results by G. Van der Geer and F. Hirzebruch since they showed the identity

with the Lee weight enumerator.

A. The Complete Weight Enumerators MacWilliams Identity

The first complete weight enumerators identity was given by MacWilliams in [28]. Let Fq be a finite field of q elements

a0, a1, · · · , aq−1, n be a positive integer, C ⊂ Fn
q be a linear code, and |C| be the number of codewords in C. We denote the

complete weight enumerators of C is

WC(X0, X1, · · · , Xq−1) =
∑

c∈C

X
w0(c)
0 X

w1(c)
1 · · ·Xwq−1(c)

q−1 ,

where wj(c) is the number of elements in the codeword c which are equal to aj , 0 6 j 6 q − 1. Here we focus on the

case of the finite ring Zk instead of the finite field Fq . In our previous work [47], we prove the complete weight enumerators

MacWilliams identity for codes over Zk. If C ⊂ Zn
k is a k-ary linear code, then we have

WC⊥(X0, X1, · · · , Xk−1) =
1

|C|WC(

k−1∑

j=0

Xj ,

k−1∑

j=0

e
2πj
k iXj, · · · ,

k−1∑

j=0

e
2π(k−1)j

k iXj).

The general form of the above complete weight enumerators MacWilliams identity for codes over R = Zk[ξ] also holds (cf.

[47]), where ξ is a root of an irreducible polynomial.

From construction A, one can establish the correspondence between codes and lattices, which reveals the relationship between

theta function, modular form and MacWilliams identity, such as Proposition 2.11 of [12] and Gleason Theorem. [2] generalized

construction A for an even number k and presented the correspondence between type II codes over Z2k and even unimodular

lattices, as well as the complete weight enumerators and symmetrized weight enumerators MacWilliams identities in genus g.

In this paper, we extend construction A for any positive integer k and provide the connections between a k-ary code C and

the associated lattice ΓC . In particular, we prove that the theta function of ΓC could be expressed by the complete weight

enumerators of k theta functions A0(z), A1(z), · · · , Ak−1(z) as the following Theorem 1, which is a natural generalization of

Proposition 2.11 in [12].

Theorem 1 Let C ⊂ Zn
k be a k-ary code, ΓC = 1√

k
ρ−1(C) be the associated lattice of C, then

ϑΓC (z) =WC(A0(z), A1(z), · · · , Ak−1(z)).

Based on the result of Theorem 1, we could obtain the complete weight enumerators MacWilliams identity expressed by theta

functions for any general modulus k.

Theorem 2 Let C ⊂ Zn
k be a k-ary code. Then we have

WC⊥(A0(z), A1(z), · · · , Ak−1(z)) =
1

|C|WC(

k−1∑

j=0

Aj(z),

k−1∑

j=0

e
2πj
k iAj(z), · · · ,

k−1∑

j=0

e
2π(k−1)j

k iAj(z)).

From the result of Theorem 2, one could get the symmetrized weight enumerators MacWilliams identity directly.

B. The Complete Weight Enumerators MacWilliams Identity in Genus g

Many researchers concentrated on high dimensional MacWilliams identities. For example, Kaplan introduced the m-tuple

weight enumerators and proved the corresponding MacWilliams identity in [21]. However, these results hold by codes defined

over a finite field instead of a finite ring. Bannai et al. [2] gave the complete weight enumerators MacWilliams identity in
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Genus g for codes over Zk and k is an even number. For a k-ary code C ⊂ Zn
k , an even number k and a positive integer g,

Bannai et al. described the complete weight enumerators MacWilliams identity in genus g is

CC,g(za with a ∈ Z
g
k) =

∑

c1,··· ,cg∈C

∏

a∈Z
g
k

zwa(c1,··· ,cg)
a ,

by writing c1 = (c11, c12, · · · , c1n), · · · , cg = (cg1, cg2, · · · , cgn), here wa(c1, · · · , cg) denotes

wa(c1, · · · , cg) = #{i | (c1i, c2i, · · · , cgi) = a, 1 6 i 6 n}.
Suppose f ∈ C(x1, x2, · · · , xn) is a complex polynomial of x1, x2, · · · , xn, and M is a matrix (aij)n×n of order n. We define

Mf(x1, x2, · · · , xn) by

Mf(x1, x2, · · · , xn) = f




n∑

j=1

a1jxj ,

n∑

j=1

a2jxj , · · · ,
n∑

j=1

anjxj


 .

Bannai et al. established the following MacWilliams identity as Theorem 5.1 in [2],

CC⊥,g(za) =
1

|C|g TCC,g(za).

here T = (ηa·b)a,b∈Z
g
k

is a matrix of order kg, and η = e
2πi
k is the primitive root of unit. However, they only prove that it is

right when k is an even number. In this paper, we present the complete weight enumerators MacWilliams identity in genus g
for any positive integer k as the following Theorem 3.

Theorem 3 Let C ⊂ Zn
k be a k-ary code. CC,g(za) is the complete weight enumerators in genus g. Then we have

CC⊥,g(za) =
1

|C|g TCC,g(za).

Theorem 3 has the same form as the result of Bannai et al., while it holds for codes in Zn
k with any positive integer k. We

will prove it based on the Fourier transform and Poisson summation formula in Section IV. If g = 1, the above result becomes

the ordinary complete weight enumerators MacWilliams identity. We can also obtain the symmetrized weight enumerators

MacWilliams identity in genus g from Theorem 3 directly by treating za and −za as the equivalent elements in the complete

weight enumerators.

C. The Complete Weight Enumerators MacWilliams Identity in Cyclotomic Fields

When k = p is an odd prime number, associating a code over Fp with lattice over cyclotomic field is due to G. van der

Geer and F. Hirzebruch [18] (also see [12], Chapter 5). They considered the Lee weight enumerators SC(X0, X1, · · · , X p−1
2
)

for codes C ⊂ Fn
p defined as the following

SC(X0, X1, · · · , X p−1
2
) =

∑

c∈C

X
w0(c)
0 X

w1(c)
1 · · ·X

wp−1
2

(c)

p−1
2

,

where wj(c) is the number of elements in the codeword c which are equal to aj or p− aj , 0 6 j 6 p−1
2 . Van der Geer and

Hirzebruch provided the Alpbach Theorem which established the MacWilliams identity between the Lee weight enumerators

and theta function (see [12], Theorem 5.3),

θΓC (z) = SC(θ0(z), θ1(z), · · · , θ p−1
2
(z)),

here θ0(z), θ1(z), · · · , θ p−1
2
(z) are p+1

2 theta functions, which is about half of the number of elements in Fp. In this paper, we

generalize their results to complete weight enumerators by defining p theta functions ϑ0(z), ϑ1(z), · · · , ϑp−1(z), and present

the identity to show the relationship between the complete weight enumerators with Hamming weight of codes in Fn
p and the

theta function of associated lattices over a cyclotomic field in Theorem 4.

To state our results, we define the following notations. Let ξ = e
2πi
p , K = Q(ξ) be the cyclotomic field, K+ = Q(ξ+ ξ−1)

be the maximal real subfield of K , TrK/Q and TrK+/Q be the trace respectively, D be the integers ring of K , B = 〈1− ξ〉
be the principal ideal of D generated by the element 1− ξ ∈ D.

To associate a linear code C ⊂ Fn
p and a lattice ΓC ⊂ D

n, suppose C ⊂ C⊥, and ρ : Dn −→ (D/B)n is the mapping

defined by the reduction modulo the principal ideal B in each coordinate. We define the lattice and theta function by

ΓC = ρ−1(C) ⊂ D
n,

ϑΓC (z) =
∑

x∈ΓC

e2πizTrK+/Q(
xx
p ),
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where z ∈ H is the upper half plane of complex number.

For any j = 0, 1, 2, · · · , p− 1, let

ϑj(z) =
∑

x∈B+j

e2πizTrK+/Q(
xx
p ).

Our main result is the following Theorem 4.

Theorem 4 Let C ⊂ Fn
p be a linear code such that C ⊂ C⊥. WC(X0, X1, · · · , Xp−1) is the complete weight enumerator

of C with Hamming weight, then we have

ϑΓC (z) =WC(ϑ0(z), ϑ1(z), · · · , ϑp−1(z)).

Van der Geer and Hirzebruch gave their Alpbach Theorem (Theorem 5.3 of [12]) with Lee weight enumerator of C in a

higher dimensional form. There is a similar relation between the complete weight enumerator of a linear code C ⊂ Fn
p with

C ⊂ C⊥ and certain Jacobi forms over the field Q(ξ + ξ−1) in [8].

The remainder of this paper is structured as follows. Section II reviews preliminaries: the correspondences between codes

and lattices, construction of type II codes, and the properties of theta functions. Section III presents the complete weight

enumerators MacWilliams identity for codes over the finite ring Zk for any positive integer k (Theorem 2) based on theta

functions, with the symmetrized weight enumerators MacWilliams identity as a corollary. Section IV generalizes the complete

weight enumerators MacWilliams identity to genus g (Theorem 3), accompanied the proof by Fourier transform and Poisson

summation formula. Section V gives the complete weight enumerators MacWilliams identity in cyclotomic fields (Theorem

4). Section VI concludes our results with open questions.

II. PRELIMINARIES

The relationship between codes and lattices have been studied for a few decades. In [2], Bannai et al. introduce Type II codes

C over Z2k which are closely related to even unimodular lattices. They use the Euclidean weight wtE(c) =
n∑

i=1

min{c2i , (2k−
ci)

2} as a norm for a codeword c = (c1, c2, · · · , cn) ∈ C ⊂ Zn
2k, and define a Type II code over Z2k as a self-dual code

with Euclidean weights divisible by 4k. They prove that C is type II if and only if the lattice associated by C is an even

unimodular lattice. In this section, we modify the Euclidean weight of a code word c = (c1, c2, · · · , cn) by wtE(c) =
n∑

i=1

c2i

for convenience and get the type II codes more directly. First let us introduce some definitions for codes and lattices.

Let Zk be the ring of integers modulo k with positive integer k > 1. Consider the following reduction mod k

ρ : Zn −→ (Z/kZ)n = Zn
k ,

it is easy to see that this is a homomorphism. A code C of length n over the ring Zk is a subset of Zn
k , and if the code is an

additive subgroup of Zn
k then it is a linear code. Unless otherwise stated all codes will be linear. For any c = (c1, c2, · · · , cn) ∈

C, we call it a k-ary codeword with length n. The preimage of C in Zn is denoted by ρ−1(C), and it is a subgroup of Zn.

Therefore, ρ−1(C) is a lattice in Rn.

Definition 1 Let C ⊂ Zn
k be a k-ary code. The lattice associated with the code C is defined as

ΓC =
1√
k
ρ−1(C).

Equivalently, we can write ΓC as

ΓC =
1√
k
{c+ kz | c ∈ C, and z ∈ Zn}.

Definition 2 Let C ⊂ Zn
k be a k-ary code. For any c1, c2 ∈ C, let c1 = (c11, c12, · · · , c1n), c2 = (c21, c22, · · · , c2n). We

define the inner product of c1 and c2 in Zk as

c1 · c2 =

n∑

i=1

c1ic2i mod k.

Definition 3 (1) Let C ⊂ Zn
k be a k-ary code, we define the dual code of C as C⊥ = {c′ ∈ Zn

k | c · c′ = 0 for all c ∈ C}.

(2) A linear code C ⊂ Zn
k is called self-orthogonal if C ⊂ C⊥, that is c1 · c2 = 0 for all c1, c2 ∈ C.

(3) A linear code C ⊂ Zn
k is called self-dual if C = C⊥.

Definition 4 If k is an even number, a linear code C ⊂ Zn
k is called doubly even if the Euclidean weight of any codeword

c = (c1, c2, · · · , cn) ∈ C satisfies that c21 + c22 + · · · + c2n ≡ 0 (mod 2k). If a code is self-dual and doubly even, then it is

called a type II code.

It’s easy to see that if c ≡ c′ (mod k), c = (c1, c2, · · · , cn), c′ = (c′1, c
′
2, · · · , c′n), then

c21 + c22 + · · ·+ c2n ≡ c′21 + c′22 + · · ·+ c′2n (mod 2k),
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so the definition of doubly even code does not depend on the selection of the representative element in Zk and it is well

defined.

Remark 1 In [2], Bannai et al. use the Euclidean weight
n∑

i=1

min{c2i , (k−ci)2} for a codeword c = (c1, c2, · · · , cn) ∈ C ⊂ Zn
k

in the above definition when k is even. Definition 4 of type II code is equivalent to that in [2]. We will show that it is more

convenient to construct a type II code by our definition in this section.

We refer to [10], [11], [41] for any elementary facts about codes over finite rings. For example, [10], [11] shows that the

numbers of codewords in C and C⊥ satisfy |C| · |C⊥| = kn. [11] proves that if k is a square then there exist self-dual codes

over Zk for all lengths, as well as if C is a self-dual code of odd length over Zk then k is a square.

Definition 5 (1) Let Γ ⊂ Rn be a lattice, we define the dual lattice of Γ as Γ∗ = {y ∈ Rn | x · y ∈ Z for all x ∈ Γ}.

(2) A lattice Γ ⊂ Rn is called integral if Γ ⊂ Γ∗, that is x · y ∈ Z for all x, y ∈ Γ.

(3) A lattice Γ ⊂ Rn is called self-dual or unimodular if Γ = Γ∗.

(4) A lattice Γ ⊂ Rn is called even if x2 is an even number for all x ∈ Γ.

The following Proposition 1 gives the correspondence between a code C and the associated lattice ΓC .

Proposition 1 Let C ⊂ Zn
k be a k-ary code and ΓC be the associated lattice of C. We have the following results:

(1) C ⊂ C⊥ if and only if ΓC ⊂ Γ∗
C .

(2) If k is an even number, then C is doubly even if and only if ΓC is an even lattice.

(3) C is self-dual if and only if ΓC is unimodular.

Proof: (1) For any x, y ∈ ΓC , we have x = 1√
k
(c1 + kz1), y = 1√

k
(c2 + kz2), here c1, c2 ∈ C and z1, z2 ∈ Zn. Then we

have

x · y =
1

k
(c1c2 + kc1z2 + kc2z1 + k2z1z2) ≡

1

k
c1c2 (mod Z),

it follows that x · y ∈ Z for all x, y ∈ ΓC if and only if c1c2 = 0 in Zk for all c1, c2 ∈ C. Therefore, ΓC ⊂ Γ∗
C if and only if

C ⊂ C⊥.

(2) For any x ∈ ΓC , we have x = 1√
k
(c+ kz), here c ∈ C and z ∈ Zn. Since k is an even number, then

x2 =
1

k
(c2 + 2kcz + k2z2) =

1

k
c2 + 2cz + kz2 ≡ 1

k
c2 (mod 2Z),

it follows that x2 ∈ 2Z for all x ∈ ΓC if and only if c2 ∈ 2kZ for all c ∈ C. This means that ΓC is even if and only if C is

doubly even.

(3) If C = C⊥, we know that |C| = k
n
2 . Since Zn/ρ−1(C) ∼= Zn

k/C, we have

|Zn/ρ−1(C)| = |Zn
k/C| = kn−

n
2 = k

n
2 , (2.1)

one can get

det(ρ−1(C)) = vol(Rn/ρ−1(C)) = |Zn/ρ−1(C)|vol(Rn/Zn) = k
n
2 , (2.2)

then

det(ΓC) =
det(ρ−1(C))

k
n
2

= 1 ⇒ det(ΓC) = det(Γ∗
C) = 1. (2.3)

Based on the result of (1), we can get ΓC ⊂ Γ∗
C due to C ⊂ C⊥, combine with (2.3) it follows that ΓC = Γ∗

C .

On the other hand, if ΓC = Γ∗
C , then det(ΓC) = 1. From (2.1), (2.2) and (2.3) we know det(ρ−1(C)) = k

n
2 and |C| =

|C⊥| = k
n
2 . Based on (1), we have C ⊂ C⊥ according to ΓC ⊂ Γ∗

C , hence C = C⊥ since the numbers of codewords of C
and C⊥ are the same. Therefore, C is self-dual if and only if ΓC is unimodular.

�

We know that there exists a Type II code of length n over Zk when k is even if and only if n is a multiple of eight [2], and

Bannai et al. give the example of type II code in Z8
k for any even number k. Here we construct an example more conveniently

with our modified Euclidean weight to show the existence of type II code on Z8n
k with the length of any multiple of 8 when

k is even.

Example 1 For any even number k, from Lagrange’s theorem on sums of squares, there are elements a, b, c, d in Zk such

that

1 + a2 + b2 + c2 + d2 = 2k.

Let M be the following matrix

M =




a b c d
b −a −d c
c d −a −b
d −c b −a


 .
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We denote I4n by the identity matrix of order 4n and M4n by the block matrix of order 4n composed of M in the diagonal

M4n =




M
M

. . .

M


 .

Then the matrix G = (I4n,M4n) generates a Type II code C of length 8n over Zk .

Proof: First we show that C is doubly even. Let the rows of matrix G be e1, e2, · · · , e4n. For any c ∈ C, it can be written

as c = k1e1 + k2e2 + · · ·+ k4ne4n, k1, k2, · · · , k4n ∈ Zk. Note that e2i is divisible by 2k and ei · ej is divisible by k for i 6= j
in Z, therefore,

c2 ≡ (k1e1 + k2e2 + · · ·+ k4ne4n)
2 =

4n∑

i=1

k2i e
2
i +

∑

16j<l64n

2kjklejel ≡ 0 (mod 2k),

It follows that C is doubly even. Next we prove C is self-dual. For any c1, c2 ∈ C, assume c1 = a1e1 + a2e2 + · · ·+ a4ne4n
and c2 = b1e1 + b2e2 + · · ·+ b4ne4n, here ai, bi ∈ Zk for 1 6 i 6 4n. It is easy to compute that

c1 · c2 ≡ (a1e1 + a2e2 + · · ·+ a4ne4n)(b1e1 + b2e2 + · · ·+ b4ne4n) ≡ 0 (mod k).

Hence, we have c1 · c2 = 0 in Zk for any c1, c2 ∈ C, this means that C ⊂ C⊥. Since C is generated by the matrix G and

the 4n rows of G are linearly independent in Zk, it follows that the number of codewords in C is |C| = k4n. Based on

|C| · |C⊥| = k8n we have |C⊥| = k4n, i.e. |C| = |C⊥| = k4n. Combine with C ⊂ C⊥, one can get C = C⊥.

So we have proved that C is a doubly even and self-dual code.

�

As another part of the preliminaries, let’s introduce the theta function and modular form. The detailed contents could be

found in [32] by Shi, Choie, Sharma and Solé. Suppose k is an even number and C ⊂ Zn
k is a k-ary doubly even and self-dual

code. In order to show the property of modular form for theta function of ΓC , let’s begin with some definitions. We denote

the group

SL2(Z) =

{
g =

(
a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.

For any g =

(
a b
c d

)
∈ SL2(Z), we define g(z) = az+b

cz+d as a function of z. Let S and T be the elements of G = SL2(Z)/{±1}
as

S =

(
0 − 1
1 0

)
and T =

(
1 1
0 1

)
,

therefore, S(z) = − 1
z and T (z) = z+1. The group G is generated by S and T and the detailed proof could be found in [30].

Suppose H is the upper half plane

H = {z ∈ C | Imz > 0} ⊂ C.

For z ∈ H, let t = ekπiz , q = e2πiz as usual. The classical theta function is written as ϑΓ(z) =
∑
x∈Γ

q
1
2x·x, while for the

convenience of the results in the next section, we write the theta function ϑΓ(z) in a new form as ϑΓ(z) =
∑
x∈Γ

t
1
kx·x since

ϑΓ(z) =
∑

x∈Γ

t
1
kx·x =

∑

x∈Γ

eπizx
2

=
∑

x∈Γ

q
1
2x·x. (2.4)

Definition 6 Let m be an even number. A holomorphic function f : H −→ C is called a modular form of weight m, if the

following two conditions are satisfied:

(1) For any

(
a b
c d

)
∈ SL2(Z),

f

(
az + b

cz + d

)
= (cz + d)mf(z).

(2) f is holomorphic at z = i∞.

The following Proposition 2 shows the property of modular form for lattices associated with doubly even and self-dual codes

on Zn
k when k is even.

Proposition 2 If k is even, and C is a doubly even and self-dual code in Zn
k . Then we have n ≡ 0 (mod 8) and ϑΓC is a

modular form of weight n
2 .
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Proposition 2 is a natural generalization of the result of modular form for binary doubly even and self-dual codes in [12].

We claim that it also holds for k-ary doubly even and self-dual codes when k is even. In order to prove Proposition 2, we

give the following proposition first, which constructs the identity between the theta functions of ΓC and Γ∗
C .

Proposition 3 Let C ⊂ Zn
k be a k-ary code, we have

ϑΓC

(
−1

z

)
=

1

det(ΓC)

(z
i

)n
2

ϑΓ∗
C
(z).

Proof: According to the definition of theta function,

ϑΓC

(
−1

z

)
=

∑

x∈ΓC

e−
πix2

z .

After some calculation we obtain the Fourier transform of e−
πix2

z is
(
z
i

)n
2 eπizx

2

. Based on the Poisson summation formula,

ϑΓC

(
−1

z

)
=

∑

x∈ΓC

e−
πix2

z =
1

det(ΓC)

∑

x∈Γ∗
C

(z
i

)n
2

eπizx
2

=
1

det(ΓC)

(z
i

)n
2

ϑΓ∗
C
(z).

�

Proof of Proposition 2: From Proposition 1 we know ΓC is an even and unimodular lattice. First we show that n ≡ 0 (mod 8).
Suppose that n is not divisible by 8. We may assume that n ≡ 4 (mod 8) because we can replace Γ by Γ⊥Γ or Γ⊥Γ⊥Γ⊥Γ.

Since ΓC is even and unimodular, by Proposition 3 we have

ϑΓC

(
−1

z

)
=

1

det(ΓC)

(z
i

)n
2

ϑΓ∗
C
(z) = (−1)

n
4 z

n
2 ϑΓC (z) = −z n

2 ϑΓC (z).

Note that ϑΓC is invariant under T based on ΓC is even, i.e.

ϑΓC (z + 1) =
∑

x∈ΓC

eπi(z+1)x2

=
∑

x∈ΓC

eπizx
2

= ϑΓC (z), (2.5)

then

ϑΓC ((TS)z) = ϑΓC (Sz) = ϑΓC

(
−1

z

)
= −z n

2 ϑΓC (z).

It follows that

ϑΓC ((TS)
3z) = −((TS)2z)

n
2 ϑΓC ((TS)

2z) = −
(

1

1− z

)n
2

[−((TS)z)
n
2 ]ϑΓC ((TS)z)

=

(
1

1− z

)n
2
(
−1

z
+ 1

)n
2

(−z n
2 )ϑΓC (z) = −ϑΓC (z).

However, this is a contradiction since (TS)3 = 1. So n ≡ 0 (mod 8).
To prove ϑΓC is a modular form of weight n

2 , we already know ϑΓC is holomorphic on H ∪ {i∞}, it only needs to show

that ϑΓC (Sz) = z
n
2 ϑΓC (z) and ϑΓC (Tz) = ϑΓC (z) since the modular group G is generated by S and T . By Proposition 3,

it’s easy to verify that

ϑΓC (Sz) = ϑΓC

(
−1

z

)
=

1

det(ΓC)

(z
i

)n
2

ϑΓ∗
C
(z) = z

n
2 ϑΓC (z),

and we have shown ϑΓC (Tz) = ϑΓC (z) in (2.5). Therefore, ϑΓC is a modular form of weight n
2 . The proof of Proposition 2

is complete.

�

III. THE COMPLETE WEIGHT ENUMERATORS MACWILLIAMS IDENTITY

The complete weight enumerators of codes were first proposed by MacWilliams [28] and have been of fundamental

importance to theories and practices since they give both the weight enumerators and the frequency of each symbol appearing

in each codeword. After that, many researchers extended this work. For example, Wan [39] proved the complete weight

enumerators MacWilliams identity for linear codes over Galois ring based on the Fourier transform and Poisson summation

formula. In this section, we will provide a proof from the theory of theta function for the complete weight enumerators

MacWilliams identity of the codes over Zk , and obtain the identity for the symmetrized weight enumerators directly.

Let’s consider the following k functions.

Definition 7 Assume that Γ =
√
kZ and t = ekπiz , z is in the upper half plane in C. We define the function

A0(z) =
∑

x∈Z

tx
2

=
∑

x∈Γ

t
1
kx2

=
∑

x∈kZ

t
1
k2 x2

,
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which is the theta function of the lattice Γ. For 1 6 j 6 k − 1, we define another k − 1 functions as

Aj(z) =
∑

x∈kZ+j

t
1
k2 x2

.

Note that
k−1∑

j=0

Aj(z) =
∑

x∈Z

t
1
k2 x2

=
∑

x∈Γ∗

t
1
kx2

,

which is the theta function of the dual lattice of Γ. The following Lemma 1 gives the detailed relationships of these k functions

A0(z), A1(z), · · · , Ak−1(z).
Lemma 1 For any 0 6 j 6 k − 1,

Aj

(
−1

z

)
=

1√
k

(z
i

) 1
2

k−1∑

m=0

e
2πjm

k iAm(z).

Proof: Taking y = x−j√
k

in the following equality, we have

Aj(z) =
∑

x∈kZ+j

t
1
k2 x2

=
∑

y= x−j√
k
∈Γ

t
1
k2 (

√
ky+j)2

=
∑

y∈Γ

t
1
k (y+ j√

k
)2

=
∑

y∈Γ

e
πiz(y+ j√

k
)2
.

Therefore,

Aj

(
−1

z

)
=

∑

y∈Γ

e
−πi

z (y+ j√
k
)2
.

Let f(y) = e
−πi

z (y+ j√
k
)2

be the function of y, we calculate the Fourier transform of f(y) and get

f̂(x) =

∫

R

f(y)e−2πixydy =
(z
i

) 1
2

e
2πjx√

k
i
eπizx

2

.

Note that Γ∗ = 1√
k
Z, based on the Poisson summation formula,

Aj

(
−1

z

)
=

∑

y∈Γ

e
−πi

z (y+ j√
k
)2

=
1

det(Γ)

(z
i

) 1
2
∑

x∈Γ∗

e
2πjx√

k
i
eπizx

2

=
1√
k

(z
i

) 1
2
∑

x∈Z

e
2πjx

k ie
πizx2

k .

Since Z =
k−1⋃
m=0

{kZ+m}, we have

Aj

(
−1

z

)
=

1√
k

(z
i

) 1
2
∑

x∈Z

e
2πjx

k ie
πizx2

k

=
1√
k

(z
i

) 1
2

k−1∑

m=0

∑

x∈kZ+m

e
2πjx

k it
1
k2 x2

=
1√
k

(z
i

) 1
2

k−1∑

m=0

e
2πjm

k iAm(z).

We complete the proof of Lemma 1.

�

Let C ⊂ Zn
k be a k-ary linear code, ΓC = 1√

k
ρ−1(C) be the associated lattice of C. For any c = (c1, c2, · · · , cn) ∈ C, we

denote by w(c) the Hamming weight of c, that is,

w(c) = #{i | ci 6= 0, 1 6 i 6 n},
which is the number of nonzero character in the codeword c. For 0 6 j 6 k− 1, we define wj(c) as the weight at j of c, i.e.

wj(c) = #{i | ci = j, 1 6 i 6 n}.
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The complete weights of the codeword c are composed of w0(c), w1(c), · · · , wk−1(c), and the complete weight enumerator of

C is the polynomial defined as

WC(X0, X1, · · · , Xk−1) =
∑

c∈C

X
w0(c)
0 X

w1(c)
1 · · ·Xwk−1(c)

k−1 . (3.1)

The degree of the complete weight enumerator is n since
k−1∑
j=0

wj(c) = n for all c ∈ C.

On the other hand, we define the symmetrized weight enumerator as




SC(X0, X1, · · · , X k−1
2
) =

∑
c∈C

X
w0(c)
0 X

w1(c)+wk−1(c)
1 · · ·X

w k−1
2

(c)+w k+1
2

(c)

k−1
2

, if k is odd,

SC(X0, X1, · · · , X k
2
) =

∑
c∈C

X
w0(c)
0 X

w1(c)+wk−1(c)
1 · · ·X

w k−2
2

(c)+w k+2
2

(c)

k−2
2

X
w k

2
(c)

k
2

, if k is even.

Similarly, the degree of the symmetrized weight enumerator is also n.

In this section, the main work is to prove Theorem 2 showed in Section I based on the theory of theta function. In order to

prove Theorem 2, we first give a few auxiliary lemmas.

Lemma 2 Let C ⊂ Zn
k be a k-ary code. Then

det(ρ−1(C)) · |C| = kn.

Proof: Since ρ is the natural homomorphism, we have the isomorphism of quotient group Zn/ρ−1(C) ∼= Zn
k/C. Hence,

|Zn/ρ−1(C)| = |Zn
k/C|,

this implies that

det(ρ−1(C)) = vol(Rn/ρ−1(C)) = |Zn/ρ−1(C)|vol(Rn/Zn) = |Zn
k/C| =

kn

|C| .

Therefore,

det(ρ−1(C)) · |C| = kn.

We finish the proof of Lemma 2.

�

Lemma 3 Let C ⊂ Zn
k be a k-ary code, ΓC = 1√

k
ρ−1(C) be the associated lattice of C. We have

Γ∗
C = ΓC⊥ .

Proof: Note that Γ∗
C = ΓC⊥ ⇔

√
kρ−1(C)∗ = 1√

k
ρ−1(C⊥) ⇔ ρ−1(C)∗ = 1

kρ
−1(C⊥).

We first prove that ρ−1(C)∗ ⊂ 1
kρ

−1(C⊥). For any α ∈ ρ−1(C)∗, we note that c ∈ ρ−1(C) if c ∈ C, it follows that α ·c ∈ Z

for all c ∈ C, then

kα · c ≡ 0 (mod k), ∀c ∈ C.

This means that kα mod k ∈ C⊥, and kα ∈ ρ−1(C⊥), which implies that α ∈ 1
kρ

−1(C⊥).
To show that 1

kρ
−1(C⊥) ⊂ ρ−1(C)∗, for any β ∈ 1

kρ
−1(C⊥), or kβ ∈ ρ−1(C⊥), we prove that β ∈ ρ−1(C)∗. For any

c ∈ C, we have (kβ mod k) · c = 0, which implies that kβ · c ≡ 0 (mod k). Thus we have β · c ∈ Z for all c ∈ C.

Let x ∈ ρ−1(C), denote x mod k = c0 ∈ C, then we have β · x ∈ Z since β · c0 ∈ Z, this leads to β ∈ ρ−1(C)∗, and
1
kρ

−1(C⊥) ⊂ ρ−1(C)∗. We have Lemma 3.

�

Now we can give the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1: For any c = (c1, c2, · · · , cn) ∈ C, it follows that

ρ−1(c) = (c1 + kZ)× (c2 + kZ)× · · · × (cn + kZ).

It’s not difficult to see ∑

x∈ 1√
k
ρ−1(c)

t
1
kx2

=
∑

x∈ρ−1(c)

t
1
k2 x2

=
∑

x1∈c1+kZ

t
1
k2 x2

1

∑

x2∈c2+kZ

t
1
k2 x2

2 · · ·
∑

xn∈cn+kZ

t
1
k2 x2

n

= Ac1(z)Ac2(z) · · ·Acn(z)

= A0(z)
w0(c)A1(z)

w1(c) · · ·Ak−1(z)
wk−1(c).
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Therefore,

ϑΓC (z) =
∑

x∈ΓC

t
1
kx2

=
∑

c∈C

∑

x∈ 1√
k
ρ−1(c)

t
1
kx2

=
∑

c∈C

A0(z)
w0(c)A1(z)

w1(c) · · ·Ak−1(z)
wk−1(c)

=WC(A0(z), A1(z), · · · , Ak−1(z)).

This is the proof of Theorem 1.

�

Proof of Theorem 2: From Theorem 1, Lemma 2, Lemma 3 and Proposition 2, one can get

WC

(
A0

(
−1

z

)
, A1

(
−1

z

)
, · · · , Ak−1

(
−1

z

))
= ϑΓC

(
−1

z

)

=
1

det(ΓC)

(z
i

)n
2

ϑΓ∗
C
(z) =

1

det(ρ−1(C))/k
n
2

(z
i

)n
2

ϑΓ
C⊥ (z)

=
|C|
k

n
2

(z
i

)n
2

WC⊥(A0(z), A1(z), · · · , Ak−1(z)). (3.2)

On the other hand, since the complete weight enumerator WC is a homogeneous polynomial of degree n, it implies that

WC

(
A0

(
−1

z

)
, A1

(
−1

z

)
, · · · , Ak−1

(
−1

z

))

=
1

k
n
2

(z
i

)n
2

WC(

k−1∑

j=0

Aj(z),

k−1∑

j=0

e
2πj
k iAj(z), · · · ,

k−1∑

j=0

e
2π(k−1)j

k iAj(z)). (3.3)

Comparing with (3.2) and (3.3), we have

WC⊥(A0(z), A1(z), · · · , Ak−1(z)) =
1

|C|WC(

k−1∑

j=0

Aj(z),

k−1∑

j=0

e
2πj
k iAj(z), · · · ,

k−1∑

j=0

e
2π(k−1)j

k iAj(z)).

We finish the proof of Theorem 2.

�

Corollary 1 Let C ⊂ Zn
k be a k-ary self-dual code, then

WC(A0(z), A1(z), · · · , Ak−1(z)) =WC


 1√

k

k−1∑

j=0

Aj(z),
1√
k

k−1∑

j=0

e
2πj
k iAj(z), · · · ,

1√
k

k−1∑

j=0

e
2π(k−1)j

k iAj(z)


 .

Proof: From C is a self-dual code we can get |C| = k
n
2 =

√
k
n

. Note that WC is a homogeneous polynomial of degree n,

by Theorem 2 we have

WC(A0(z), A1(z), · · · , Ak−1(z)) =WC⊥(A0(z), A1(z), · · · , Ak−1(z))

=
1√
k
nWC(

k−1∑

j=0

Aj(z),

k−1∑

j=0

e
2πj
k iAj(z), · · · ,

k−1∑

j=0

e
2π(k−1)j

k iAj(z))

=WC


 1√

k

k−1∑

j=0

Aj(z),
1√
k

k−1∑

j=0

e
2πj
k iAj(z), · · · ,

1√
k

k−1∑

j=0

e
2π(k−1)j

k iAj(z)


 .

�

Corollary 1 shows that the complete weight enumerator of a self-dual code in Zn
k is invariant under a rotation in Rn. The

following Corollary 2 provides the symmetrized weight enumerators MacWilliams identity for codes over Zk.

Corollary 2 Let C ⊂ Zn
k be a k-ary code, then we have

SC⊥(A0, A1, · · · , A k−1
2
) =

1

|C|SC(A0 +

k−1
2∑

j=1

2Aj , A0 +

k−1
2∑

j=1

2 cos
2jπ

k
Aj , · · · , A0 +

k−1
2∑

j=1

2 cos
(k − 1)jπ

k
Aj)
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if k is odd, and

SC⊥(A0, A1, · · · , A k
2
) =

1

|C|SC(A0 +

k−2
2∑

j=1

2Aj +A k
2
, A0 +

k−2
2∑

j=1

2 cos
2jπ

k
Aj −A k

2
, · · · ,

A0 +

k−2
2∑

j=1

2 cos
(k − 2)jπ

k
Aj + (−1)

k−2
2 A k

2
, A0 +

k−2
2∑

j=1

2(−1)jAj + (−1)
k
2A k

2
)

if k is even.

Proof: If k is odd, based on the definition of the symmetrized weight enumerator, we have

SC⊥(A0, A1, · · · , A k−1
2
) =

∑

c∈C⊥

A
w0(c)
0 A

w1(c)+wk−1(c)
1 · · ·A

w k−1
2

(c)+wk+1
2

(c)

k−1
2

=WC⊥(A0, A1, A2, · · · , A k−1
2
, A k−1

2
, · · · , A2, A1)

=
1

|C|WC(B0, B1, B2, · · · , Bk−2, Bk−1), (3.4)

where B0, B1, B2, · · · , Bk−2, Bk−1 satisfy that

B0 = A0 +

k−1
2∑

j=1

2Aj,

B1 = Bk−1 = A0 +

k−1
2∑

j=1

2 cos
2jπ

k
Aj , · · ·

B k−1
2

= B k+1
2

= A0 +

k−1
2∑

j=1

2 cos
(k − 1)jπ

k
Aj .

Therefore, from (3.4) we get

SC⊥(A0, A1, · · · , A k−1
2
) =

1

|C|WC(B0, B1, B2, · · · , Bk−2, Bk−1) =
1

|C|SC(B0, B1, · · · , B k−1
2
)

=
1

|C|SC(A0 +

k−1
2∑

j=1

2Aj , A0 +

k−1
2∑

j=1

2 cos
2jπ

k
Aj , · · · , A0 +

k−1
2∑

j=1

2 cos
(k − 1)jπ

k
Aj).

If k is even, we can get the identity in the same way.

�

IV. THE COMPLETE WEIGHT ENUMERATORS MACWILLIAMS IDENTITY IN GENUS g

In this section, we present the complete weight enumerators MacWilliams identity in genus g, which is a generalization of

the work by Bannai et al. [2] to the finite ring Zk. First let’s introduce some definitions and notations.

Definition 8 Let C ⊂ Zn
k be a k-ary code. For a positive integer g, we define the complete weight enumerators in genus g

of the code C is

CC,g(za with a ∈ Z
g
k) =

∑

c1,··· ,cg∈C

∏

a∈Z
g
k

zwa(c1,··· ,cg)
a , (4.1)

if we write c1 = (c11, c12, · · · , c1n), · · · , cg = (cg1, cg2, · · · , cgn), here wa(c1, · · · , cg) denotes the number of i satisfying

(c1i, c2i, · · · , cgi) = a, i.e.

wa(c1, · · · , cg) = #{i | (c1i, c2i, · · · , cgi) = a, 1 6 i 6 n}.
It’s easy to see that if g = 1, then the above complete weight enumerators in genus 1 is the same as the complete weight

enumerators (3.1) defined in the previous section.

Assume f ∈ C(x1, x2, · · · , xn) is a complex polynomial of x1, x2, · · · , xn, and M is a matrix (aij)n×n of order n. We

denote Mf(x1, x2, · · · , xn) by

Mf(x1, x2, · · · , xn) = f




n∑

j=1

a1jxj ,

n∑

j=1

a2jxj , · · · ,
n∑

j=1

anjxj


 . (4.2)
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In [2], Bannai et al. give the following MacWilliams identity of the complete weight enumerators in Genus g for an even

number k:

CC⊥,g(za) =
1

|C|g TCC,g(za),

here T = (ηa·b)a,b∈Z
g
k
, and η = e

2πi
k is the primitive root of unit. We set an additive characteristic ψ for Zk by ψ(x) = e2πix/k,

x ∈ Zk. Now we give a proof of Theorem 3 in Section I and show that it also holds for codes C ⊂ Zn
k for any positive integer

k.

Proof of Theorem 3: For any c1, c2, · · · , cg ∈ C, we write c1 = (c11, c12, · · · , c1n), · · · , cg = (cg1, cg2, · · · , cgn). Let the

function f be

f(c1, c2, · · · , cg) =
∏

a∈Z
g
k

zwa(c1,··· ,cg)
a ,

here wa(c1, · · · , cg) is defined in (4.2). To prove Theorem 3, we first show the Fourier transform of f(c1, c2, · · · , cg) is

f̂(c1, c2, · · · , cg) = Tf(c1, c2, · · · , cg).
We denote c by the g×n matrix (cij)g×n composed of c1, c2, · · · , cg as the g rows, and denote x1, x2, · · · , xn by the n columns

of the matrix c. For any ξ1, ξ2, · · · , ξg ∈ Zn
k , let ξ be the matrix composed of ξ1, ξ2, · · · , ξg as the rows, and y1, y2, · · · , yn

be the columns of ξ. It follows that the Fourier transform of f(c1, c2, · · · , cg) is given by

f̂(c1, c2, · · · , cg) =
∑

ξ1,··· ,ξg∈Zn
k

(
∏

a∈Z
g
k

zwa(ξ1,··· ,ξg)
a )ψ(< c, ξ >),

here < c, ξ > is the trace of cT ξ, which is equal to
n∑

j=1

xi · yi. Note that wa(ξ1, ξ2, · · · , ξg) =
n∑

j=1

wa(yj), and

ψ(< c, ξ >) = ψ(

n∑

j=1

xj · yj) =
n∏

j=1

ψ(xj · yj),

therefore, we have

f̂(c1, c2, · · · , cg) =
∑

ξ1,··· ,ξg∈Zn
k

(
∏

a∈Z
g
k

zwa(ξ1,··· ,ξg)
a )ψ(< c, ξ >)

=
∑

ξ=(y1,··· ,yn)∈Z
g×n
k

n∏

j=1


ψ(xj · yj)

∏

a∈Z
g
k

zwa(yj)
a




=
n∏

j=1

∑

yj∈Z
g
k


ψ(xj · yj)

∏

a∈Z
g
k

zwa(yj)
a




=
n∏

j=1

∑

a∈Z
g
k

ψ(xj · a)za

=
∏

b∈Z
g
k

(
∑

a∈Z
g
k

ψ(b · a)za)wb(c1,··· ,cg).

Based on the Poisson summation formula,

∑

c1,··· ,cg∈C⊥

f(c1, c2, · · · , cg) =
1

|C|g
∑

c1,··· ,cg∈C

f̂(c1, c2, · · · , cg).

Combine with (4.1) and (4.2), one can get

CC⊥,g(za) =
∑

c1,··· ,cg∈C⊥

f(c1, c2, · · · , cg)

=
1

|C|g
∑

c1,··· ,cg∈C

∏

b∈Z
g
k

(
∑

a∈Z
g
k

ψ(b · a)za)wb(c1,··· ,cg) =
1

|C|g TCC,g(za).

This is the proof of Theorem 3.

�.



13

V. THE COMPLETE WEIGHT ENUMERATORS MACWILLIAMS IDENTITY IN CYCLOTOMIC FIELDS

In this section, we assume that k = p is an odd prime number and C ⊂ Fn
p is a linear code over Fp satisfying C ⊂ C⊥.

Let ξ = e
2πi
p and K = Q(ξ) be the cyclotomic field obtained by adjoining ξ to Q. Since p− 1 is the degree of the minimal

polynomial of ξ over Q, then K is a vector space over Q of dimension p− 1. Assume that K+ = Q(ξ+ ξ−1) is the maximal

real subfield of K . We denote TrK/Q by the trace function of elements in K . Let D be the ring of integers of K , i.e.

D = {α =

p−2∑

j=0

ajξ
j | aj ∈ Z, j = 0, 1, · · · , p− 2}.

Suppose B = 〈1− ξ〉 is the principal ideal of D generated by the element 1 − ξ ∈ D. We define ρ : Dn −→ (D/B)n

by the mapping of the reduction modulo the principal ideal B in each coordinate. For example, if α =
p−2∑
j=0

ajξ
j ∈ D,

a0, a1, · · · , ap−2 ∈ Z, it’s not hard to get

ρ(α) =

p−2∑

j=0

aj mod p,

which indicates that D/B ∼= Fp. For any x = (x1, x2, · · · , xn) ∈ D, y = (y1, y2, · · · , yn) ∈ D, we define xy =
n∑

j=1

xjyj

where y is the complex conjugate of y. Let ΓC = ρ−1(C) ⊂ D
n be the associated lattice of the code C. The theta function

of ΓC is defined as

ϑΓC (z) =
∑

x∈ΓC

e2πizTrK+/Q(
xx
p ),

where z ∈ H is the upper half plane of complex number. For any j = 0, 1, 2, · · · , p− 1, suppose

ϑj(z) =
∑

x∈B+j

e2πizTrK+/Q(
xx
p ).

Now we give the proof of Theorem 4 given in Section I.

Proof of Theorem 4: For any c = (c1, c2, · · · , cn) ∈ C, it follows that

ρ−1(c) = (c1 +B)× (c2 +B)× · · · × (cn +B).

Then we have ∑

x∈ρ−1(c)

e2πizTrK+/Q(
xx
p ) =

∑

x=(x1,··· ,xn)∈ρ−1(c)

e2πizTrK+/Q(
x1x1+x2x2+···+xnxn

p )

=
∑

x1∈c1+B

e2πizTrK+/Q(
x1x1

p )
∑

x2∈c2+B

e2πizTrK+/Q(
x2x2

p )
∑

xn∈cn+B

e2πizTrK+/Q(
xnxn

p )

= ϑc1(z)ϑc2(z) · · ·ϑcn(z) = ϑ0(z)
w0(c)ϑ1(z)

w1(c)(z)ϑp−1(z)
wp−1(c).

Therefore, ∑

c∈C

∑

x∈ρ−1(c)

e2πizTrK+/Q(
xx
p ) =

∑

c∈C

ϑ0(z)
w0(c)ϑ1(z)

w1(c)(z)ϑp−1(z)
wp−1(c),

which means that

ϑΓC (z) =WC(ϑ0(z), ϑ1(z), · · · , ϑp−1(z)).

So we finish the proof of Theorem 4.

�.

The similar method may yield a high dimensional result. Let z = (z1, z2, · · · , zp−1) ∈ Hp−1. We define the trace and theta

function by

TrK/Q(z
xy

p
) =

p−1∑

i=1

ziσi(
xy

p
),

where x, y ∈ D, each σi is the embedding of K −→ C,

θj(z) =
∑

x∈B+j

eπiTrK/Q(z
xx
p ) =

∑

x∈B+j

e2πiTrK+/Q(z
xx
p ), 0 6 j 6 p− 1,

and

θΓC (z) =
∑

x∈ΓC

eπiTrK/Q(z
xx
p ) =

∑

x∈ΓC

e2πiTrK+/Q(z
xx
p ), z ∈ Hp−1.
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We also have

θΓC (z) =WC(θ0(z), θ1(z), · · · , θp−1(z)), z ∈ Hp−1. (5.1)

The above result may compare with Theorem 5.1 of [8], which gave a complete weight enumerator MacWilliams identity

with z ∈ H
p−1
2 in the totally real field Q(ξ + ξ−1).

VI. CONCLUSION

To show that Theorem 2 is equivalent to the complete weight enumerators MacWilliams identity, it is important to prove the

algebraic independence of A0, A1, · · · , Ak−1. We wish to find a proof based on the algebra of Hilbert modular form. Another

topic of this paper is the connection between weight enumerators of codes and theta functions of lattices. The results of van

der Geer and Hirzebruch could be considered as a generalization of that on weight enumerators of codes and theta functions

of lattices in the binary case. They showed the relationship between the Lee weight enumerators of p-ary codes when p is an

odd prime number and associated lattices over the ring of algebraic integers on a cyclotomic field. To establish the properties

of the complete weight enumerators for codes over Fp with theta functions, we generalize their works. It’s also interesting to

obtain a generalization for a general positive integer k instead of a prime number p. We will discuss this in our future works.

In this paper, we prove the complete and symmetrized weight enumerators MacWilliams identity for codes over Zk based

on theta functions, and present the complete weight enumerators MacWilliams identity in genus g in general, which is a

generalization of the works by Bannai et al. The further questions are to consider the modified theta functions or the nu-

function of a lattice associated with a k-ary code. Some results could be fould in our previous work [46]. It’s interesting to

explore whether these functions are a kind of special modular forms, as well as present the MacWilliams identities of these

functions based on the theory of theta function and modular form.
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