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Abstract

Recent advancements in Large Language Mod-
els (LLMs) raised concerns over potential mis-
use, such as for spreading misinformation.
In response two counter measures emerged:
machine learning-based detectors that predict
if text is synthetic, and LLM watermarking,
which subtly marks generated text for identi-
fication and attribution. Meanwhile, humans
are known to adjust language to their conver-
sational partners both syntactically and lexi-
cally. By implication, it is possible that humans
or unwatermarked LLMs could unintentionally
mimic properties of LLM generated text, mak-
ing counter measures unreliable. In this work
we investigate the extent to which such conver-
sational adaptation happens. We call the con-
cept mimicry and demonstrate that both humans
and LLMs end up mimicking, including the
watermarking signal even in seemingly improb-
able settings. This challenges current academic
assumptions and suggests that for long-term
watermarking to be reliable, the likelihood of
false positives needs to be significantly lower,
while longer word sequences should be used
for seeding watermarking mechanisms.

1 Introduction

Recent progress in Large Language Models
(LLMs) enabled a large number of applica-
tions (Brown et al., 2020; Gemini-Team et al.,
2024), but also raised concerns about their poten-
tial misuse, particularly for spreading misinforma-
tion (OpenAl, 2024) and impacting future machine
learning (ML) models (Shumailov et al., 2023; Wyl-
lie et al., 2024). To address this, ML-based detec-
tion for artificially produced text (Mitchell et al.,
2023; Hans et al., 2024) and LLLM watermarking
have emerged as a promising techniques (Aaronson,
2022; Dathathri et al., 2024a). ML-based detectors
work by estimating the likelihood that given text
was produced by a human. Watermarks enable
more precise detection (Kirchenbauer et al., 2023;
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Aaronson and Kirchner, 2023) and even attribution
of the source (Yoo et al., 2024) by subtly embed-
ding a unique signature within generated content.

Current LLM watermarking schemes rely on ma-
nipulating the model’s internal sampling process to
favour specific sequences of tokens in certain con-
texts (Aaronson, 2022; Kirchenbauer et al., 2023;
Christ et al., 2023). This allows for watermark de-
tection by analysing the likelihood of a particular
token appearing in a specific context, given a se-
cret key. These methods achieve high watermark
detection rates with controlable distortion to the
generated text, leveraging the inherent statistical
properties of language itself.

However, communication is a dynamic process.
Humans, for example, adapt their language use —
both in terms of vocabulary and sentence structure
— to match their conversation partner (Chang et al.,
2012; Mol et al., 2012). This phenomenon natu-
rally leads to the question: can the same adaptation
occur during interactions with LLMs and influence
watermarks and ML detectors? While LLM wa-
termarking leverages lexical and syntactic features,
this very reliance creates a potential vulnerability.
Namely, a non-watermarked conversational part-
ner might begin to unconsciously mimic artificial
language and the watermarking patterns over time,
even though the partner is not watermarked.

In this work, we introduce the concept of
mimicry and investigate the extent to which LLMs
exhibit this behaviour. We demonstrate that
through extended conversations, that LLMs exhibit
mimicry, even for the watermarks in settings where
the detection probability is low according to cur-
rent academic watermarking configurations. We
depict the intuition in Figure 1. This finding chal-
lenges the long-term effectiveness of current LLM
watermarking configurations and suggests the need
for exploring alternatives that take mimicry into ac-
count and provide lower false positive rates. Funda-
mentally, watermark mimicry undermines the pur-
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Figure 1: An intuitive description of watermark mimicry. Here, a watermarked prompt is used together with an
unwatermarked model. During a conversation parts of the original watermerk () prompt are reused by

the model, leading to watermark mimicry (), resulting in an unwatermarked model outputting watermarked
response. Importantly, the watermark can even be stronger in the response, since it can by a coincidence produce a

watermark in unaffected by mimicry areas ( ).

pose of watermarking, since unwatermaked models
are not supposed to produce watermarks.

2 Related Work

LLM Watermarking Model watermarking
emerged as a potential first party solution for
attribution of synthetically generated text to
its origins. Such algorithms are broadly split
into distortionary (Kirchenbauer et al., 2023)
and non-distortianary (Aaronson and Kirchner,
2023; Christ et al., 2023; Dathathri et al., 2024b),
depending on whether they change the underlying
model performance. Major tech companies
reportedly now watermark their models (Aaronson,
2022; Dathathri et al., 2024a). Importantly, current
literature notes that learning from watermarked
text can lead to production of watermarks (Gu
et al., 2024; Sander et al., 2024). In this work, we
show that even in-context interaction with LLMs
leads to language adjustment and mimicry of the
LLM watermarks.

Third-party detectors Alternative third party
methods for synthetic data detection have also
emerged. These specifically develop a machine
learning model to estimate the probability that a
given text sample was produced by a human (Hans
et al., 2024; Mitchell et al., 2023). Binoculars
from Hans et al. (2024) is the current state of the art
for detection of artificial content, which leverages
a pair of differently tuned Falcon-7B (Penedo et al.,
2023) models for its calibrated prediction.
Conversational Adaptation Linguistic adaptation
refers to a phenomena where individuals adjust

their language in response to others during a con-
versation (Chang et al., 2012; Mol et al., 2012).
Such adaptation is extensive and covers phonology,
repetition of words, syntax, and even gesturing.

3 Methodology

In this paper we demonstrate that linguistic adap-
tation causes both humans and models to mimic
watermarks and artificiality of generated text. To
show the effect we run two main experiments. First,
we show that unwatermarked model when in-
teracting with the watermarked model mimics
and starts disproportionately producing the water-
mark. For watermarking we use two most popular
schemes in the current literature: Kirchenbauer
et al. (2023) and Aaronson (2022), both available
through ThreeBricks (Fernandez et al., 2023). Sec-
ond, we show that a similar effect takes place in
conversations with humans. Here we focus on es-
timating the probability that text is produced by a
machine using the state-of-the-art synthetic data
detector. Finally, we run experiments between the
smaller Guanco-13b model and GPT-4o to observe
the behavior of a more capable model. We evaluate
two large publicly available datasets of multiturn
human-LLM conversations. Experiments are ran
on 4 x Quadro RTX 8000 and took approximately
a month.

4 Evaluation

4.1 LLMs conversing with LLMs

In this subsection we focus on the conversation
between a pair of models — one watermarked with



Unwatermarked Aaronson and Kirchner (2023)

Kirchenbauer et al. (2023)

Guanco #R Prompt 1 Response | P&R P<R Prompt 1 Response | P&R P<R
Baselines: Unwatermarked Prompt, Unwatermarked Response
Theoretical 1 1% 1% 0.01% 1% 1% 0.01%
1 0.8% 0.9% 0.0% 0.0% 0.2% 0.8% 0.0% 0.0%
Tbv7Tb 3 0.7% 0.6% 0.0% 0.0% 1.6% 0.9% 0.4% 0.2%
5 1.2% 0.5% 0.0% 0.0% 22% 1.7% 0.3% 0.3%
1 1.0% 0.6% 0.2% 0.0% 0.4% 0.6% 0.1% 0.0%
13b v 13b 3 1.7% 0.5% 0.3% 0.0% 0.1% 1.1% 0.0% 0.0%
5 1.4% 0.5% 0.3% 0.0% 0.2% 0.4% 0.0% 0.0%
Watermarked Prompt, Unwatermarked Response
1 49.9% 3.7% 2.9% 0.3% 82.4% 6.3% 6.0% 0.4%
7b (w) v 7b 3 72.0% 5.3% 4.9% 0.8% 96.7% 10.0% 10.0% 0.7%
5 81.1% 6.6% 6.4% 0.7% 98.9% 13.0% 13.0% 0.7%
1 63.4% 3.4% 2.9% 1.1% 83.8% 7.6% 7.4% 0.1%
7b (w) v 13b 3 80.0% 4.7% 4.5% 0.1% 97.7% 14.4% 14.1% 0.4%
5 89.3% 6.0% 6.0% 0.4% 99.3% 18.2% 18.2% 0.4%
1 33.2% 3.9% 3.1% 0.4% 74.4% 4.6% 4.1% 0.4%
13b (w) v 7b 3 54.1% 6.7% 6.2% 1.1% 93.0% 7.4% 7.3% 0.7%
5 69.0% 8.4% 7.9% 0.5% 98.0% 10.2% 10.2% 0.8%
1 30.6% 3.2% 2.0% 0.3% 73.1% 5.8% 5.6% 0.4%
13b(w)v13b 3 53.2% 6.3% 5.2% 0.7% 90.5% 8.3% 8.3% 0.4%
5 63.1% 8.1% 7.2% 0.9% 94.7% 11.2% 11.0% 0.4%
Watermarked Prompt via Guanco-13b, Unwatermarked Response with GPT-40
1 56.9% (£ 3.9%) 0.8% (£0.5%) 0.5% (& 0.3%) 7.3% (£ 0.9%)  83.6% (£ 4.4%) 13% (£0.3%) 12% (£0.2%) 5.0% (£ 1.2%)

ngram=2, t=0.8 3 88.2% (£ 1.1%)
5 93.7% (£ 0.6%)

1 39.7% (£ 10.1%)

1.8% (£ 0.8%)
2.5% (£ 1.3%)

0.6% (£ 0.2%)

1.6% (& 0.8%)
2.0% (£ 1.1%)

0.1% (& 0.0%)

ngram=4, t=0.8 3 66.2% (£ 15.9%) 0.8% (£ 0.3%) 0.5% (= 0.3%)
5 74.1% (£ 14.1%) 1.1% (£ 0.4%) 0.9% (= 0.3%)
1 49.3% (£ 13.1%) 1.1% (£ 0.4%) 0.6% (= 0.2%)

ngram=6, t=0.8 3 76.2% (£ 11.2%)
5 84.2% (£ 8.3%)
1 44.3% (£ 18.1%)
ngram=8, t=0.8 3 67.7% (& 21.8%)
5 78.0% (& 18.2%)

1.2% (£ 0.7%)  0.8% (< 0.3%)
1.7% (£ 0.7%)  1.5% (& 0.4%)

1.3% (£ 0.4%) 0.7% (& 0.5%)
1.6% (£ 0.8%) 1.2% (£ 0.9%)
1.6% (£ 1.0%) 1.4% (£ 1.0%)

3.4% (£ 0.2%)
2.7% (£ 0.3%)

25.4% (£ 6.7%)
16.3% (£ 7.1%)
14.6% (£ 6.5%)

17.5% (£ 6.2%)
7.3% (£ 4.3%)
5.4% (£ 3.3%)

22.9% (£ 16.7%)
10.3% (£ 9.1%)
9.6% (£ 10.0%)

97.6% (£ 1.6%)
99.4% (£ 0.4%)

79.9% (£ 9.5%)
93.8% (£ 6.0%)
95.9% (£ 5.2%) 1.8% (£0.9%) 1.7% (& 0.8%)

79.1% (£ 8.0%) 1.2% (£0.1%) 1.0% (& 0.2%)
93.9% (£ 4.3%) 0.8% (£0.3%) 0.8% (& 0.2%)
96.9% (£2.9%) 0.9% (£ 0.4%) 0.9% (& 0.4%)

77.4% (£ 11.7%) 0.9% (£ 0.2%) 0.7% (& 0.1%)
91.1% (£ 6.2%) 1.3% (£0.2%) 1.2% (& 0.2%)
95.0% (£ 3.9%) 1.0% (£0.2%) 1.0% (& 0.2%)

1.6% (£ 0.6%)
2.4% (£ 0.9%)
0.8% (£ 0.5%)
1.5% (£ 0.8%)

1.6% (& 0.5%)
2.4% (£ 0.9%)

0.6% (& 0.3%)
1.4% (& 0.7%)

0.3% (£ 0.2%)
0.1% (£ 0.1%)

10.3% (£ 6.7%)
2.5% (£ 2.8%)
0.7% (£ 0.7%)

10.7% (£ 5.4%)
2.5% (£ 2.2%)
1.4% (£ 1.6%)

14.5% (£ 8.3%)
3.7% (£ 2.6%)
1.4% (£ 1.2%)

Table 1: Table shows proportion of text that has a watermark. Here a watermarked LLM model (Temperature=1,
watermark ngram=4, threshold 0.01, averaged over three random keys (large variance)) interacts with a non-
watermarked LLM model (Temperature=0.8). Prompt refers to the watermarked prompt from a first model.
Response refers to the response of an unwatermarked model to a watermarked prompt. #R refers to a number of
responses concatenated together. P&R reports a proportion of cases where watermarked prompt — i.e. watermark
score < 0.01 —results in a watermarked response — watermark score < 0.01. P<R reports the proportion of cases
where watermark of the response from an unwatermarked model is stronger than the watermark in the prompt.
Original conversation prompt is listed in Appendix B. Expanded table in presented in Table 2 in Appendix.

either Kirchenbauer et al. (2023) or Aaronson and
Kirchner (2023) schemes; while the second model
uses no watermark. We utilise Guanco-7B, Guanco-
13B (Dettmers et al., 2023) models and run the wa-
termarking model in three temperature configura-
tions T=[0, 0.5, 1]. We show examples of conversa-
tions in Appendix C and the prompt in Appendix B.

Table 1 shows the effects of watermark mimicry.
The flow of conversations are shown in Figures 4
and 5 for Aaronson and Kirchner (2023) and in Fig-
ures 6 and 7 for Kirchenbauer et al. (2023). We
find that for both schemes mimicry appears, albeit
the effect is stronger for Kirchenbauer et al.. For
example, with Aaronson scheme Guanco 13b un-
watermarked model outputs watermarked response
in 4% of cases when used with temperature 1, when
computed over 5 consecutive responses. While in

the same setting, Kirchenbauer et al. scheme out-
puts a watermarked response 12.9% of time. In
Figure 8 we confirm that when input repetition
masking is applied text is no longer watermarked.

Table 1 also presents the results of conversation
between the smaller Guanco-13b model with fixed
temperature ¢ = 0.8 and varying ngrams 2,4, 6, 8
and GPT-4o0, averaged over 3 different hash keys.
We can see that the mimicry observed for smaller
models does not hold.

We hypothesize that the absence of mimicry in
larger models is attributable to their superior lan-
guage modeling capabilities. Larger models, such
as the evaluated GPT-40 exhibit stronger gener-
alization and appear less susceptible to adopting
local lexical or syntactic patterns present in the
prompt. They may rely less on shallow repetition



mechanisms and instead generate responses based
on broader contextual understanding. Furthermore,
models like GPT-40 may internally smooth over
deterministic token-level irregularities introduced
by watermarking schemes, reducing the likelihood
of unintentionally reproducing embedded patterns.

4.2 Third party detection of generated data

In this section we focus on a setting where a human
has a conversation with an LLM. Here we make
no assumptions about existence of watermarking
and focus on the best publicly available third-party
detector Binoculars (Hans et al., 2024). We reuse
the best parameters from Hans et al. and calibrate
for 1% false positives rates. We use Binoculars to
estimate if during the conversation with an LLMs
humans adjust their language and ‘mimic’ the
LLM, i.e. human language gets identified as LLM.

LLM-Human conversations: Here we evaluate
conversations dataset available through hugging-
face ar852/scraped-chatgpt-conversations,
theblackcat102/sharegpt-english, filtered to
only keep conversations with at least 100 turns.
Figure 3 shows the results. We find that during
the conversations humans adjust their language and
variance of scores increases over the dialogue. In
other words, over a dialogue humans tend to pro-
duce more speech that appears LLM-like for Binoc-
ulars. The opposite effect takes place for the LLM,
where variance is lost over the conversation.

5 Discussion

In this paper we demonstrated that LLM-produced
input influences how language is used by unwa-
termarked models and humans. Our results have
methodological as well as practical implications.
First, methodologically we show that for water-
marking it is important to account for linguistic
adaption when evaluating performance. Particu-
larly so when the prompts used for evaluations were
generated by other models. One of the ways to deal
with mimicry is to incorporate repetition masking
that is used in some watermarking mechanisms al-
ready (Hu et al., 2023), extending its use to the
prompts. Second, we need to assume stronger de-
tection thresholds and more realistic configurations
for watermarking. This means adjusting false pos-
itive rates to be lower and, for example, choosing
ngram lengths that result in less robust watermarks.
Figure 2 shows how amount of watermark mimicry

for Aaronson and Kirchner (2023) changes as a
function of ngram. We show more results in Ap-
pendix Figures 9 to 12. Here, we observe that
as ngrams get longer mimicry happens less, yet it
comes at a cost of watermarking robustness.

6 Conclusion

Our work highlights a critical challenge for LLM
provenance — mimicry. We demonstrate that small
LLMs exhibit adaptation during conversations, po-
tentially replicating language artificiality and sur-
prisingly even the watermark signal. This phe-
nomenon occurs less prominently in larger models.
This undermines the effectiveness of current wa-
termarking schemes that rely on easily detectable
deviations in token probabilities. To ensure the
long-term viability of LLM watermarking, we pro-
pose further research avenues. First, investigating
watermarking techniques that provide significantly
lower false positive rates is crucial. Second, explor-
ing alternative watermarking methods that lever-
age properties less susceptible to mimicry, such as
semantic coherence or stylistic elements. By ad-
dressing these challenges, we can ensure that LLM
watermarking remains a valuable tool for long-term
mitigation of the misuse of LLMs.

7 Limitations

In this section we discuss limitations of the eval-
uation above. First, our work only considers two
of the most popular schemes and it is not clear if
all other watermarking mechanisms will exhibit
mimicry. Intuitively we expect it to still happen,
consider the following pathological example. Imag-
ine an unwatermarked model quoting watermarked
text from the input — in this case as long as quota-
tion happens it should always trigger the watermark
detector. Yet, the example above provides no indi-
cation to the degree of unnoticeable mimicry. Sec-
ond, our work only considered watermarks used
with three keys and computing expectation over
more keys may reduce currently large performance
variance. We still nonetheless believe that mimicry
will be exhibited, based on the examples and the
shear magnitude of mimicry observed in our exper-
iments with the three random keys. Third, we only
considered models of size 7b and 13b, while larger
models may exhibit less mimicry and generalise to
text better. It can clearly be seen in the examples
in Appendix C, where the text is comprehensible,
the quality is not on par with the best currently
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Figure 2: Aaronson (2022) scheme, changing ngram size, blue shows percentage of watermarked prompts,

shows percentage of watermarked responses

shows percentage of watermarked responses where response

watermark is stronger than in the prompt, red shows percentage of cases with both prompt and response watermarked.
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Figure 3: Human-LLM dialogues (split in Figure 13),
filtered to contain long conversations in English. 520
are from ShareGPT, filtered for 100+ turns (100 human,
100 LLM). 446 are from WildChat dataset, filtered for
50+ turns (100 human, 100 LLM).

available models. This choice is motivated by lim-
ited resources. That said, initial results with larger
models are presented in Section 4.1 and indeed
support our intuition. Fourth, evaluation in Sec-
tion 4.2 assumes that data available through public
datasets is reliable to make adaptation judgements.
Fifth, following from the previous point, it is not
clear to what degree mimicry affects all human con-
versations, and not just specific type of prolonged
discussions. If discussions are short and only a
few sentences are exchanges, it is not obvious that
mimicry would always happen. More thorough
evaluation is required to find precise type of lin-
guistic adaptation that enables watermark mimicry.

8 [Ethical Considerations

Our work addresses reliability of text watermarking
mechanisms — an important tool that enables trust-
worthy machine learning. We find that to make well
informed text provenance decisions, mimicry and
linguistic adaptation should be taken into account.
We highlight an inherent assumption of text water-
marking and suggest future venues for addressing
the discovered limitation. We view our work as an
important step towards making text watermarking
more reliable, while also making methodologies of
watermark evaluations more transparent and fair.

Contributions

All experiments were conducted by D.K. at the
home institution. I.S. and S.D. participates purely
in advisory capacity and conducted no experiments.
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B Original conversation prompt

promptstart = "A chat between two people
talking about everyday topics such
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Figure 8: Kirchenbauer et al. (2023) watermarking with
Guanco-13b and varying temperatures, de-duplicating
ngrams between the watermarked input and the non-
watermarked output. We note that this de-duplication
removes the observed mimicry behavior.

as Weather, Family, Work/School,
Hobbies/Interests, Entertainment,
Travel, Food/Cooking, Current Events
, Technology, Health/Fitness, Pets,
Relationships, Home/Living, Fashion/
Style, Goals/Ambitions.\nThe two
people listen to each other intently
and carry the conversation
naturally and they talk at length.
Answer with at least 50 words each
time.\n\n### Person A: Hey there!
How’s the weather treating you
lately? It’s been so unpredictable
here. One day it’s sunny and warm,
and the next it’s pouring rain.\n\n
### Person B: Oh, I know what you
mean! The weather has been all over
the place lately. It makes planning
outdoor activities a bit tricky,
doesn’t it? I’m hoping for some more
consistent sunshine soon so I can
spend more time hiking and enjoying
nature. How about you? Any outdoor
plans in mind?"

C Watermarked conversation examples

Below are a number of examples where both
prompt (from watermarked model) and the re-
sponse (from unwatermarked model) are water-
marked. In colour we highlight the tokens that are

reused from Prompt () into the Response
(blue).

P: The holidays are | a | great time year
reflection, thinking M
Year’s | resolutions H for \W year. Sounds
like [a|plan! I'm resolutions, ei-
ther, I'm |a]challenge.
\tr'_ail[ always |[a|blast.

R: That’s [a] good idea! I'm also | thinking || about |
| resolutions | | for | [next] year. I'm [a]
making them, |but| I'm |always
[a] challenge. I'm [a] mak-
ing Year’s resolutions, M I'm | always
[a] challenge. thinking M
trying something this year,
wondering if you had any ideas. one
favorite things to do, I'm [a]
doing ’ the ‘ same ’ trail ‘ over ’ and‘ over

again.

P: Sounds like [a| plan! I'm [a]
resolutions, either, I'm chal-
lenge. @[ always
blast. Sounds like [a|plan! I'm
repetition, either, M I’'m | always @
adventure.

R:T'm [a] making Year’s res-
olutions, | but | I'm | always @@challenge.

I was thinking about trying something this
year, I was wondering if you had any ideas.

one my favorite things to do,
I'm [a] doing the same over
over again. I'm [a] repetition,
either, |and | I'm | always @ [a] ad-

venture. I was thinking about trying something

this year, I was wondering if you had

any ideas.
P: The weather is finally warming here

[place]. I'm be 2o
outside enjoy weather. I'm
] way. [ fove] ] keep] 7] o] e
mm‘ and‘ developments [the field].
’W‘ passions interests. I'm
5] [glad ] we'te [able] [10] [comet] [over][our]
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Figure 11: Aaronson (2022) with Guanco-13b (w) v 7b and varying ngrams, T=1
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Figure 13: Datasets split with Binoculars scoring. Showing three standard deviations.

‘ shared ‘ ‘ interest ‘ [the field]. election is
right around | the | corner, I'm
see what happens. I'm we’re | able

be go outside ‘ and ‘ enjoy ‘ the H nice ‘

weather.
I'm happy have found

R: Me too.

connect | [over | [our] ‘shared‘ ‘interest‘

olitics.
f{: I'm for [the new thing]. I'm
interests. Me too. I'm happy
have found [ someone | w understands my
of [the field]. I'm way.

[someone | | who | understands my of [the
field]. I'm way.
[with| [the] [latest| [news] [and]

politics. It
to] [meet] [someone| [who| [shares]
passions interests. I'm we’re
able |[to |[ connect |[over][our] | shared || interest |

B
i

H

M@‘]witthheHlatest\|news]

M developments politics. It’s
nice meet | | someone || who || shares || your

El

in | politics. I'm [so || excited | for [the new thing].
I'm [so]|glad | we’re ’able‘ connect | [ over

our

shared | interests.

B

interests. I'm we're
[able |[to ][ connect |[over | [our || shared || interest |
E politics.

P: I’mway. \lo_ve[\keﬂ‘
‘With‘ ‘the‘ ‘latest‘ [news | ‘and‘ developments
[the field]. It's [ nice | meet
interests. I'm @ we’re ‘ able ‘ [ connect]|

P: The weather is finally warming up here in

[place]. I'm be 2o

outside and enjoy the nice weather. The election

is right around the corner, and I'm
see what happens. I'm glad | we’re | able

connect || over || our || shared | interest in poli-

tics. [Topic] is fascinating | to | me as well. I'm
glad | we're ‘ able ‘ connect |[over | [our
shared | interest in [topic].

over WH shared H interest ‘ [the field]. m‘

election is right around | the | corner, | and | I'mso|

R: I'm for [the new thing]. I'm
glad We’re’able‘ connect | [over |[our

see what happens. I'm M
we're W [connect | [over] [our] | shared
politics. weather is finally
warming here [place]. ’'m

shared | interests. I’m also really into [topic]. I'm
glad | we’re | able | [to] [ connect | [over ] [our

interests. I'm excited | about [new
thing]. I'm we’re ’able ‘ | connect |




[over |[our || shared | interests.

P: The election | is | right around the corner, and I’'m
see what happens. I'm
politics. [Topic] fascinating
well. I'm ‘ glad‘ we're @
[ connect | [over] [our] ‘ shared‘ ‘interest‘

[topic]. The weather finally warming up here

[place]. I'm|s0 | excited |[to] be able [ 10 ] go

outside and enjoy the nice weather.
R: I’'m also really into [topic]. I'm we’re

able connect || over || our || shared | interests.
I'm about [new thing]. 'm

we’re | able connect || over || our || shared |in-

terests. [new topic]
well. I'm glad |we're ‘ able ‘ connect

today’s world. The weather beautiful these
days, don’t you think? (New topic)
(field) today’s world.

R: (New topic) has [a]huge impact on our society.
I’ve been learning [a| lot about (new topic). It’s so

interesting! (New topic) @ very || important

(field) today’s world.

P: Youknow,
outdoors, \dl_so[ \lo_ve[ \Mk&[ \tiﬂ[ M
unwind. I’'m ‘ always ‘ ‘ telling ‘ ’m—y‘
‘friends ‘ ‘ how ‘ ‘ much ‘ m ‘ love ‘ ‘nice ‘ M
| wine||and|[a]] good | book. I'm same
way. m holidays M I’m | always

see friends.
I'm @ same way. m bake and |I'm

[over | WH shared H interest ‘ [topic].

P: The most important thing in life
family friends m consider family.
most important thing in life
family friends m consider family.
most important thing in life
family friends m consider family.

R: I'm a big fan of soccer, especially Premier
League. I'm a supporter of Manchester United.

favorite player Paul Pogba. I'm a big

fan of anime. favorite anime Fullmetal

Alchemlst Brotherhood. |i] want to travel
world. |i| want to see as many places as |i| can

experience different cultures.

P: The most important thing in life
family friends | i | consider family.
most important thing in life
family friends | i | consider family.
most important thing in life
family friends | i | consider family.
R: I’'m a big fan of anime. favorite anime
Fullmetal Alchemist' Brotherhood. |i | want to
travel world. |i| want to see as many places
as ! can experience different cultures. I'm a

sucker for good-looking cars. dream car
a Lamborghini Huracén.

P: (New topic) | is || a|[ very | important | (field)

always ‘looking‘ forward decorating \th_e[

house ‘ ‘ for ‘ ‘ the ‘ holidays.

R: I'm ‘excited‘ ‘for‘ ‘the‘ holidays!
\ love \ this \ time \ year I'm
spending | time | with | family M
friends. Me too! I’m | looking || forward bak—
ing cookies M decorating \the\ \houseror\
holidays. know,
outdoors, M llol[ M
ltiﬂ[lju_st“ml&“ﬂ[unwind. I’m
telling ‘ friends ‘ ‘ how ‘ ‘ much ‘ ‘ love ‘ [a]
M M M M [a]| good | book.

P: I'm same way. bake
I'm ‘always‘ ‘looking‘ forward - decorating
the | house W ’Te‘ holidays. You know, |as]

M E . \ﬂ[ M outdoors, . @
wind. I'm ‘ always ‘ ‘ telling ‘ ’m—y‘
[imoch] (1] fove] &) mice]| glas ] of | wine] [and]
M book. \th_e[ weather is beautiful today!
m was thinking about all fun summer
activities | i can’t wait | to | do.

R: You know, m
outdoors, M llol[ ‘ taking ‘ ltiﬂ[ \ﬁ
unwind. I'm | always ‘ ‘ telling ‘ 'm7y
‘friends ‘ ‘ how ‘ ‘ much ‘ ‘ love ‘ [a] ‘ nice ‘ @




M M [a] M book. I'm so ex-
cited holidays! ’ love ‘ this ’ time ‘
year I’'m so|looking || forward spending
with family friends. |i| know, right?
It’s like they’re so happy see us they never
tire us home.

P: You know, as much as m outdoors,
m also ‘ love ‘ taking ‘ time ‘ just relax un-

wind. I'm always telling my friends how much
a nice glass wine a good book.
weather is beautiful today! |i | was just think-
ing about all fun summer activities |i|can’t
wait do. weather is beautiful today! m
was just thinking about all fun summer activi-
ties |1|can’t wait do.

R: I’m so excited for holidays! this
year I’m so looking forward
spending with family friends. |1 | know,
right? It’s like they’re so happy see us
they never tire us home. |i |know, right?

It’s like they’re so happy see us they never
tire us home.

P: Sounds like [a| great idea. I'll
car. 'm glad you’re adopting | a | puppy.
[topics: car, babysitter, gift] babysitter told

me they had |a | bumper car accident our
car.

R: We're excited! [topics: car, babysitter, gift]
tutor we hired was great. She really helped

my son his history. I'm sorry to hear
that. I hope no one was hurt. I'll [a]
car.

P:I'm glad you’re adopting | a | puppy. [topics:
car, babysitter, gift] The babysitter told me they had

bumper car accident our car. The

babysitter told me they had | a | bumper car accident

our car.

R: The tutor we hired was great. She really helped

my son his history. I'm sorry to hear
that. I hope no one was hurt. I’ll get you[a]
car. My husband and I are thinking of moving to

[a] house.

P: The babysitter told me they had | a | bumper car
accident with our car. The babysitter told me
they had |[a| bumper car accident with our
car. The babysitter told me they had | a | bumper car
accident with our car.

R: I’'m so sorry to hear that. I hope no one was

hurt. T’1l get you [a] car. My husband and

I are thinking of moving to [a| house. My
daughter is taking [ a] dance class, and she’s really

enjoying it.

D Expanded table of results



Unwatermarked Aaronson and Kirchner (2023) Kirchenbauer et al. (2023)

Guanco T #R PromptT Responsel P&R P<R Prompt{T Response| P&R P<R
Random 1% 1% 0.01% 1% 1% 0.01%
00 1 0.6% 05% 0.0% 0.0% 68.5% 3.6% 32% 0.6%
05 1 5.9% 1.6% 09% 0.1% 73.5% 6.8% 63% 0.5%
1.0 1 49.9% 37% 29% 0.3% 82.4% 63% 6.0% 0.4%
00 3 1.0% 0.8% 0.1% 0.0% 91.1% 73% 71% 1.0%
7b (W) v 7b 05 3 15.3% 33% 25% 0.8% 93.1% 102% 99% 1.0%
1.0 3 72.0% 53% 49% 0.8% 96.7% 10.0% 10.0% 0.7%
00 5 1.4% 1.1% 02% 0.1% 95.4% 93% 9.1% 0.8%
05 5 21.6% 40% 3.0% 0.9% 97.2% 134% 133% 1.2%
1.0 5 81.1% 6.6% 64% 0.7% 98.9% 13.0% 13.0% 0.7%
00 1 0.7% 0.7% 0.0% 0.0% 55.9% 31% 2.8% 0.8%
05 1 3.4% 0.8% 0.1% 0.0% 57.4% 47%  3.8% 0.4%
1.0 1 30.6% 32% 2.0% 0.3% 73.1% 5.8% 5.6% 0.4%
00 3 1.2% 1.8% 02% 0.1% 80.3% 56% 54% 0.7%
3b(w)v13b 05 3 10.3% 1.7% 0.8% 0.1% 79.8% 85% 7.8% 0.9%
1.0 3 53.2% 63% 52% 0.7% 90.5% 83% 83% 0.4%
00 5 2.2% 30% 0.7% 0.3% 86.2% 7.6% 7.5% 0.7%
05 5 17.8% 34% 2.1% 04% 86.3% 124% 11.7% 1.1%
1.0 5 63.1% 8.1% 72% 0.9% 94.7% 11.2% 11.0% 0.4%
00 1 0.4% 05% 01% 0.1% 67.5% 39% 32% 02%
05 1 3.4% 1.2% 0.0% 0.0% 77.7% 2.3% 21% 0.2%
1.0 1 63.4% 34% 29% 1.1% 83.8% 7.6% 74% 0.1%
00 3 2.6% 1.0% 0.1% 0.1% 89.6% 92% 8.8% 1.8%
7b(w)v13db 05 3 9.3% 24%  0.5% 0.0% 95.9% 55% 5.1% 0.0%
1.0 3 80.0% 47%  4.5% 0.1% 97.7% 144% 14.1% 0.4%
00 5 4.1% 21% 07% 0.2% 96.0% 11.8% 11.8% 2.0%
05 5 13.0% 33% 09% 0.1% 98.7% 80% 7.5% 0.0%
1.0 5 89.3% 6.0% 6.0% 0.4% 99.3% 182% 182% 0.4%
00 1 0.9% 0.8% 0.0% 0.0% 65.5% 4.1% 4.0% 0.4%
05 1 3.1% 07% 0.1% 0.0% 66.9% 19% 1.7% 0.1%
1.0 1 33.2% 39% 3.1% 04% 74.4% 4.6% 41% 0.4%
00 3 1.0% 0.1% 0.0% 0.0% 91.1% 6.8% 6.6% 0.3%
IB3b(w)v7b 05 3 11.0% 24%  09% 0.4% 92.1% 51% 4.7% 0.4%
1.0 3 54.1% 6.7% 62% 1.1% 93.0% 74%  73% 0.7%
00 5 4.2% 0.7% 0.0% 0.0% 94.1% 79% 7.8% 0.1%
05 5 15.3% 37% 17% 0.7% 96.1% 6.7% 63% 0.4%
1.0 5 69.0% 84% 79% 0.5% 98.0% 102% 10.2% 0.8%

Table 2: Expanded version of Table 1. Table shows proportion of text that has a watermark. Here a watermarked
LLM model (watermark ngram=4, threshold 0.01, averaged over three random keys (large variance)) interacts with
a non-watermarked LLM model (Temperature=0.8). Prompt refers to the watermarked prompt from a first model.
Response refers to the response of an unwatermarked model to a watermarked prompt. #R refers to a number of
responses concatenated together. P&R reports a proportion of cases where watermarked prompt — i.e. watermark
score < 0.01 —results in a watermarked response — watermark score < 0.01. P<R reports the proportion of cases
where watermark of the response from an unwatermarked model is stronger than the watermark in the prompt.
Original conversation prompt is listed in Appendix B.
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