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Abstract
Safety and liveness are the two classical security properties of

consensus protocols. Recent works have strengthened safety with

accountability: should any safety violation occur, a sizable frac-

tion of adversary nodes can be proven to be protocol violators.

This paper studies to what extent analogous accountability guar-

antees are achievable for liveness. To reveal the full complexity of

this question, we introduce an interpolation between the classical

synchronous and partially-synchronous models that we call the

𝑥-partially-synchronous network model in which, intuitively, at most

an 𝑥 fraction of the time steps in any sufficiently long interval are

asynchronous (and, as with a partially-synchronous network, all

time steps are synchronous following the passage of an unknown

“global stablization time”).We prove a precise characterization of the

parameter regime inwhich accountable liveness is achievable: if and

only if 𝑥 < 1/2 and 𝑓 < 𝑛/2, where 𝑛 denotes the number of nodes

and 𝑓 the number of nodes controlled by an adversary. We further

refine the problem statement and our analysis by parameterizing

by the number of violating nodes identified following a liveness

violation, and provide evidence that the guarantees achieved by

our protocol are near-optimal (as a function of 𝑥 and 𝑓 ). Our results

provide rigorous foundations for liveness-accountability heuristics

such as the “inactivity leaks” employed in Ethereum.

1 Introduction
The atomic broadcast variant of Byzantine-fault tolerant (BFT) con-

sensus is a fundamental problem in distributed computing, where

a set of 𝑛 nodes must agree on a total ordering of input transactions
into an output log. This problem has received renewed attention

recently in the context of cryptocurrencies and blockchains be-

cause it is a fundamental primitive for such systems. Specifically,

each node in the protocol successively produces an output log of

transactions, and the protocol must guarantee the two key secu-

rity properties: safety—ensuring that logs remain consistent across

nodes and across time—and liveness—ensuring that every input

transaction is eventually included in the logs of nodes. Despite

some 𝑓 adversary nodes acting arbitrarily (subject to being com-

putationally bounded) in an effort to undermine consensus, these

properties should hold for all non-adversary (a.k.a. honest) nodes.
The typical guarantees for classical protocols state that if the frac-

tion of adversary nodes is below a given threshold, the protocol

remains safe and live.
However, if the fraction of adversary nodes exceeds this thresh-

old, the protocol’s security properties no longer hold. What then? If

there is a security violation, can we at least determine which nodes

caused it? In data-center applications of consensus, this is useful for

identifying and remedying faulty machines; and it becomes even

more important in proof-of-stake blockchain applications of con-

sensus, where self-interested nodes may deviate from the protocol

for financial gain and may be willing to accept consensus security

violations as collateral damage. Here, identifying such adversary

nodes allows the system to confiscate their stake as a form of pun-

ishment, thereby incentivizing honest behavior, and to compensate

damages from the violations. Such aims are often referred to as

crypto-economic security.
Towards this goal, the literature has recently introduced the no-

tion of accountable safety [14, 45], which is a strengthening [37, 38]

of safety that stipulates: if any two nodes at any two points in time

ever have inconsistent output logs, i.e., a safety violation occurs,

then a substantial fraction of nodes can be identified as having

provably violated the protocol. Specifically, if there is ever a safety

violation between two honest nodes, then from their respective

transcripts of the protocol’s execution, a certificate of guilt can be

extracted for a set of nodes such that (a) no honest node is ever

falsely accused of having contributed to the safety violation, and

(b) the set of identified guilty nodes is guaranteed to be fairly large.

1.1 Scope & Contributions
This paper initiates the systematic study of accountability for live-
ness (see Sec. 7 and App. E for a discussion of related work). More

precisely, we investigate under what circumstances, and through

which protocol techniques, the following guarantee can be achieved:

should a liveness violation occur, then a certificate of guilt is even-

tually produced such that (a) no honest node is ever falsely accused,

and (b) the set of identified (guilty) nodes is guaranteed to be fairly

large. Note that, technically, traditional (eventual) liveness is such a

weak guarantee that violations cannot be assessed by any one point

in the execution [4] (as pending transactions may still get confirmed

in the future). We thus consider a slightly stronger (timely-)liveness
notion where transactions have to be confirmed within a deadline.

Intuitively, because liveness violations would seem to typically

involve the unexpected absence of messages (e.g., votes) rather than
the unexpected presence of messages (e.g., double-voting to cause

a safety violation), one might speculate that certificates of guilt

(“proofs of misbehavior”) should be more difficult to guarantee

for liveness violations than for safety violations. We prove that

accountable liveness is indeed harder to achieve than accountable

safety, in two senses.

First, accountable safety is achievable in partial synchrony; in-

deed, any partially-synchronous protocol can be augmented to guar-

antee accountable safety without imposing any additional timing

assumptions [20, 39]. (This statement assumes a computationally
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bounded adversary and secure digitial signatures, assumptions we

also make here.) In contrast, we prove that accountable liveness

cannot be attained in a partially-synchronous network without

additional timing assumptions (at least as long as the protocol is

required to preserve safety under partial synchrony if all nodes

are honest). On the other hand, accountable liveness is vacuous

in a (fully-)synchronous network, where (at least in some vari-

ants [13, 23, 30, 31, 47]) liveness can be guaranteed even if almost all

nodes are adversarial. To characterize the possibility–impossibility

frontier, we introduce the 𝑥-partially-synchronous network model

in which, over any sufficiently long time interval, the network is

asynchronous for at most an 𝑥 fraction of the time. This model

generalizes both synchronous networks (when 𝑥 = 0) and partially-

synchronous networks (when 𝑥 = 1), and may be of independent

interest in the context of recent work on fine-grained network

models (e.g., [26]). Our goal is thus to design consensus protocols

that satisfy standard security properties (safety and liveness) under

partial synchrony but, additionally, achieve accountable liveness in
the 𝑥-partially-synchronous model (for 𝑥 as large as possible).

Second, accountable safety is achievable without any assump-

tions on the number of adversarial nodes—even if all but two of the

nodes are adversarial, the honest nodes’ transcripts will provide

a certificate of guilt following any safety violation.
1
By contrast,

we show that no protocol offering standard guarantees in partial

synchrony (as described above) can also provide accountable live-

ness in the case that there is an adversarial majority (even under

synchrony). The interesting parameter regime is therefore an ad-

versary that controls at least one-third of the nodes (as otherwise,

standard protocols cannot suffer liveness violations and accounta-

bility is irrelevant) and less than one-half of the nodes. Our proto-

cols guarantee accountable liveness in this parameter regime (in

𝑥-partial-synchrony with 𝑥 < 1/2).

1.2 Results
We study atomic broadcast consensus protocols that, roughly speak-

ing (see Sec. 2.4 for a formal statement), guarantee two sets of

requirements:

(1) As a baseline, the protocol should satisfy the standard security

and performance properties required of protocols for partial syn-

chrony. Specifically, it should be safe and live up to ⌊(𝑛 − 1)/3⌋
adversary nodes, with expected confirmation latency during

synchrony on the order of the network delay bound Δ that is

guaranteed to hold after the adversary-chosen “global stabiliza-

tion time” (GST) of the partially-synchronous model.

(2) Additionally, for specified parameters 𝑥 and 𝜏AL
max

, if the net-

work happens to be 𝑥-partially-synchronous and there happen

to be 𝑓 ≤ 𝜏AL
max

adversary nodes, then the protocol should be

accountably live, i.e., produce certificates of guilt for “many”

adversary nodes whenever a transaction is not confirmed in a

timely fashion.

On the positive, achievability side, in Secs. 3 to 5, we present an

accountably live protocol. Specifically, this protocol achieves:

1
We note that [45] establishes lower bounds on the size of the adversary for which

accountable safety can be provided for certain protocols. Nevertheless, appropriately

designed protocols can provide accountability even if all but two nodes are adversarial

(see [12, 20, 38, 39], for example).

Theorem (Informal version of Thm. 1). For any 𝑥 < 1/2 and
𝑛/3 < 𝜏AL

max
< 𝑛/2, the protocol of Algs. 1, 3 and 4 is accountably

live when run in 𝑥-partial-synchrony with 𝑓 ≤ 𝜏AL
max

adversary nodes,

and identifies arbitrarily close to 𝜏AL
max
−

⌊ (1+𝑥 ) (𝜏AL
max
−𝑛/3)

1−𝑥

⌋
adversary

nodes when there is a liveness violation.

In addition, the protocol of Algs. 1, 3 and 4 satisfies the afore-

mentioned point (1), namely the standard security and performance

properties required of protocols for partial synchrony (cf. Lems. 1

and 2). We use the Tendermint protocol [11] as the starting point

for our construction, but our techniques also readily apply to other

PBFT-style protocols like HotStuff [51] or Streamlet [18].

On the negative, impossibility side, we show in Sec. 6 that the

restrictions on 𝑥 and 𝜏AL
max

in the aforementioned theorem are fun-

damental for accountable liveness:

Theorem (Informal version of Thm. 2). No protocol can simultane-
ously provide safety under partial synchrony even when 𝑓 = 0, and
accountable liveness with 𝜏AL

max
≥ 𝑛/2 under synchrony.

Theorem (Informal version of Thm. 3 and Cor. 1). No optimally-
resilient protocol can be accountably live under 𝑥-partial-synchrony
for 𝑥 ≥ 1/2 (and thus also not under partial synchrony).

Here, “optimally-resilient” means that the numbers of adver-

sary nodes the protocol can tolerate while remaining safe or live,

respectively, are maximal.
2

Finally, one can ask how good the protocol of Secs. 3 to 5 is,

in terms of the number of adversary nodes it can identify. We

show for classical PBFT-style protocols (including but not limited

to PBFT [17], Tendermint [11], HotStuff [51], CasperFFG [14, 21],

and Streamlet [18]) an upper bound on the number of adversary

nodes that can be identified, and we conjecture this bound to hold

for all (also non-PBFT-style) protocols:

Theorem (Informal version of Thms. 4 and 5 and Conj. 1). For every
𝑘 ≥ 3: Classical PBFT-style protocols (conjecture: all protocols!) that
remain safe and live under ⌊(𝑛−1)/3⌋ adversary nodes in partial syn-
chrony, cannot be accountably live under (Δ, 𝑔, 𝑥)-partial-synchrony
for 𝑥 ≥ 1/𝑘 and guarantee to identify 𝑛/3 −

⌊
𝜏AL
max
−𝑛/3

𝑘−2

⌋
(or more)

adversary nodes when liveness is violated.

Fig. 1 plots the number of adversary nodes the scheme of Secs. 3

to 5 achieves to identify in case of a liveness violation ( ), and the

aforementioned upper bound ( ), for varying 𝑥 < 1/2 and𝑛/3 <

𝜏AL
max

< 𝑛/2. (Recall that 𝜏AL
max
≤ 𝑛/3 is uninteresting because, by

goal (1), the protocol is then guaranteed to be live, so accountability

is trivial.) Fig. 1 shows that our impossibility result matches our

achievability result closely. Remarkably, they are tight for 𝑥 = 1/3.

1.3 Discussion
Comparison to Synchronous Atomic Broadcast Protocols. The def-

inition of 𝑥-partial-synchrony for 𝑥 < 1 and with respect to a

delay bound Δ implies synchrony with respect to a delay bound

2
We focus on optimally-resilient protocols since these are the most relevant, and be-

cause this also simplifies our analysis by ruling out certain complexities. For example, if

we were not to focus on optimally-resilient protocols, a protocol might claim resilience

that is sub-optimal and then appear to achieve non-trivial accountability simply by

actually ruling out liveness violations beyond the claimed resilience.

2
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Figure 1: Illustration of key results: Impossibility of accountable liveness for 𝜏AL
max
≥ 1

2
𝑛, provided in Thm. 2, and for 𝑥 ≥ 1/2,

provided in Thm. 3, determine choices of 𝜏AL
max

and range of 𝑥 plotted. Plots show fraction of identified adversary nodes (𝜏AL
ident
/𝑛)

achieved ( ) by the scheme of Secs. 3 to 5 (Thm. 1 with 𝛿x ≈ 0), and the 𝜏AL
ident
/𝑛 upper bound ( ) of Thms. 4 and 5.

Achievability and impossibility are tight ( ) for 𝑥 = 1/3.

Δ∗ that can be arbitrarily larger than Δ; intuitively, Δ∗ scales with
the “sufficiently large interval length” under which the 𝑥-partially-

synchronous condition is guaranteed to kick in. (See Sec. 2.5 for a

more detailed discussion.) In principle, therefore, one could employ

a synchronous atomic broadcast protocol, such as a variant of the

Dolev–Strong protocol [13, 23, 30, 31, 46, 47], with delay bound Δ∗.
However, such a protocol would always incur large confirmation

latency (scaling with Δ∗), and thus would not achieve our require-

ment of expected confirmation latency scaling with Δ when the

network becomes synchronous. Such a protocol would also fail

our requirement that it should be safe and live up to ⌊(𝑛 − 1)/3⌋
adversary nodes in partial synchrony.

Add-On Features. Known techniques, similar to those used for

accountable safety, can be used to handle the reconfiguration pro-

cess needed to remove adversary nodes once identified for violating

liveness guarantees—such as manual intervention or externally trig-

gered reconfiguration procedures [48]. A more automated strategy,

benefiting from the large implied synchrony bound Δ∗ mentioned

above, is described in [34], where the authors propose a wrapper

that runs an accountably-safe state-machine replication protocol

until a safety violation is detected. Upon detecting such a viola-

tion, the wrapper initiates a recovery procedure—requiring message

delays to remain bounded by Δ∗ during this recovery—to use certifi-
cates of guilt to reliably identify misbehaving nodes, remove them

safely, and then restart the protocol without these adversarial nodes.

The same recovery procedure can be used with the certificates of

guilt produced by liveness accountability in this work.

1.4 Technical Overview
Once the model is formally defined in Sec. 2, our first task towards

establishing Thm. 1 is to describe a modification of Tendermint

consensus that allows nodes to blame others for a lack of liveness.

Recall that an execution of Tendermint is partitioned into views. Any
node that does not see progress in a particular view will now blame

a number of other nodes for lack of progress in that view. (Δ, 𝑔, 𝑥)-
partial-synchrony ensures that (over a sufficiently long window) at

least a (1 − 𝑥) fraction of views will be synchronous (i.e., message

delivery will be reliable in those views), and for synchronous views

we aim to ensure that the outcome of the blaming process has

certain useful properties. Specifically, the process of blaming other

nodes is designed so that:

(i) No honest node is blamed by any honest node in any synchro-

nous view. Since the honest nodes are a majority, this means

that no honest node is “majority blamed” in any synchronous

view.

(ii) In each synchronous view with an honest leader that does

not confirm new transactions, there are at least 𝑛/3 adversary
nodes that are blamed by all honest nodes (and so which are

“majority blamed” in that view).

A weakness of (ii) above is that an adversarial leader may prevent

progress in a synchronous view, removing the need for 𝑛/3 ad-

versarial nodes to be majority blamed. For this reason, in Sec. 4.2

we introduce the use of super-views: each super-view consists of a

number of views, with the number chosen so that (with random

leader selection) each super-view is likely to have at least one hon-

est leader. We can then consider an analogous notion of blame for

super-views, which satisfies a corresponding version of (i) above,

and which satisfies a version of (ii) with the weaker requirement

that the super-view should have at least one honest leader.

Given this setup, we must then extract an “adjudication rule” for

identifying guilty parties in the event of an attack on liveness. To

demonstrate the basic idea behind the adjudication rule, consider

(for now) a simplified setup in which we suppose all super-views

have at least one honest leader. Suppose we see a sequence of super-

viewsU, all of which fail to make progress with liveness, and that

we know a majority of super-views in U are synchronous (the

number of super-views in U will be function of our formal defi-

nition of (Δ, 𝑔, 𝑥)-partial-synchrony in Sec. 2). In this section, we

now describe an approach which suffices to identify at least one
adversary node in the case that there is a strict majority of honest

nodes. Later, in Sec. 5, we show how to generalize the method to

identify a greater number of adversary nodes when a greater pro-

portion of super-views are synchronous and/or a smaller number

of nodes are adversary, and we also drop the assumption that every

super-view has at least one honest leader.

A Trivial Heuristic. If we can find a node that is majority blamed

in a majority of super-views inU, then we can identify that node as

adversary. This holds since an honest node is never majority blamed

3
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in a synchronous super-view and a majority of super-views inU
are synchronous. The following is therefore a sufficient condition
for being able to identify at least one adversary node: adversary

nodes are on average majority blamed in over half of the super-

views inU. This argument has one-sided error (no false positives,

but may have false negatives).

Extending the Trivial Heuristic. The basic idea is that, if one

chooses the right subset of super-views inU (efficiently computable

and guaranteed to contain all synchronous super-views inU), then

the heuristic above remains sound and is also complete (i.e., applies
whenever none of the views inU confirm new transactions).

The Details. Recall thatU is a set of consecutive super-views.We

assume that a majority of the super-views inU are synchronous.

(1) Let PA

𝑢 denote the set of nodes that are majority blamed in

super-view 𝑢 ∈ U.

(2) Form an undirected graph 𝐺 with |U| vertices, each corre-

sponding to a super-view inU, and an undirected edge (𝑢,𝑢′)
whenever |PA

𝑢 ∩ PA

𝑢′ | ≥ 𝑛/6.
(3) LetU′ denote the subset of super-views 𝑢 such that:

(a) |PA

𝑢 | ≥ 𝑛/3; and
(b) deg𝐺 (𝑢) ≥ |U|/2.

Proof of Soundness. The heuristic never outputs an honest node:

• If 𝑢 is synchronous, |PA

𝑢 | ≥ 𝑛/3.
• If𝑢,𝑢′ are both synchronous, then |PA

𝑢 ∩PA

𝑢′ | ≥ 𝑛/6 (since there
are < 𝑛/2 adversary nodes).

• In the graph 𝐺 above, every vertex corresponding to a synchro-

nous super-view has degree ≥ |U|/2 (by previous point and the

assumption that a majority of super-views are synchronous).

• Every synchronous super-view belongs toU′ (by first and third
points above).

• A majority of super-views inU′ are synchronous (by the previ-

ous point and the assumption that a majority of super-views in

U are synchronous).

• No honest node can be majority blamed in a majority of the

super-views inU′ (because no honest node is majority blamed

in any synchronous super-view).

Proof of Completeness. To show that the heuristic is guaranteed

to output a (necessarily adversary) node, we argue as follows:

• Consider a 0–1 matrix𝑀 with rows indexed by adversary nodes

𝑝 and columns indexed by super-views𝑢 ofU′. Define𝑀𝑝,𝑢 = 1

if 𝑝 ∈ PA

𝑢 and𝑀𝑝,𝑢 = 0 otherwise.

• For every synchronous super-view in U′, the corresponding
column sum is at least 𝑛/3.

• By properties (a) and (b) of super-views inU′, for every asyn-

chronous super-view inU′, the corresponding column sum is at

least 𝑛/6. This is because, by (b), every asynchronous super-view
𝑢 ∈ U′ must have overlap |PA

𝑢 ∩ PA

𝑢′ | ≥ 𝑛/6 with some syn-

chronous super-view 𝑢, but in synchronous super-views only

adversary nodes are majority blamed, so the overlap counts

into the column sum of 𝑢 in𝑀 despite𝑀 having rows only for

adversary nodes.

• Because over half the super-views ofU′ are synchronous (see
above), the sum of𝑀 ’s entries is ≥ |U

′ |
2
· 𝑛
3
+ |U

′ |
2
· 𝑛
6
=
𝑛 |U′ |

4
.

• Because there are less than 𝑛/2 rows (by assumption on the

number of adversary nodes), the average row sum is >
|U′ |
2

.

• Thus, there exists a row with more than
|U′ |
2

1’s—a adversary

node that is majority blamed in a majority of the views inU′.

Outline. Sec. 2 introduces the 𝑥-partial-synchrony model and

our notion of accountable liveness, and also covers various prelimi-

naries. Sec. 3 reviews the starting point of our protocol, a variant

of Tendermint consensus. This protocol subsequently serves as our

running example, in Secs. 4 and 5, for how to achieve accountable

liveness. Sec. 6 proves the two impossibility results for accountable

liveness that are mentioned above. Sec. 7 discusses related work.

Sec. 8 concludes. App. E discusses additional related works.

2 Model & Preliminaries
We model protocol execution and define consensus security proper-

ties in a standard way, except for our use of 𝑥-partially-synchronous

networks (Sec. 2.1) and our definition of accountable liveness (Sec. 2.3).

There are𝑛 nodes, denoted 𝑝 ∈ P, each of which has a cryptographic
identity (public/secret key pair for signatures) that is commonly

known (public-key infrastructure, PKI ). There is an environment
that, over time, inputs transactions to the nodes, and to which, over
time, each node outputs a log of transactions. The nodes’ objective

is atomic broadcast, i.e., to reach agreement on an ordering of their

input transactions into their output logs. For this purpose, nodes

can send each other messages over a network. A computationally

bounded adversary seeks to disrupt consensus and for this purpose

can corrupt nodes and delay network messages. For ease of expo-

sition, we treat cryptographic signatures as ideal, i.e., we assume

that the adversary cannot forge signatures of honest nodes.

Time proceeds in discrete rounds and, for simplicity, nodes are

assumed to have synchronized clocks. In each round, each node

receives messages from the network and possibly transactions from

the environment. The node then updates its internal state, produces

messages to send to other nodes via the network, and outputs a

log of confirmed transactions to the environment. The adversary

chooses 𝑓 nodes, denoted Pa ⊆ P, to corrupt at the beginning of
the execution and in particular before any protocol randomness is

drawn (static corruption). The adversary learns the internal state

of adversary nodes, and can make them deviate from the protocol

arbitrarily for the entire execution (permanent Byzantine faults).
Non-adversary honest nodes (P

h
⊆ P) follow the protocol.

2.1 𝑥-Partially-Synchronous Networks
When nodes send messages to each other, the messages are de-
layed by the adversary subject to certain constraints. We propose

the 𝑥-partially-synchronous network model as an interpolation be-

tween two classic network models, synchronous [42] and partially-
synchronous [24] (also called eventually-synchronous) networks.

Specifically, under synchrony, there is a known delay upper-

bound of Δ > 0 rounds. It will be convenient to view the synchro-

nous network model as follows. When a node instructs the network

to send a message to another node, the message is enqueued in

the recipient’s pending message queue together with a countdown
initialized to Δ. The adversary can decrease the countdown at will.

The countdown also decreases by 1 with each round. Once the

4
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countdown hits 0, the message is delivered to the recipient at the

beginning of the next round. Partially-synchronous networks ex-

tend the above with a global stabilization time GST < ∞, a round
which the adversary chooses adaptively. The countdown of pending

messages is guaranteed to decrement each round only after GST.
Our 𝑥-partially-synchronous setting inherits the assumptions of

partial synchrony. Furthermore, for every round before GST, the
adversary adaptively chooses whether the round is synchronous

(i.e., all countdowns decrement) or not. (All rounds after GST are

synchronous.) Call an interval Δ-synchronous if each of its rounds

is synchronous in this sense. The restriction on the adversary is

parameterized by (in addition toΔ) a known function𝑔 and a known
value 𝑥 ∈ [0, 1]. The restriction is then that, for every partition

of the execution into periods of length Δ′ rounds, and for every

interval of𝑔(Δ′) periods, at least a (1−𝑥) fraction of the periods are
Δ-synchronous. For example, 𝑔(1) specifies the minimum length of

an interval (in rounds) for which it is guaranteed that at most an 𝑥

fraction of the interval’s rounds are asynchronous. We generally

assume that 𝑔 grows unboundedly with Δ′—the longer the period
of synchrony Δ′ desired, the longer one may have to wait for it. For

every function 𝑔, the 𝑥-partially-synchronous model generalizes

the synchronous (𝑥 = 0) and partially synchronous (𝑥 = 1) models.

Where precision about the network parameters is required, wewrite

(Δ, 𝑔, 𝑥)-partial-synchrony. Since 𝑥 is the dominant quantitative

parameter affecting accountable liveness, while Δ and 𝑔 are often

clear from context, we also often write 𝑥-partial-synchrony. Sec. 2.5
discusses the plausibility of the 𝑥-partially-synchronous model

from a practical perspective.

2.2 Atomic Broadcast
For logs, i.e., transaction sequences, we write Λ ⪯ Λ′ iff Λ is a prefix

of or equal to Λ′, and Λ ≍ Λ′ (“Λ is consistent with Λ′”) iff Λ ⪯ Λ′

or Λ′ ⪯ Λ. We follow the usual definition of atomic broadcast:

Definition 1. A protocol Π where node 𝑝 at round 𝑡 confirms
the output log Λ

𝑝
𝑡 , achieves atomic broadcast with safety resilience

𝜏S and liveness resilience 𝜏L, iff in every execution satisfying the

desired network model:

• Safety: If 𝑓 ≤ 𝜏S, then: ∀𝑝, 𝑞 ∈ P
h
: ∀𝑡, 𝑡 ′ : Λ𝑝𝑡 ≍ Λ

𝑞

𝑡 ′ .

• Liveness: If 𝑓 ≤ 𝜏L, then: for every transaction tx input to all

P
h
by 𝑡 tx

0
: ∃𝑡 tx

1
< ∞ : ∀𝑡 ≥ 𝑡 tx

1
: ∀𝑝 ∈ P

h
: tx ∈ Λ𝑝𝑡 .

For the minimum 𝑡∗tx
0
, 𝑡∗tx
1

that satisfy the liveness condition, called

the input round and confirmation round of tx, respectively, we define
𝑇 tx
conf
≜ 𝑡∗tx

1
− 𝑡∗tx

0
as the confirmation latency of tx.

We say a protocol satisfying Def. 1 is 𝜏S-safe and 𝜏L-live.

2.3 Accountable Liveness
In addition to the parameters (Δ, 𝑔, 𝑥) of the𝑥-partially-synchronous
model, the notion of accountable liveness is parametric in period
length Δ′, accountable-liveness resilience 𝜏AL

max
, sensitivity 𝜏AL

ident
, and

failure probability 𝜀AL, which will become clear below. Given these

parameters, we build up the definition of accountable liveness in

three steps. First, we define what it means for a timely-liveness
violation to occur. Then, we define what it means for a protocol

message to constitute a certificate of guilt. Finally, we define what
it means for an atomic broadcast protocol to be accountably live.

Traditional (eventual) liveness (as in Def. 1) is a weaker property

in some sense, and a stronger property in another sense, than

what we need. Specifically, traditional liveness is so weak that

violations of it cannot be assessed by any one point in time [4]

(any transaction in question may still get confirmed in the future).

But (Δ, 𝑔, 𝑥)-partial-synchrony with 𝑥 < 1 allows to demand a

more ambitious liveness guarantee where transactions need to be

confirmed within Δ′𝑔(Δ′) rounds. On the other hand, traditional

liveness is strong in that it requires all honest nodes to confirm a

transaction. For our purposes, a slightly weaker variant suffices,

that requires only all except “a few” honest nodes to confirm. This is

particularly meaningful under (Δ, 𝑔, 𝑥)-partial-synchrony with 𝑥 <

1, because that setting implies a (large) delay upper-bound of Δ∗ ≜
Δ′𝑔(Δ′) so that if some honest node has confirmed a transaction,

then all honest nodes will have confirmed that transaction Δ∗ later.
Concretely, we say a protocol withmaximum liveness resilience𝜏L

satisfies timely-liveness if all transactions are confirmed within

Δ′𝑔(Δ′) rounds by all except 𝜏L honest nodes. We concern our-

selves with accountability for timely-liveness violations:

Definition 2. For a protocol with maximum liveness resilience 𝜏L,

and for period length Δ′, an execution has a timely-liveness viola-
tion at round 𝑡 iff there exists a transaction tx with input round

𝑡 tx
0
≤ 𝑡 − Δ′𝑔(Δ′) that (strictly) more than 𝜏L honest nodes have

not confirmed by 𝑡 , i.e., ∃tx input to all P
h
by 𝑡 tx

0
≤ 𝑡 − Δ′𝑔(Δ′) :

∃P′ ⊆ P
h
: ( |P′ | > 𝜏L) ∧ (∀𝑝 ∈ P′ : tx ∉ Λ

𝑝
𝑡 ).

Accountability is carried out through certificates of guilt:
3

Definition 3. A protocol message𝑚 constitutes a certificate of guilt
for a node 𝑝 iff𝑚 is never obtained by any node in any (Δ, 𝑔, 𝑥)-
partially-synchronous execution with 𝑓 ≤ 𝜏AL

max
in which 𝑝 ∈ P

h
.

Intuitively, accountable liveness means that, whenever an input

transaction remains unconfirmed for “sufficienty long” by “many”

honest nodes, “eye-witness evidence” (e.g., many attestations to

the unexpected absence of certain messages) emerges that accuses

at least 𝜏AL
ident

nodes of misbehavior. This eye-witness evidence

is guaranteed to implicate only adversarial nodes provided the

network was (Δ, 𝑔, 𝑥)-partially-synchronous and 𝑓 ≤ 𝜏AL
max

.

Definition 4. An atomic broadcast protocol Π is accountably live
in (Δ, 𝑔, 𝑥)-partially-synchronous networks with period length Δ′,
accountable-liveness resilience 𝜏AL

max
, sensitivity 𝜏AL

ident
, and failure

probability 𝜀AL, iff for any fixed round 𝑡 : For every adversary with

𝑓 ≤ 𝜏AL
max

in (Δ, 𝑔, 𝑥)-partially-synchronous networks, with prob-

ability at least (1 − 𝜀AL), if a timely-liveness violation occurs at

round 𝑡 , then, eventually, some honest node broadcasts a certificate

of guilt for some set P′ ⊆ P of nodes with |P′ | ≥ 𝜏AL
ident

.

3
Note that Def. 3 is a conditional variant (where only (Δ, 𝑔, 𝑥 )-partially-synchronous
executions with 𝑓 ≤ 𝜏AL

max
are considered) of the notion of a certificate of guilt that

appeared in the accountable-safety literature [34, p. 5] (where no such restrictions are

imposed on the executions considered). As shown in Secs. 1.1 and 1.2 and Thms. 2

and 3, the two restrictions on the executions in Def. 3, namely on network timing and

on a maximum adversary strength, are necessary for the notion of accountable liveness

to be achievable. Sec. 2.5 discusses that for suitably chosen parameters, restricting to

𝑥-partially-synchronous executions may practically not be very severe.
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For simplicity, and as this captures the crux of the problem, we

state our (accountable) liveness claims for liveness violations that

occur at a fixed round. (Accountable) liveness properties for all
transactions over an entire appropriately-bounded execution horizon
are readily obtained with a union bound.

2.4 Overall Protocol Design Goal
We now formally state our protocol design objective. We aim to

design atomic broadcast protocols that guarantee two requirements:

(1) As a baseline, for any given 𝜏,Δ, when run among𝑛 = 3𝜏+1 nodes
in a partially-synchronous network (i.e., 𝑥-partially-synchronous
with 𝑥 = 1), the protocol should be (𝜏S = 𝜏)-safe and (𝜏L = 𝜏)-
live, and guarantee expected confirmation latency 𝑂 (Δ), inde-
pendent of 𝑔, for transactions input after GST. In other words,

the protocol should satisfy the standard security and perfor-

mance properties required of protocols for partial synchrony.

(2) Additionally, for any given 𝑔, 𝑥, 𝜏AL
max

, 𝜀AL, the protocol should

be accountably live for some Δ′, 𝜏AL
ident

if the network happens

to be (Δ, 𝑔, 𝑥)-partially-synchronous and if 𝑓 ≤ 𝜏AL
max

. Note that

𝜏AL
max

> 𝜏L, 𝜀AL < 1, 𝜏AL
ident

> 0 constitutes the non-trivial regime.

Smaller Δ′ and larger 𝜏AL
ident

are better, since it shortens the dura-

tion of non-confirmation after which accountability is required,

and increases the number of adversary nodes identified.

2.5 Discussion
Recall that under (Δ, 𝑔, 𝑥)-partial-synchrony, the assumptions of

partial synchrony hold regarding Δ and GST. In addition, there

is a known function 𝑔 and a known value 𝑥 ∈ [0, 1], such that,

before GST, for any partition of time into periods of Δ′ rounds,
any interval of 𝑔(Δ′) periods has at most 𝑥 fraction of the periods

not be Δ-synchronous. Is such an assumption practically plausible?

Consider that typical global round-trip times in the Internet are

in the order of hundreds of milliseconds, and that Internet con-

nectivity outages lasting longer than hours are exceedingly rare.

Furthermore, network service-level agreements commonly promise

at most a certain latency for at least a certain fraction of every

long-enough period of time. This leads us to believe that with 𝑥 of

tens of percentage points, Δ of seconds, Δ′ of tens of seconds, and
Δ′𝑔(Δ′) of tens of hours, 𝑥-partial-synchrony is at least a plausible

assumption. It does not appear much less plausible than assump-

tions of Internet delay upper-bounds of seconds, implicit in systems

like Ethereum [15] or Cardano [32]. At the same time, the longer

periods of synchrony one demands, the longer one plausibly has to

wait, justifying that 𝑔(Δ′) should grow unboundedly with Δ′.
Note that 𝑥-partial-synchrony for 𝑥 < 1 implies a large delay

upper-bound of Δ∗ ≜ Δ′𝑔(Δ′) ≫ Δ. The reader may then ask, why

not run a synchronous atomic broadcast protocol with that delay

bound Δ∗? Given that some such protocols are safe and live even

if almost all nodes are adversary [13, 23, 30, 31, 47], they would

trivially be accountably live as well, since there are no timely-

liveness violations (let alone liveness violations) to begin with.

However, such protocols suffer from high latency in the order of

Δ∗ ≫ Δ, and thus do not satisfy the target expected confirmation

latency of 𝑂 (Δ) after GST. Furthermore, such protocols do not

guarantee safety under partial synchrony. Thus, such protocols do

not satisfy the baseline goal (1) set out in Sec. 2.4.

The reader may wonder why we focus on the atomic broadcast

variant of consensus, rather than, for instance, on the state-machine

replication variant, which in addition to nodes also models the

system’s clients [47]. This is for two reasons: (1) Our 𝑥-partially-

synchronous network model incorporates periods of asynchrony,

and earlier works suggest [47] that while there is a considerable

difference between state-machine replication and atomic broad-

cast under synchrony, this is not the case as soon as safety during

periods of asynchrony is required. (2) Accountable liveness inher-

ently arises from the interplay of nodes and their network delay

(cf. Sec. 1.1). Unlike in accountable safety, clients play no particular

role in accountable liveness, so, for simplicity, we leave them aside.

We focus exclusively on accountability of the liveness property

here, and otherwise stick to “regular” unaccountable safety. This

is because accountability of the safety property has been studied

extensively already in earlier works [12, 14, 15, 37, 38, 45], and those

techniques are orthogonal and can readily be applied independently

to make an accountably live protocol accountably safe.

3 Consensus Protocol
A variant of the Tendermint consensus protocol [11] (inspired

by [12, Sec. 9.1]) is provided in Alg. 1, described as pseudo-code

from the perspective of any honest node 𝑝 . Like earlier Tendermint

versions, the protocol proceeds in views. Each view 𝑣 is associated

with a randomly selected leader node 𝐿𝑣 , known to all nodes. Con-

ceptually, each view consists of a proposal by the leader (Alg. 1,

ln. 10), followed by rounds of voting (Alg. 1, lns. 14, 18 and 22).

There are two main differences compared to traditional Tender-

mint [11]: More time is allotted (highlighted in orange in Alg. 1) for

each proposal and voting phase, and there is an extra third round

of voting (highlighted in green in Alg. 1).

Let us discuss the first main difference. For simplicity, the extra

delay before a view’s proposal allows to analyze each view’s liveness

in isolation: if the network is synchronous for the duration of that
view 𝑣 (synchronous view), i.e., messages sent during 12Δ𝑣 to 12Δ(𝑣+
1)−Δ arrive within Δ time, and 𝐿𝑣 is honest, and “enough” votes are

cast, then a new consensus decision is reached (by all honest nodes).

Furthermore, for liveness alone, simple Δ delay would suffice before

the proposal, after the proposal, and after each of the votes. Our

delays of 2Δ, 2Δ, 3Δ, 3Δ, 2Δ, respectively, are chosen to enable

accountable liveness, as will become clear in Sec. 4.

Regarding the second main difference, note that the extra third

round of voting is different from the earlier two, in that nodes do not

vote for a block, but indicate whether all transactions recently seen

as pending have been confirmed. These VoteLive votes are used in

Secs. 4 and 5 to detect liveness violations and trigger the production

of certificates of guilt. The VoteLive votes are produced but not

consumed in Alg. 1, and thus have no influence on proposing,

voting, or confirming in Alg. 1, and can therefore be neglected in

the traditional safety and liveness analyses of Alg. 1 (Lems. 1 and 2).

Regarding notation, for any protocol state variable 𝔛 , we denote

by 𝔛
𝑝
𝑡 the state as viewed by (honest) node 𝑝 at time 𝑡 . If we set 𝑡 =

∞, we mean the state as viewed at the end of the execution. We may

omit the node if clear from context, such as in Alg. 1. Specifically,

we denote by 𝔐
𝑝
𝑡 the set of message received from the network,

upon verification and stripping of the messages’ signatures (Alg. 1,
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Algorithm 1 Tendermint consensus variant, code for node 𝑝 (based

on [11], [12, Sec. 9.1], with extra delay highlighted in orange, and

extra round of liveness voting highlighted in green)

1 Blocks:

• 𝑏 ≜ Block(p, v, b−1,Q, txs) consists of: creator p, view v, parent block b−1 ,
quorum certificate Q , transactions txs.

• Genesis block: 𝑏0 ≜ Block(0, 0,⊥, ∅, ∅) .
• Validity:

valid(𝔐, 𝑏 ) ≜ (𝑏 = 𝑏0 )
∨ ( (𝑏 ∈ 𝔐 )
∧ valid(𝔐, 𝑏.Q, 𝑏.b−1, 1)
∧ (𝑏.p = 𝐿𝑏.v )
∧ (𝑏.v > 𝑏.b−1 .v) ) (1)

2 Votes:

• 𝑤 ≜ Vote(p, b, s) consists of: creator p, target block b, vote stage s.
• Validity:

valid(𝔐, 𝑤 ) ≜ (𝑤 ∈ 𝔐 ) ∧ valid(𝔐, 𝑤.b) (2)

• 𝑤′ ≜ VoteLive(p, v) consists of: creator p, view v.
• Validity:

valid(𝔐, 𝑤′ ) ≜ (𝑤′ ∈ 𝔐 ) (3)

3 Quorum certificates (QCs):

• Validity:

valid(𝔐,𝑄,𝑏, 𝑠 ) ≜ ( (𝑄 = ∅)
∧ (𝑏 = 𝑏0 ) )

∨ ( (∀𝑤 ∈ 𝑄 : valid(𝔐, 𝑤 ) ∧ (𝑤.b = 𝑏 ) ∧ (𝑤.s = 𝑠 ) )
∧ ( | {𝑤.p | 𝑤 ∈ 𝑄 } | > 2𝑛/3) ) (4)

• Notation: If valid(𝔐,𝑄,𝑏, 𝑠 ) , then v(𝑄 ) ≜ 𝑏.v.
4 𝔐 ← {𝑏0 } //

5 𝔔 ← ∅
6 At all times, re-broadcast all messages and transactions received from the network

or as input.

7 At all times, add to𝔐 any message (block or vote) received from the network,

upon verification and stripping of the message’s signature (ensuring that message

𝑚 was indeed created by𝑚.p), and any transaction received from the network

or as input. Denote the set of transactions in𝔐 as𝔐𝔱 . Record when elements

are added to𝔐 , to allow access to𝔐 and𝔐𝔱 “as of” time 𝑡 as𝔐𝑡 and𝔐𝔱𝑡 .

8 At all times, confirm as log Λ
𝑝

𝑡 the sequence of transactions on the path from 𝑏0
to 𝑏 iff ∃𝑄1,𝑄2 ⊆ 𝔐 : valid(𝔐,𝑄1, 𝑏, 1) ∧ valid(𝔐,𝑄2, 𝑏, 2) .

9 for 𝑣 = 1, 2, 3, ...

10 at 𝑡 = 12Δ𝑣 + 2Δ
11 if 𝐿𝑣 = 𝑝

12 (𝑏,𝑄 ) ← argmax(𝑏,𝑄 ) :valid(𝔐 ,𝑄,𝑏,1) 𝑏.v
13 Sign and broadcast Block(p ← 𝑝, v ← 𝑣, b−1 ← 𝑏,Q ← 𝑄, txs ←
{tx ∈ 𝔐𝔱 | tx ∉ 𝑏0 .txs∥ ...∥𝑏.txs, for the path from 𝑏0 to 𝑏})

14 at 𝑡 = 12Δ𝑣 + 4Δ
15 if ∃𝑏 : valid(𝔐, 𝑏 ) ∧ (𝑏.v = 𝑣) // valid(𝔐, 𝑏 ) =⇒ (𝑏.p = 𝐿𝑣 ) .

Proceed only with one 𝑏 satisfying the condition.

16 if v(𝔔 ) ≤ v(𝑏.Q )
17 Sign and broadcast Vote(p← 𝑝, b← 𝑏, s← 1)
18 at 𝑡 = 12Δ𝑣 + 7Δ
19 if ∃𝑏,𝑄 : (𝑏.v = 𝑣) ∧ valid(𝔐,𝑄,𝑏, 1) // Proceed only with one (𝑏,𝑄 )

satisfying the condition.

20 𝔔 ← 𝑄

21 Sign and broadcast Vote(p← 𝑝, b← 𝑏, s← 2)
22 at 𝑡 = 12Δ𝑣 + 10Δ
23 if 𝔐𝔱

12Δ𝑣 ⊆ Λ
𝑝

12Δ𝑣+10Δ
24 Sign and broadcast VoteLive(p← 𝑝, v← 𝑣)

lns. 4 and 7), as viewed by node 𝑝 at time 𝑡 , and for any 𝑡 including

∞, we define 𝔐∪𝑡 ≜
⋃
𝑝∈P

h

𝔐
𝑝
𝑡 to denote the union of 𝔐

𝑝
𝑡 across

all honest nodes. By 𝑡− we mean the time just before any honest

node executes its code for time 𝑡 . By 𝑡+ we mean the time just after
all honest nodes have executed their code for time 𝑡 .

Lemma 1. Assuming 𝑛 > 3𝑓 , Alg. 1 is safe in partial synchrony
( i.e., 𝜏S = ⌊(𝑛 − 1)/3⌋).

Lemma 2. Assuming 𝑛 > 3𝑓 , Alg. 1 is live in partial synchrony ( i.e.,
𝜏L = ⌊(𝑛 − 1)/3⌋), with expected confirmation latency 𝑂 (Δ) after
GST.

The proofs are analogous to those for earlier Tendermint vari-

ants [11] [12, Sec. 9.1] and are therefore relegated to App. A.

Note that Lems. 1 and 2 are both under partial synchrony and

under the assumption 𝑛 > 3𝑓 , as is part of our design goal. In fact,

Lems. 1 and 2 show that Alg. 1 satisfies goal (1) in Sec. 2.4. In Sec. 4,

we analyze what we can learn from individual synchronous views.
In Sec. 5, we finally leverage the 𝑥-partially-synchronous model,

and the aggregate combinatorial structure of synchronous views it

implies, to arrive at accountable liveness.

4 Blame Accounting
In Secs. 4 and 5, we describe how certificates of guilt are produced

so as to render the consensus protocol of Alg. 1 accountably live

according to Def. 4. A high-level overview of the accountability

process, which nodes run in parallel to Alg. 1, is given in Fig. 2.

At all times, nodes take note of potential timely-liveness vi-

olations (Fig. 2, step (2)), based on the lack of 2𝑛/3-quorums of

VoteLive messages for the most recent views V of Alg. 1 of the

recent Δ′𝑔(Δ′) rounds (final determination of Δ′ andV is made in

Sec. 4.2 and Sec. 5; for now, think of them as 12Δ and as the most

recent 𝑔(Δ′) views in Alg. 1, respectively). Honest nodes sign and

broadcast their transcripts of Alg. 1, which means their 𝔐 , on a

continuously ongoing basis.
4

Assuming 𝑥-partial-synchrony, these transcripts propagate to all

honest nodes withinΔ′𝑔(Δ′) time (Fig. 2, step (3)). Honest nodes dis-

card equivocating, invalidly-signed, and syntactically-malformed

transcripts, and use a default of ⊥ for missing transcripts, so that

for each node and time they retain exactly one transcript. If an

honest node has taken note of a potential timely-liveness violation,

the node applies a function 𝜓 that is the centerpiece of liveness

accountability developed in Secs. 4 and 5. Namely,𝜓 is applied to

the sanitized transcripts, to obtain a set P′ of seemingly guilty

nodes, for which the node then signs and broadcasts accusations.

Again assuming 𝑥-partial-synchrony, these accusations propa-

gate to all honest nodes within Δ′𝑔(Δ′) time (Fig. 2, step (4)). If a

node was accused for a particular point in time by a majority of

nodes, then that constitutes a certificate of guilt for that node.

Note that in the above process, the adversary may cook up or

alter its transcripts, subject to not being able to forge signatures.

Honest nodes do not attempt to filter transcripts semantically, i.e.,
based on the information contained—rather,𝜓 will take care of that.

Note that when 𝜓 is invoked by an honest node, it is guaranteed

that the proper transcripts of all honest nodes are provided to it.

Secs. 4 and 5 are all about how to design𝜓 such that, under those

circumstances, 𝜓 never outputs an honest node, and 𝜓 outputs a

“large” set of adversary nodes whenever a transaction has remained

unconfirmed for more than Δ′𝑔(Δ′) time (Fig. 2, step (1)).

The𝜓 we construct proceeds in two steps: (1) Blame accounting
(Sec. 4): First,𝜓 uses the {𝔐𝑝

𝑡 } to count how frequently a node 𝑝

did not see a vote from node 𝑝′ that 𝑝′ “ought to” have sent, where

4
There are various ways to reduce the communication overhead of this step, which we

leave to future work, to retain simplicity, and since our primary focus here is to show

the achievability of liveness accountability, not its most efficient implementation.
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Time

𝑡0 𝑡1 𝑡2 𝑡3
Propagate

transcripts

Propagate

accusations

Δ′𝑔 (Δ′ ) Δ′𝑔 (Δ′ ) Δ′𝑔 (Δ′ )

(4) Produce certificate of guilt from propagated accusations:

∃𝑝′ : ∃Σ ⊆ 𝔐 : | {𝑝′′ | Accusation(p = 𝑝′′, p′ = 𝑝′ ) ∈ Σ} | > 𝑛/2
(1) Input tx

(2) (Continuously) sign and broadcast Transcript(p = 𝑝, t = 𝑡1,M = 𝔐
𝑝

𝑡
1

) .
If ¬∃𝑣 ∈ V : ∃P′ ⊆ P : ( | P′ | > 2𝑛/3) ∧ (∀𝑝′ ∈ P′ : VoteLive(p = 𝑝′, v = 𝑣) ∈ 𝔐 ) , then take note of a potential timely-liveness violation at 𝑡1 .

(3) If note was taken of a potential timely-liveness violation at 𝑡1 , then:

Among propagated transcripts, for each 𝑝′′ ∈ P, retain one𝔐
𝑝′′
𝑡
1

.

P′ ← 𝜓 (𝔐𝑝
1

𝑡
1

, ...,𝔐
𝑝𝑛
𝑡
1

) (use ⊥ as𝔐
𝑝𝑖
𝑡
1

for any 𝑖 where no𝔐
𝑝𝑖
𝑡
1

was received)

For each 𝑝′ ∈ P′ , sign and broadcast Accusation(p = 𝑝, p′ = 𝑝′ ) .

Certificate of guilt Σ
tx unconfirmed

Figure 2: Overview of how certificates of guilt for Alg. 1 are produced, from the perspective of a node 𝑝: (2) Nodes continuously
share their transcripts of Alg. 1 with each other. If 𝑝 has not received VoteLive from > 2𝑛/3 nodes for the most recent viewsV of
Alg. 1 of the last Δ′𝑔(Δ′) rounds (V and Δ′ are determined in Sec. 4.2 and Sec. 5), then 𝑝 takes note of a potential timely-liveness
violation. (3) Each node retains one transcript for each other node. Since honest transcripts are unique and guaranteed to
propagate within Δ′𝑔(Δ′) rounds, honest nodes always have the correct transcript for other honest nodes. If 𝑝 has taken note of
a potential timely-liveness violation, then: A function𝜓 , the centerpiece of liveness accountability developed in Secs. 4 and 5, is
used to identify guilty nodes (and never mis-identifies honest nodes). Accusations for these nodes are shared among honest
nodes. (4) Accusations against a particular node by amajority of nodes constitute a certificate of guilt. (1) If a transaction remains
unconfirmed for Δ′𝑔(Δ′) rounds, then 2Δ′𝑔(Δ′) rounds later a certificate of guilt for “many” adversary nodes is produced.

“ought to” is determined based on 𝔐
𝑝
𝑡 and the assumption that the

network was synchronous. We say that 𝑝 blames 𝑝′ for unexplained
missing votes that may have led to a timely-liveness violation. Note

that these blame counts in isolation may be inaccurate, but form

the basis for the next step. (2) Adjudication rule (Sec. 5): Second,𝜓
leverages the assumptions that, roughly, “not too many” nodes are

adversary and that the network is “often synchronous” (𝑥-partial-

synchrony), and as a result, adversary nodes draw more blame

than honest nodes, and an adjudication rule can be used to reliably

identify adversary nodes based on the blame counts.

4.1 Simple Blame Accounting
Simple blame accounting for Alg. 1 is provided in Alg. 2. It is invoked
with a set of views V . The final choice of V is made in Sec. 4.2

and Sec. 5. For the remainder of Sec. 4.1, think ofV as the set of the

𝑔(Δ′) most recent views of Alg. 1, with Δ′ = 12Δ. This choice and
𝑥-partial-synchrony gives us that at most 𝑥 fraction of views inV
are not synchronous (i.e., violate the network-delay upper-bound

Δ). In the following, we observe how Alg. 2 behaves for individual

views 𝑣 ∈ V , irrespective of the choice ofV .

Lemma 3. With Algs. 1 and 2, for every 𝑣 ∈ V , if the network is
synchronous for view 𝑣 , and 𝐿𝑣 is honest, then: unless the block 𝑏
proposed by 𝐿𝑣 is confirmed by all honest nodes by 12Δ𝑣 + 9Δ and

all honest nodes see VoteLive messages for 𝑣 from > 2𝑛/3 nodes by
12Δ𝑣 + 12Δ, there is a set P′ with |P′ | ≥ 𝑛/3, such that for every
𝑝 ∈ P

h
, for all 𝑝′ ∈ P′, Blame𝑝,𝑣,𝑝′ = 1 in Alg. 2.

Intuitively, this means that if conditions are “very good” during

view 𝑣 , but there is (or appears to be) no liveness, then there is a

large set P′ of nodes that all honest nodes blame simultaneously.

Algorithm 2 Blame accounting for Alg. 1, given viewsV
1 𝔐

𝑝

𝑡 ←𝔐 of Alg. 1, ln. 4, for node 𝑝 and “receive-time-annotated”, i.e., supports
access to𝔐 in the view of 𝑝 of Alg. 1 “as of” any time 𝑡

2 ∀𝑝 ∈ P, 𝑣 ∈ V, 𝑝′ ∈ P : Blame𝑝,𝑣,𝑝′ ← 0 // Default: no blame

3 for 𝑝 ∈ P, 𝑣 ∈ V, 𝑝′ ∈ P
4 if ∃𝑏 ∈ 𝔐𝑝

12Δ𝑣+3Δ : valid(𝔐𝑝

12Δ𝑣+3Δ, 𝑏 ) ∧ (𝑏.v = 𝑣) // Assuming synchrony,

if 𝐿𝑣 has sent a valid proposal 𝑏 for view 𝑣 in time ...

5 if ¬∃𝑄 ⊆ 𝔐
𝑝

12Δ𝑣+1Δ, 𝑏
′ ∈ 𝔐

𝑝

12Δ𝑣+1Δ : valid(𝔐𝑝

12Δ𝑣+1Δ,𝑄,𝑏
′, 1) ∧

(v(𝑄 ) > v(𝑏.Q ) ) // ... and 𝑝′ cannot possibly have had an excuse not to

stage-1 vote for the proposal ...

6 if ¬∃𝑤 ∈ 𝔐
𝑝

12Δ𝑣+5Δ, 𝑏
′′ ∈ 𝔐

𝑝

12Δ𝑣+5Δ : valid(𝔐𝑝

12Δ𝑣+5Δ, 𝑤 ) ∧ (𝑤.p =

𝑝′ ) ∧ (𝑤.b = 𝑏′′ ) ∧ (𝑤.s = 1) ∧ (𝑏′′ .v = 𝑣) // ... and yet 𝑝′ did not cast any

valid stage-1 vote for any valid proposal for view 𝑣 ...

7 Blame𝑝,𝑣,𝑝′ ← 1 // ... then 𝑝′ deserves blame!

8 if ∃𝑏 ∈ 𝔐𝑝

12Δ𝑣+6Δ,𝑄 ⊆ 𝔐
𝑝

12Δ𝑣+6Δ : (𝑏.v = 𝑣) ∧ valid(𝔐𝑝

12Δ𝑣+6Δ,𝑄,𝑏, 1) //
Assuming synchrony, if there was a valid proposal 𝑏 for 𝑣, and there was a valid

stage-1 QC for 𝑏 ...

9 if ¬∃𝑤 ∈ 𝔐
𝑝

12Δ𝑣+8Δ, 𝑏
′ ∈ 𝔐

𝑝

12Δ𝑣+8Δ,𝑄
′ ⊆ 𝔐

𝑝

12Δ𝑣+8Δ :

valid(𝔐𝑝

12Δ𝑣+8Δ, 𝑤 ) ∧ (𝑤.p = 𝑝′ ) ∧ (𝑤.b = 𝑏′ ) ∧ (𝑤.s = 2) ∧ (𝑏.v =

𝑣) ∧ valid(𝔐𝑝

12Δ𝑣+8Δ,𝑄,𝑏, 1) // ... and yet 𝑝
′
did not cast any valid stage-2 vote

for any valid proposal 𝑏′ for view 𝑣 for which there was a valid stage-1 QC ...

10 Blame𝑝,𝑣,𝑝′ ← 1 // ... then 𝑝′ deserves blame!

11 if 𝔐𝔱
𝑝

12Δ𝑣+1 ⊆ Λ
𝑝

12Δ𝑣+9Δ // Assuming synchrony, if all transactions pending

at the beginning of the view were confirmed within the view ...

12 if ¬∃𝑤′ ∈ 𝔐𝑝

12Δ𝑣+11Δ : (𝑤′ .p = 𝑝′ ) ∧ (𝑤′ .v = 𝑣) // ... and yet 𝑝′ did
not cast a VoteLive vote for view 𝑣 ...

13 Blame𝑝,𝑣,𝑝′ ← 1 // ... then 𝑝′ deserves blame!

Lemma 4. With Algs. 1 and 2, for every 𝑣 ∈ V , if the network is
synchronous for view 𝑣 , then for every 𝑝 ∈ P

h
, for every 𝑝′ ∈ P

h
,

Blame𝑝,𝑣,𝑝′ = 0 in Alg. 2.

Intuitively, this means that if conditions are “good” during view

𝑣 , then honest nodes do not blame each other.
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Before we proceed to the proofs of Lems. 3 and 4, let us explain

the intuition behind the design of Alg. 2 and its relation to Alg. 1.

Recall that compared to traditional Tendermint variants [11], [12,

Sec. 9.1], which have Δ delay after the proposal and after each round

of voting, Alg. 1 also has delay before the proposal. This pedagogical
simplification, which can be discharged, allows to treat the liveness

of each view independently; it entails that the timeframes of the

decision processes of different views do not overlap: If the network

is synchronous for a view and the view’s leader is honest, then the

delay before the proposal ensures that the proposal is such that

it is viewed as admissible (Alg. 1, ln. 16) to vote for by all honest

nodes. Subsequent delays after the proposal and after each round

of voting ensure that, assuming synchrony, all honestly produced

messages reach all honest nodes in time to proceed with the next

protocol phase and to ultimately lead to a new confirmed block.

Alg. 1 increases the phase-separating delays from Δ, Δ, Δ, Δ to

2Δ, 2Δ, 3Δ, 3Δ, 2Δ. The key reason for increasing the delays is:

Assuming synchrony, if an honest node 𝑝 sees a message𝑚 by time

𝑡 , then it knows that all nodes must see𝑚 by time 𝑡 + Δ, due to 𝑝
re-broadcasting𝑚 at 𝑡 . Vice versa, if 𝑝 does not see𝑚 by time 𝑡 , it

knows that no honest node can have seen𝑚 by time 𝑡 −Δ. Thus, an
honest node’s𝔐

𝑝
𝑡 serves as an inner and outer bound (in the sense

of subsets) on the message sets of any other (purportedly honest)

node shortly after or before, respectively. Thus, from 𝔐
𝑝
𝑡 of an

honest node 𝑝 , assuming synchronous view 𝑣 , one can infer (part

of) the internal state of another (purportedly honest) node 𝑝′ as of
𝑡 − Δ, to the extent that the state affects the sending/not-sending
of messages, which is observable in𝔐

𝑝
𝑡 . For instance, Alg. 2, ln. 5

infers the “highest” (by view) lock𝔔𝑝′
any honest 𝑝′ could have

had by 12Δ𝑣 (and, since locks are updated only at Alg. 1, ln. 20, by

12Δ𝑣 + 4Δ, which is critical for the check of Alg. 1, ln. 16 to pass).

One can also, assuming synchronous view 𝑣 , infer from 𝔐
𝑝
𝑡 for

honest 𝑝 what another (purportedly honest) 𝑝′ “ought to” do at

𝑡 + Δ, to the extent that such action is affected by the receipt/non-

receipt of messages. For instance, Alg. 2, ln. 4 infers that 𝑝′ receives
a valid timely proposal for view 𝑣 (Alg. 1, ln. 15) and thus “ought

to” stage-1 vote for it in Alg. 1, ln. 17.

Since there is Δ time lag in the backward and forward direction

in the arguments above, respectively, this explains why most of the

Δ delays in the original Tendermint protocol turn into 2Δ delays in

Alg. 1 when liveness accountability is sought. The 3Δ delay between

the first and second round of voting in Alg. 1 is needed because

there is “an extra round of indirection” between one honest node

seeing a stage-1 QC and all honest nodes seeing it. Specifically,

the check of Alg. 2, ln. 8 needs to be Δ after the check of Alg. 2,

ln. 6 (to ensure that if Alg. 2, ln. 8 fails, there is a large set of nodes

that are blamed by all honest nodes in Alg. 2, ln. 6), which in turn

must be Δ after Alg. 1, ln. 17, and Alg. 2, ln. 8 needs to be Δ before

Alg. 1, ln. 21 (to ensure that if Alg. 2, ln. 8 passes, all nodes “ought

to” stage-2 vote in Alg. 1, ln. 21). The case of block confirmation

(based on stage-1 and stage-2 QCs) and a quorum of VoteLive votes

from > 2𝑛/3 nodes is analogous; hence the 3Δ delay there as well.

Proofs of Lems. 3 and 4 are relegated to Apps. B.1 and B.2.

Algorithm 3 Refined blame accounting for Alg. 1, given super-

views {V𝑢 }𝑢∈U (changes over Alg. 2 highlighted in orange)

1 𝔐
𝑝

𝑡 ←𝔐 of Alg. 1, ln. 4, for node 𝑝 and “receive-time-annotated”, i.e., supports
access to𝔐 in the view of 𝑝 of Alg. 1 “as of” any time 𝑡

2 ∀𝑝 ∈ P,𝑢 ∈ U, 𝑝′ ∈ P : Blame𝑝,𝑢,𝑝′ ← 0

3 for 𝑝 ∈ P,𝑢 ∈ U, 𝑣 ∈ V𝑢 , 𝑝
′ ∈ P

4 ... same as Alg. 2, ln. 4 ...
5 ... same as Alg. 2, ln. 5 ...
6 ... same as Alg. 2, ln. 6 ...
7 Blame𝑝,𝑢,𝑝′ ← 1

8 ... same as Alg. 2, ln. 8 ...
9 ... same as Alg. 2, ln. 9 ...

10 Blame𝑝,𝑢,𝑝′ ← 1

11 ... same as Alg. 2, ln. 11 ...
12 ... same as Alg. 2, ln. 12 ...
13 Blame𝑝,𝑢,𝑝′ ← 1

4.2 Refined Blame Accounting
Looking at Lems. 3 and 4, the blame accounting of Alg. 2 has a

drawback. Based on the network model, views of Alg. 1 can be cat-

egorized into three groups. Either (a) the network is asynchronous

for the view, or (b) the network is synchronous for the view but

the view’s leader 𝐿𝑣 is adversary, or (c) the network is synchronous

for the view and the view’s leader 𝐿𝑣 is honest. Lems. 3 and 4 make

no guarantee for (a)—which seems unavoidable. Lem. 4 protects

honest nodes from blame during (b) and (c)—which seems the best

we can hope for. But Lem. 3 ensures blame for adversary nodes, if

there is no liveness, only during (c). During (b), the adversary “gets

away” without blame.

The refined blame accounting of Alg. 3 improves this. It assumes

a partition {V𝑢 }𝑢∈U of views into super-views. If the network

is synchronous for a super-view 𝑢 ∈ U, then honest nodes are

protected from blame, and as long as any view 𝑣 ∈ V𝑢 has an honest

leader 𝐿𝑣 , “many” adversary nodes are blamed by all honest nodes

for the super-view 𝑢 if there is no liveness. Foreshadowing Sec. 5,

{V𝑢 }𝑢∈U is chosen as follows: For Δ′ = 12Δ𝐾views for some fixed

parameter 𝐾views, choose the 𝑔(Δ′) most recent periods of length

Δ′ of the execution, aligned to view boundaries in Alg. 1, as super-

viewsU. Each of these periods 𝑢 corresponds to 𝐾views views of

Alg. 1, which makeV𝑢 . Finally,V ≜
⋃
𝑢∈U V𝑢 . Note that even for

moderate𝐾views,most super-views𝑢 have at least some view 𝑣 ∈ V𝑢
with honest 𝐿𝑣 , due to the random choice of 𝐿𝑣 . This and 𝑥-partial-

synchrony will give us that almost (1 − 𝑥) fraction of super-views

inU are synchronous and have some honest leader. Revisiting the

earlier categorization of views, for super-views, this eliminates the

problematic group (b) and leaves us to deal only with (a) and (c). In

the following, we observe how Alg. 3 behaves for individual super-

views 𝑢 ∈ U, irrespective of the choice of {V𝑢 }𝑢∈U . Changes in
Lems. 5 and 6 over Lems. 3 and 4 are highlighted in orange.

Lemma 5. With Algs. 1 and 3, for every super-view 𝑢 ∈ U, if the
network is synchronous for all viewsV𝑢 , and 𝐿𝑣 is honest for some

view 𝑣 ∈ V𝑢 , then: unless the block 𝑏 proposed by 𝐿𝑣 is confirmed
by all honest nodes by 12Δ𝑣 + 9Δ and all honest nodes see VoteLive
messages for 𝑣 from > 2𝑛/3 nodes by 12Δ𝑣 + 12Δ, there is a set
P′ with |P′ | ≥ 𝑛/3, such that for every 𝑝 ∈ P

h
, for all 𝑝′ ∈ P′,

Blame𝑝,𝑢,𝑝′ = 1 in Alg. 3.

Proof. Follows the same steps as the proof of Lem. 3. □
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Algorithm 4 Critical-Subsets adjudication rule for Algs. 1 and 3,

given super-views {V𝑢 }𝑢∈U , 𝜏ALmax
< 𝑛/2, 𝑥 < 1/2

1 Compute Blame𝑝,𝑢,𝑝′ for all 𝑝 ∈ P, 𝑝′ ∈ P,𝑢 ∈ U using Alg. 3

2 ∀𝑢 ∈ U : PA

𝑢 ← {𝑝′ ∈ P |
∑

𝑝∈P Blame𝑝,𝑢,𝑝′ ≥ 𝑛 − 𝜏ALmax
}

3 Undirected graph𝐺 ← (U, {{𝑢,𝑢′ } | | PA

𝑢 ∩ PA

𝑢′ | ≥ 2𝑛/3 − 𝜏AL
max
})

4 U′ ← {𝑢 ∈ U | ( | PA

𝑢 | ≥ 𝑛/3) ∧ (deg𝐺 (𝑢 ) > (𝑥 + 𝛿x ) |U | ) }
5 return {𝑝 ∈ P | ∃U′′ ⊆ U′ : (∀𝑢 ∈ U′′ : 𝑝 ∈ PA

𝑢 ) ∧ ( |U′′ | >
(𝑥 + 𝛿x ) |U′ | ) }

Lemma 6. With Algs. 1 and 3, for every super-view 𝑢 ∈ U, if the
network is synchronous for all viewsV𝑢 , then for every 𝑝 ∈ P

h
, for

every 𝑝′ ∈ P
h
, Blame𝑝,𝑢,𝑝′ = 0 in Alg. 3.

Proof. Follows directly from Lem. 4. □

5 Adjudication Rule
In Sec. 1.4, we described an adjudication rule that suffices to deter-

mine at least one adversary node in the event of a timely-liveness

violation. A precise version of this rule is specified in Alg. 4. We

now tackle the analysis for this rule in the general case for parame-

ters 𝑥 , 𝜏AL
max

, and when, due to the random leader election, not all

super-views may have some honest leader. Recall that {V𝑢 }𝑢∈U
are chosen as follows: For Δ′ = 12Δ𝐾views for some fixed parameter

𝐾views, we choose the 𝑔(Δ′) most recent periods of length Δ′ of the
execution, aligned to view boundaries in Alg. 1, as super-viewsU.

Each of these periods𝑢 corresponds to𝐾views views of Alg. 1, which

make upV𝑢 . Also,V ≜
⋃
𝑢∈U V𝑢 . A super-view is synchronous if

the network respects a message-delay upper-bound Δ during view

𝑣 of Alg. 1 for all 𝑣 ∈ V𝑢 .
Note that even with moderate 𝐾views, most super-views 𝑢 have

at least some view 𝑣 ∈ V𝑢 with honest 𝐿𝑣 , due to the random choice

of 𝐿𝑣 . This and 𝑥-partial-synchrony give us that, for a fixed point in

time where𝜓 is invoked, and appropriate choice of 𝛿x, except with

some small probability, at least (1−𝑥−𝛿x) fraction of super-views in
U are synchronous and have some honest leader; vice versa, at most

(𝑥 + 𝛿x) fraction of super-views inU are either not synchronous

or have no honest leader. Denote byUs the subset ofU containing

all synchronous super-views, byU
hl
the subset ofU containing

all super-views with some honest leader, and byU
shl
≜ Us ∩Uhl

.

Complementation of these sets is taken with respect to U. Note

that with this notation we expect |U
shl
| ≥ (1 − 𝑥 − 𝛿x) |U|, which

Lem. 7 establishes based on a well-known Chernoff bound.

Lemma 7. For a fixed round, and fixed 𝛿x > 0, assuming (Δ, 𝑔, 𝑥)-
partial-synchrony and 𝑓 ≤ 𝜏AL

max
< 𝑛/2, and choosing 𝐾views =

⌈log
2
( 2
𝛿x
)⌉, except with probability exp(−𝛿x𝑔(Δ′)/6), we get |Ushl

| ≥
(1 − 𝑥 − 𝛿x) |U|.

The proof is relegated to App. C.1.

Since we consider the regime where 𝑥 < 1/2, we may choose

𝛿x < 1/2 − 𝑥 by choosing 𝐾views = ⌈log
2
( 4

1−2𝑥 )⌉ + 1, to ensure

1 − 𝑥 − 𝛿x > 𝑥 + 𝛿x, which we subsequently make use of.

Remark 1. For Lems. 8 to 10, we assume that some honest node

took note of a potential timely-liveness violation in Fig. 2, that

(Δ, 𝑔, 𝑥)-partial-synchrony holds, and that 1 − 𝑥 − 𝛿x > 𝑥 + 𝛿x.

We first show thatU
shl
⊆ U′:

Lemma 8. For a fixed round, under the assumptions of Rem. 1, except
with probability exp(−𝛿x𝑔(Δ′)/6), forU′ of Alg. 4,Ushl

⊆ U′.

The proof is relegated to App. C.2.

We then show that Alg. 4 never outputs an honest node:

Lemma9 (Soundness of𝜓 ). For a fixed round, under the assumptions
of Rem. 1, except with probability exp(−𝛿x𝑔(Δ′)/6), no 𝑝 ∈ Ph is
returned by Alg. 4.

The proof is relegated to App. C.3.

Finally, we show that Alg. 4 outputs a certain number of (neces-

sarily adversary) nodes:

Lemma 10 (Completeness of 𝜓 ). For a fixed round, under the as-
sumptions of Rem. 1, except with probability exp(−𝛿x𝑔(Δ′)/6), Alg. 4
returns P′ with |P′ | ≥ 𝑓 −

⌊ (𝑓 −𝑛/3)+(𝑥+𝛿x ) (𝜏ALmax
−𝑛/3)

1−𝑥−𝛿x

⌋
.

The proof is relegated to App. C.4.

Remark 2. It is easy to verify that when Alg. 4 is used in the

context of 𝜓 in Fig. 2, that P′ obtained from 𝜓 when input all

honest transcripts and ⊥ for all adversary transcripts, satisfies the

bound on |P′ | of Lem. 10, and is a subset of any P′′ obtained from𝜓
when input all honest transcripts and any other adversary-produced

transcripts. This property is crucial to ensuring that P′ is accused
by all honest nodes in the context of Fig. 2, so that subsequently a

certificate of guilt for P′ is formed.

We combine the above results to assert accountable liveness:

Theorem 1. For any given 𝑔, 𝑥 < 1/2, 𝑛/3 < 𝜏AL
max

< 𝑛/2, 𝜀AL, the
atomic broadcast protocol of Alg. 1 together with Algs. 3 and 4, with

design parameter 𝛿x, when instantiated with 𝐾views = ⌈log2 ( 2𝛿x )⌉ +
𝐶 andΔ′ = 12Δ𝐾views, where𝐶 is chosen such that exp(−𝛿x𝑔(Δ′)/6) ≤
𝜀AL, is accountably live for 𝜏AL

ident
= 𝜏AL

max
−

⌊ (1+𝑥+𝛿x ) (𝜏ALmax
−𝑛/3)

1−𝑥−𝛿x

⌋
,

when run in (Δ, 𝑔, 𝑥)-partial-synchrony with 𝑓 ≤ 𝜏AL
max

.

The proof is relegated to App. C.5.

Thm. 1 shows that the protocol consisting of the combination of

Algs. 1, 3 and 4 satisfies goal (2) in Sec. 2.4. Together with Lems. 1

and 2, this completes the picture that the protocol satisfies the goals

laid out in Sec. 2.4.

It is important to observe that, as required by Def. 4, 𝜏AL
ident

of

Thm. 1 provides a lower bound across all executions with 𝑓 ≤ 𝜏AL
max

,

on the number of identifiable adversary nodes. How does the num-

ber of identifiable adversary nodes depend on the actual number

of adversary nodes 𝑓 ? This is equivalent to asking for a variant

of Def. 4 with a function 𝜏AL
ident
(𝑓 ) instead of a constant 𝜏AL

ident
. The

answer is provided by Lem. 10.

6 Impossibility Results
It is well-known [24] that atomic broadcast protocols that are 𝜏S-

safe and 𝜏L-live under partial synchrony, must satisfy 𝑛 > 2𝜏L + 𝜏S.
Since protocols with these properties are the baseline laid out in

our design goals in Sec. 2.4, we focus subsequently on protocols

that achieve that bound in an optimal fashion:

Definition 5. An atomic broadcast protocol with safety resilience

𝜏S and liveness resilience 𝜏L is optimally resilient iff 𝑛 = 2𝜏L +𝜏S + 1.
10
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6.1 Impossibility for 𝜏AL
max
≥ 𝑛/2

A perhaps intuitive consequence of the requirements that “enough”

honest nodes alone should be able to produce certificates of guilt,

while “few” adversary nodes alone should not, is that non-trivial

accountable liveness is impossible for 𝜏AL
max
≥ 𝑛/2:

Theorem 2. No atomic broadcast protocol can be 0-safe under

partial synchrony and achieve non-trivial accountable liveness with

𝜏AL
max
≥ 𝑛/2 and 𝜏AL

ident
> 0 under (Δ, 𝑔, 𝑥)-partial-synchrony (even

if 𝑥 = 0, i.e., even under synchrony).

The proof is relegated to App. D.1. (Note that for any 𝜏 > 0,

𝜏-safety implies (𝜏 −1)-safety, so 0-safety is the weakest non-trivial
such threshold safety property.)

6.2 Impossibility for 𝑥 ≥ 1/2
For the scheme of Secs. 4 and 5, it is intuitive that non-trivial ac-

countable liveness cannot be achieved if the network is “more

asynchronous than synchronous”, since honest nodes can then be

framed by the adversary more often than they can reliably detect ad-

versary behavior. Perhaps interestingly, this impossibility holds for

all consensus protocols and all liveness accountability mechanisms:

Theorem 3. No optimally-resilient atomic broadcast protocol with

𝜏L > 0 that is 0-safe under partial synchrony can achieve non-trivial

accountable liveness with 𝜏AL
max

> 𝜏L and 𝜏AL
ident

> 0 under (Δ, 𝑔, 𝑥)-
partial-synchrony for 𝑥 ≥ 1/2.

The proof is relegated to App. D.2.

Corollary 1. No optimally-resilient atomic broadcast protocol

with 𝜏L > 0 that is 0-safe under partial synchrony can achieve non-

trivial accountable liveness with 𝜏AL
max

> 𝜏L and 𝜏AL
ident

> 0 under

partial synchrony.

Proof. Follows from Thm. 3 and the fact that partial synchrony

is a special case of 𝑥-partial-synchrony with 𝑥 = 1. □

6.3 Impossibility for 𝜏AL
ident

Thms. 2 and 3 show that accountable liveness can at best be expected

for the region circumscribed by 𝑥 < 1/2 and 𝜏AL
max

< 𝑛/2. Further-
more, only 𝜏AL

max
≥ 𝑛/3 is of interest, as a protocol for 𝑛 = 3𝜏 + 1

with 𝜏 = 𝜏L = 𝜏S otherwise achieves trivial accountable liveness

(since the protocol then is always live when 𝑓 ≤ 𝜏AL
max

). In fact, the

atomic broadcast consensus protocol of Alg. 1 together with the

accountability mechanism of Fig. 2 and Algs. 3 and 4 achieves non-

trivial accountable liveness with some 𝜏AL
ident

> 0 for the interior

of the aforementioned region. But is the value of 𝜏AL
ident

achieved

by this combined scheme “good”? Could one hope to achieve even

higher 𝜏AL
ident

, either with a different consensus protocol and/or with

a different accountability mechanism?

Let us address this question in four steps. First, a simple argument

shows that no combination of consensus protocol and accountability

mechanism can achieve 𝜏AL
ident

> 𝜏L + 1. Second, we show that for

the consensus protocol of Alg. 1, every accountability mechanism

has to satisfy 𝜏AL
ident

< (𝜏L + 2) −
⌊
𝜏AL
max
−(𝜏L+1)
𝑘−2

⌋
for every 𝑘 ≥ 3 and

𝑥 ≥ 1/𝑘 . Third, the proof of the aforementioned bound reveals that

the bound holds for a large class of PBFT-style consensus protocols,

irrespective of the liveness accountability mechanism. As can be

seen from Fig. 1 ( vs. ), the bound closely matches the

𝜏AL
ident

achieved by the combined scheme of Algs. 1, 3 and 4 and Fig. 2,

and is even tight for 𝑥 = 1/3. In this sense, the combined scheme

of Algs. 1, 3 and 4 and Fig. 2 is near optimal. Finally, we explain

why we conjecture that the bound holds for every combination of

consensus protocol (not just PBFT-style) and liveness accountability

mechanism that together satisfy the design goals set out in Sec. 2.4.

For the first step, optimal resilience (Def. 5, cf. Lem. 12 in App. D)

implies that for any protocol for 𝑛 = 3𝜏 + 1 with 𝜏 = 𝜏L = 𝜏S, an

adversary only needs to let 𝜏L + 1 of its 𝑓 nodes behave adversarily
(in particular, let them crash) to cause a liveness violation, while the

remaining 𝑓 −(𝜏L+1) adversary nodes can behave indistinguishably
from honest nodes. Thus, we cannot hope to guarantee to detect

more than 𝜏L +1 guilty nodes in case of any liveness violation. Ergo,

no more than 𝜏AL
ident

= 𝜏L + 1 can be achieved by any protocol.

For the second step:

Theorem 4. For every 𝑘 ≥ 3: Alg. 1, irrespective of the liveness

accountability mechanism, cannot achieve accountable liveness

for any 𝜏AL
max

> 𝜏L under (Δ, 𝑔, 𝑥)-partial-synchrony for 𝑥 ≥ 1/𝑘 ,
unless 𝜏AL

ident
< (𝜏L + 2) −

⌊
𝜏AL
max
−(𝜏L+1)
𝑘−2

⌋
.

The proof is relegated to App. D.3.

For the third step, we note that the specifics of Alg. 1 enter into

the proof of Thm. 4 only to argue that there is a timely-liveness

violation in one of the executions 𝐸𝑘,𝑖 (cf. Fig. 4) considered in the

proof. The commonly considered classical PBFT-style consensus

protocols like Alg. 1, PBFT [17], Tendermint [11], HotStuff [51],

CasperFFG [14, 21], or Streamlet [18], all exhibit timely-liveness vio-

lations in these executions. Intuitively, this is because the protocols

never collect enough (> 2𝑛/3) votes to form quorum certificates,

before a view change is triggered due to lack of progress. They thus

cannot confirm blocks. More formally, this is because the protocols

satisfy the following property:

Definition 6. We say a consensus protocol is now-or-never iff there

exists Δ′′ dividing Δ′𝑔(Δ′)/𝑘 such that if the protocol execution is

partitioned into intervals of length Δ′′, and for each interval, any

⌈𝑛/3⌉ nodes are partitioned off temporarily until the end of the

interval, while all other communication is next-round-delay, then

the protocol does not confirm any transaction.

This condition is in fact sufficient to prove an analogue of Thm. 4:

Theorem 5. For every 𝑘 ≥ 3: A now-or-never consensus proto-

col, irrespective of the liveness accountability mechanism, cannot

achieve accountable liveness for any 𝜏AL
max

> 𝜏L under (Δ, 𝑔, 𝑥)-
partial-synchrony for𝑥 ≥ 1/𝑘 , unless𝜏AL

ident
< (𝜏L+2)−

⌊
𝜏AL
max
−(𝜏L+1)
𝑘−2

⌋
.

The proof is relegated to App. D.4.

Now to the final fourth step: Why does this proof not carry over

to general atomic broadcast protocols? The argument for Thms. 4

and 5 hinges on the assumption that one of the 𝐸𝑘,𝑖 (cf. Fig. 4) has a

timely-liveness violation. An asynchronous protocol, for instance,

may be able to leverage the limited rounds of message exchange

allowed at the boundaries of the T𝑖 or T (𝑣) to achieve timely-

liveness occasionally, independently of any Δ′′ and in particular for
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Δ′′ = Δ′𝑔(Δ′)/𝑘 . Nonetheless, we conjecture that even a random-

ized asynchronous protocol would have a constant probability for

a timely-liveness violation in one of the 𝐸𝑘,𝑖 , because only a small

constant number of full communication rounds can be completed.

Conjecture 1. For every 𝑘 ≥ 3: Every atomic broadcast con-

sensus protocol, irrespective of the liveness accountability mech-
anism, cannot achieve accountable liveness for any 𝜏AL

max
> 𝜏L under

(Δ, 𝑔, 𝑥)-partial-synchrony for 𝑥 ≥ 1/𝑘 , unless 𝜏AL
ident

< (𝜏L + 2) −⌊
𝜏AL
max
−(𝜏L+1)
𝑘−2

⌋
.

It is important to observe that, as stated, Thms. 4 and 5 andConj. 1

assert a bound on 𝜏AL
ident

as used in Def. 4, i.e., where 𝜏AL
ident

is no

more than the lowest number of guilty nodes identified across

all executions with 𝑓 ≤ 𝜏AL
max

. The reasoning for Thm. 4 identifies

worst-case executions where 𝑓 ≈ 𝜏AL
max

nodes act adversarily and

the number of guilty nodes identified is minimized. One may be

interested in a variant of Def. 4 where 𝜏AL
ident

is a function of the

actual number of adversary nodes 𝑓 , and 𝜏AL
ident
(𝑓 ) is no more than

the lowest number of guilty nodes identified across all executions
with 𝑓 adversary nodes. Indeed, the steps of the argument for Thm. 4

go through with 𝑓 instead of 𝜏AL
max

to obtain 𝜏AL
ident
(𝑓 ) < (𝜏L + 2) −⌊

𝑓 −(𝜏L+1)
𝑘−2

⌋
.

7 Related Work
Accountable Liveness. It appears the term “accountable liveness”

was first introduced by Tas et al. [49, Appendix F], who provided a

preliminary definition in the context of the Babylon chain. Their

work examines how accountability might extend to liveness vio-

lations in synchronous PoS protocols, and establishes a theorem

analogous to our Thm. 2 for their framework (and for SMR rather

than atomic broadcast protocols).While the technical details of their

proof necessarily differ from our proof of Thm. 2, the underlying

reason both theorems hold is the same: if a certificate implicating

adversarial nodes can be constructed by an honest minority in

any instance of an attack on liveness carried out by an adversarial

majority, then the adversary is also able to construct certificates

implicating honest parties, leading to a failure of soundness.

An informal notion of accountable liveness appears in the Pod

Network project [2], but only in the setting of partial ordering

consensus—and it remains documented solely in a blog post rather

than in their formal publication [5]. In contrast, we provide a thor-

ough analysis of accountable liveness in the context of total ordering

consensus, establishing both the necessary and sufficient conditions

for realizing it in our 𝑥-partially-synchronous network model.

Ethereum [1] addresses liveness violations in its consensus proto-

col, Gasper [15]—which combines LMD-GHOST for chain selection

and Casper FFG [14] for finality—through inactivity leaks [14], a
mechanism that gradually reduces the stake of non-participating

nodes. The goal is that the remaining active nodes can eventually

form a supermajority of the effective stake, restoring finality despite
prolonged outages. This approach lacks a formal specification, and

its guarantees remain unclear. The approach should be seen as a

heuristic solution rather than a rigorously defined mechanism.

Timing Models. In addition to the classical synchronous and

partially-synchronous network models [17, 23–25], recent work

has introduced granular synchrony [26], a model that represents

the network as a graph with communication links spanning fully

synchronous, partially synchronous, and asynchronous behaviors.

This approach bridges the gap between classical assumptions by

capturing the heterogeneous and dynamic nature of real-world net-

works. Notably, granular synchrony unifies existing timing models

as specific instances within its broader framework. Lewis-Pye and

Roughgarden [34] propose a timing model that serves as an interpo-

lation between the synchronous and partially-synchronous settings.

In addition to the standard parameters of the partially-synchronous

model, i.e., Δ and GST, they introduce an additional parameter, Δ∗,
with Δ∗ ≥ Δ and may or may not bound message delays before
GST. Our 𝑥-partial-synchrony model also provides a (different) in-

terpolation between synchrony and partial synchrony, and may be

of independent interest in the context of the recent interest in more

fine-grained network models.

For further discussion of additional related works, see App. E,

where we discuss papers on accountable safety, slashing, recovery

procedures, and responsive and network-adaptive protocols.

8 Discussion & Conclusion
In this paper, we introduced the notion of accountability for liveness

in the context of atomic broadcast. By proposing the 𝑥-partially-

synchronous network model, we demonstrated how to identify

adversarial protocol violators using the 𝜓 function, which com-

bines blame accounting (Sec. 4) with an adjudication rule (Sec. 5).

We also proved that accountable liveness becomes impossible to

achieve if the network model or adversary strength deviate beyond

certain thresholds (Sec. 6)—underscoring the intrinsic trade-offs

and additional assumptions required for liveness accountability.

Beyond these theoretical foundations, our work serves as a start-

ing point for automating responses to liveness attacks in blockchains.

Notably, Ethereum already implements an automated response to

major liveness issues. Ethereum’s consensus protocol, Gasper, ad-

dresses liveness violations through a mechanism called inactivity
leaks, originally introduced to prevent Casper FFG [14] from stalling

indefinitely when more than one-third of nodes fail to participate.

The techniques presented in this paper provide a complementary

and more general approach: our methods enable the detection and

formal identification of adversarial nodes through certificates of

guilt. Once such a liveness failure is detected, offending nodes can

be pinpointed and slashed—an approach akin to Ethereum’s inactiv-

ity leaks but with precise and stronger accountability guarantees.
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A Addendum Consensus Protocol
Remark 3. Note that valid(𝔐, 𝑄, 𝑏, 𝑠) implies valid(𝔐, 𝑏) because
valid(𝔐,𝑤) implies valid(𝔐,𝑤 .b).
Remark 4. Note that, through the parent block relation in Alg. 1,

ln. 1, valid blocks form a tree rooted at the genesis block 𝑏0. As a

result, the path from 𝑏0 to any valid block 𝑏 exists and is unique.

Block 𝑏 is an ancestor of block 𝑏′, denoted as 𝑏 ⪯ 𝑏′, iff 𝑏 is on the

path from 𝑏0 to 𝑏
′
. Ancestors of any valid block are from strictly

increasing views.

Remark 5. Assuming 𝑓 ≤ 2𝑛/3 (which holds in particular if we

assume 𝑛 > 3𝑓 ), by Alg. 1, ln. 3, an honest node’s vote is required

to form any valid quorum certificate (QC). Thus, by Alg. 1, for any

view 𝑣 , no honest node can see any valid QC for 𝑣 before 12Δ𝑣 + 4Δ.
It follows that in every honest node 𝑝’s view, v(𝔔𝑝

𝑡 ) as a function of

𝑡 is non-decreasing. To see this, suppose 𝑡 ′ = 12Δ𝑣 ′ +7Δ for view 𝑣 ′

is a time where 𝑝 updates𝔔𝑝
such that 𝑣 ′′ ≜ v(𝔔𝑝

𝑡 ) > v(𝔔𝑝

𝑡 ′+ ) = 𝑣
′

for some time 𝑡 with 𝑡 < 𝑡 ′+. Then 𝑝 saw a valid QC for view 𝑣 ′′

at time 𝑡 < 12Δ𝑣 ′ + 7Δ < 12Δ𝑣 ′′ + 4Δ, a contradiction to the

aforementioned.

A.1 Proof of Lem. 1
Proof of Lem. 1. Towards a contradiction, suppose honest 𝑝

confirms 𝑏 (i.e., 𝑝 outputs as its log Λ
𝑝
𝑡 the sequence of transactions

on the path from 𝑏0 to 𝑏 at some time 𝑡 , as per Alg. 1, ln. 8), and

honest 𝑝′ confirms𝑏′, but neither𝑏 ⪯ 𝑏′ nor𝑏′ ⪯ 𝑏. Without loss of

generality, assume 𝑏.v ≤ 𝑏′ .v. Let 𝑏′′ be the block such that 𝑏′′ ⪯ 𝑏′
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and 𝑏′′ .v is minimal, subject to the constraint 𝑏′′ .v ≥ 𝑏.v. Note that
𝑏′′ exists because 𝑏′ is a candidate, and 𝑏′′ is unique due to Rem. 4.

Note that 𝑏′′ ≠ 𝑏 because otherwise 𝑏 ⪯ 𝑏′, which would be a

contradiction to earlier assumptions. Note that because 𝑝 confirms

𝑏, ∃𝑄1, 𝑄2 : valid(𝔐∪∞, 𝑄1, 𝑏, 1) ∧ valid(𝔐∪∞, 𝑄2, 𝑏, 2). Because 𝑝′
confirms 𝑏′, 𝑝′ views 𝑏′ as valid, and thus all its ancestors have

valid stage-1 QCs, i.e., ∃𝑄3 : valid(𝔐∪∞, 𝑄3, 𝑏
′′, 1).

Suppose 𝑏′′ .v = 𝑏.v. Due to the assumption 𝑛 > 3𝑓 , and quorum

intersection, some honest node has contributed to both 𝑄1 and 𝑄3,

a contradiction because according to Alg. 1 honest nodes send only

one stage-1 vote per view.

Suppose 𝑏′′ .v > 𝑏.v. Let 𝑄0 ≜ 𝑏
′′ .Q . Note that v(𝑄0) < 𝑏′′ .v

due to Rem. 4. Note that it must be that v(𝑄0) < 𝑏.v because 𝑏′′

was chosen with minimal 𝑏′′ .v (subject to 𝑏′′ .v ≥ 𝑏.v). Due to the

assumption 𝑛 > 3𝑓 , and quorum intersection, some honest node

𝑝 has contributed to both 𝑄2 and 𝑄3. Thus, v(𝔔𝑝

12Δ(𝑏.v+1) ) = 𝑏.v,
by Alg. 1, ln. 20. Yet, 𝑝 allegedly stage-1 votes for 𝑏′′ in a later

𝑏′′ .v ≥ 𝑏.v + 1, i.e., after 12Δ𝑏′′ .v ≥ 12Δ(𝑏.v + 1), specifically at

12Δ𝑏′′ .v + 4Δ. This is even though v(𝑏′′ .Q) = v(𝑄0) < 𝑏.v =

v(𝔔𝑝

12Δ(𝑏.v+1) ) ≤ v(𝔔𝑝

12Δ𝑏′′ .v) ≤ v(𝔔𝑝

12Δ𝑏′′ .v+4Δ) (recall that by
Rem. 5, v(𝔔𝑝

𝑡 ) is non-decreasing in 𝑡 ), a contradiction to Alg. 1,

ln. 16. □

A.2 Proof of Lem. 2
Proof of Lem. 2. Suppose the leader 𝐿𝑣 is honest for some view

𝑣 with 12Δ𝑣 ≥ GST. Because the network is synchronous,𝔐𝐿𝑣
12Δ𝑣+2Δ ⊇

𝔐
𝑝

12Δ𝑣 for any honest node 𝑝 . Furthermore, honest nodes do not

update their 𝔔 in the time frame from (12Δ(𝑣 − 1) + 7Δ)+ to

(12Δ𝑣 + 7Δ)− , and thus also not in the time frame from 12Δ𝑣 to
12Δ𝑣 + 4Δ. As a result,𝑄 chosen by 𝐿𝑣 at 12Δ𝑣 + 2Δ in Alg. 1, ln. 12

is such that for every honest node 𝑝 , v(𝔔𝑝

12Δ𝑣+4Δ) ≤ v(𝑄) in Alg. 1,

ln. 16. Furthermore, by synchrony, 𝔐
𝑝

12Δ𝑣+4Δ ⊇ 𝔐
𝐿𝑣
12Δ𝑣+2Δ. There-

fore, 𝑏,𝑄 chosen by 𝐿𝑣 at 12Δ𝑣 + 2Δ in Alg. 1, ln. 12 are viewed as

valid by all honest nodes at 12Δ𝑣 + 4Δ, and so is the resulting block
𝑏∗ produced by 𝐿𝑣 at 12Δ𝑣 +2Δ in Alg. 1, ln. 13, which by synchrony

all honest nodes receive by 12Δ𝑣 + 4Δ. Thus, the condition of Alg. 1,

ln. 15 is satisfied in all honest views, and all honest nodes will

stage-1 vote for 𝑏∗ in Alg. 1, ln. 17. By synchrony, all honest votes

propagate to all honest nodes by 12Δ𝑣 + 7Δ. Thus, the condition of

Alg. 1, ln. 19 is satisfied in all honest views. Furthermore, since 𝐿𝑣 is

honest and produces only one block in view 𝑣 , 𝑏∗ is the only block

that satisfies Alg. 1, ln. 19 in any honest view. As a result, all honest

nodes will stage-2 vote for 𝑏∗ at 12Δ𝑣 + 7Δ. Again by synchrony,

these votes will propagate to all honest nodes by 12Δ𝑣 + 9Δ, who
will thus confirm 𝑏∗ and with it all pending transactions that any

honest node has seen and re-broadcast by 12Δ𝑣 +Δ, and which thus

(by synchrony) the honest 𝐿𝑣 included in 𝑏∗ at 12Δ𝑣 + 2Δ. □

B Addendum Blame Accounting
B.1 Proof of Lem. 3

Proof of Lem. 3. Assume the network is synchronous for view

𝑣 and 𝐿𝑣 is honest and proposes 𝑏. We consider two cases: (A) Some

honest node does not view 𝑏 as confirmed by 12Δ𝑣 + 9Δ. (B) Every
honest node views 𝑏 as confirmed by 12Δ𝑣 + 9Δ, but some honest

nodes does not see VoteLive messages for 𝑣 from > 2𝑛/3 nodes

by 12Δ𝑣 + 12Δ. We show that in both cases there is a set P′ with
|P′ | ≥ 𝑛/3 such that for every honest node 𝑝 , for all 𝑝 ∈ P′,
Blame𝑝,𝑣,𝑝′ = 1 in Alg. 2.

First, case (A). Let 𝑞 be an honest node that does not view 𝑏 as

confirmed by 12Δ𝑣 + 9Δ. Since the network is synchronous and

𝐿𝑣 is honest, the condition of Alg. 2, ln. 4 is met for every honest

node 𝑝 . The condition of Alg. 2, ln. 5 must be met for every honest

node because 𝐿𝑣 is honest and chooses (𝑏,𝑄) according to Alg. 1,

ln. 12, and the network is synchronous. Since 𝑞 does not view 𝑏 as

confirmed by 12Δ𝑣 + 9Δ, but 𝑏 is viewed as valid by every honest

node after 12Δ𝑣+3Δ due to network synchrony and 𝐿𝑣 being honest,

either (a) there must be a set P′ with |P′ | ≥ 𝑛/3 such that 𝑞 has

not seen a valid stage-1 vote for 𝑏 from any 𝑝′ ∈ P′ by 12Δ𝑣 + 9Δ,
and thus no honest node has seen a valid stage-1 vote for 𝑏 from

any 𝑝′ ∈ P′ by 12Δ𝑣 + 8Δ (and thus also not by 12Δ𝑣 + 6Δ or by

12Δ𝑣 + 5Δ), or (b) there must be a set P′ with |P′ | ≥ 𝑛/3 such

that 𝑞 has not seen a valid stage-2 vote for 𝑏 from any 𝑝′ ∈ P′ by
12Δ𝑣 + 9Δ, and thus no honest node has seen a valid stage-2 vote

for 𝑏 from any 𝑝′ ∈ P′ by 12Δ𝑣 + 8Δ.
Suppose (a) holds. Then, since 𝐿𝑣 is honest and 𝑏 is its unique

proposal for view 𝑣 , the condition of Alg. 2, ln. 6 is met for every

honest node 𝑝 for all 𝑝′ ∈ P′. Then, for every honest node 𝑝 ,

Blame𝑝,𝑣,𝑝′ ← 1 in Alg. 2, ln. 7 for all those 𝑝′ ∈ P′, as desired.
Suppose (b) holds. Suppose there is some honest node 𝑟 for which

the condition of Alg. 2, ln. 8 is not satisfied. Then, by synchrony

and since 𝐿𝑣 is honest, there must be a set P′ with |P′ | ≥ 𝑛/3 such
that no honest node has seen a valid stage-1 vote for 𝑏 from any

𝑝′ ∈ P′ by 12Δ𝑣 + 5Δ, and we are done by the same argument as

for (a). We thus assume that the condition of Alg. 2, ln. 8 holds

for every honest node. Then, by (b), there must be a set P′ with
|P′ | ≥ 𝑛/3 such that the condition of Alg. 2, ln. 9 is met for all

𝑝′ ∈ P′ for every honest node 𝑝 , so that Blame𝑝,𝑣,𝑝′ ← 1 in Alg. 2,

ln. 10 for all 𝑝′ ∈ P′, as desired.
Now consider case (B). Suppose 𝑞 is an honest node that does

not see VoteLive messages for 𝑣 from > 2𝑛/3 nodes by 12Δ𝑣 +
12Δ, but all honest nodes view 𝑏 as confirmed by 12Δ𝑣 + 9Δ. By
synchrony and since 𝐿𝑣 is honest and since all honest nodes view

𝑏 as confirmed by 12Δ𝑣 + 9Δ by assumption, for every honest node

𝑝 , 𝔐𝔱
𝑝

12Δ𝑣+1 ⊆ 𝔐𝔱
𝐿𝑣
12Δ𝑣+2 ⊆ Λ

𝑝

12Δ𝑣+9Δ. (Note that a node 𝑟 can

determine the confirmed output log of another node 𝑠 as per any

round 𝑡 based on the transcript of 𝑠 .) Thus, Alg. 2, ln. 11 is met

for every honest node 𝑝 . Since 𝑞 does not see VoteLive messages

for 𝑣 from > 2𝑛/3 nodes by 12Δ𝑣 + 12Δ, by synchrony, there must

be a set P′ with |P′ | ≥ 𝑛/3 such that no honest node has seen a

VoteLive messages for 𝑣 from any 𝑝′ ∈ P′ by 12Δ𝑣 + 11Δ. Thus,
for every honest node 𝑝 and every 𝑝′ ∈ P′, the condition of Alg. 2,

ln. 12 holds, so that Blame𝑝,𝑣,𝑝′ ← 1 in Alg. 2, ln. 13, as desired. □

B.2 Proof of Lem. 4
Proof of Lem. 4. Suppose, for contradiction, that the network

is synchronous for view 𝑣 but for some honest 𝑝 and for some

honest 𝑝′, Blame𝑝,𝑣,𝑝′ = 1 in Alg. 2. Then, Blame𝑝,𝑣,𝑝′ ← 1 either

(a) in Alg. 2, ln. 7, (b) in Alg. 2, ln. 10, or (c) in Alg. 2, ln. 13.

Suppose (a) holds. Then, it must be that the conditions of Alg. 2,

ln. 4 and Alg. 2, ln. 5 are met for 𝑝 . But then, by the assumption of
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synchrony, in the view of 𝑝′, the conditions of Alg. 1, ln. 15 and
Alg. 1, ln. 16 were met, so that 𝑝′ cast a valid stage-1 vote for a block
proposed in view 𝑣 , and thus, again by synchrony, the condition of

Alg. 2, ln. 6 cannot be met for 𝑝 , a contradiction to Blame𝑝,𝑣,𝑝′ ← 1

in Alg. 2, ln. 7.

Suppose (b) holds. Then, it must be that the condition of Alg. 2,

ln. 8 is met for 𝑝 . But then, by the assumption of synchrony, the

condition of Alg. 1, ln. 19 was met in the view of 𝑝′, so that 𝑝′ cast a
valid stage-2 vote for a valid block 𝑏 by 12Δ𝑣 + 7Δ, which, again by

synchrony, 𝑝 must have seen by 12Δ𝑣 + 8Δ, so that the condition of

Alg. 2, ln. 9 cannot be met for 𝑝 , a contradiction to Blame𝑝,𝑣,𝑝′ ← 1

in Alg. 2, ln. 10.

Suppose (c) holds. Then, it must be that the condition of Alg. 2,

ln. 11 is met for 𝑝 . But then, by the assumption of synchrony,

𝔐𝔱
𝑝′

12Δ𝑣 ⊆ 𝔐𝔱
𝑝

12Δ𝑣+1 ⊆ Λ
𝑝

12Δ𝑣+9Δ ⊆ Λ
𝑝′

12Δ𝑣+10Δ, so that the con-

dition of Alg. 1, ln. 23 was met in the view of 𝑝′, and 𝑝′ cast a
VoteLive vote for view 𝑣 by 12Δ𝑣 + 10Δ, which, again by synchrony,

𝑝 must have seen by 12Δ𝑣 + 11Δ, so that the condition of Alg. 2,

ln. 12 cannot be met for 𝑝 , a contradiction to Blame𝑝,𝑣,𝑝′ ← 1 in

Alg. 2, ln. 13. □

C Addendum Adjudication Rule
A well-known Chernoff bound is used in the proof of Lem. 7:

Proposition 1 (Chernoff bound). Let 𝑍1, ..., 𝑍𝑚 be independent

Bernoulli randomvariableswith 𝑝𝑖 ≜ Pr[𝑍𝑖 = 1]. Let 𝜇 ≜ E

[∑𝑚
𝑖=1 𝑍𝑖

]
.

Then, ∀𝑐 ≥ 0:

Pr

[(
𝑚∑︁
𝑖=1

𝑍𝑖

)
≥ (1 + 𝑐)𝜇

]
≤ exp

(
−𝑐2𝜇
2 + 𝑐

)
. (5)

A counting lemma is used in the proof of Lem. 10:

Lemma 11. Let Ω be some set with |Ω | < ∞, ℎ : Ω → {0, ...,𝑚} be
some function, for some𝑚 ∈ N, and 𝑐 < 1

|Ω |
∑
𝜔∈Ω ℎ(𝜔) ≜ 𝜇. Then,

|{𝜔 | ℎ(𝜔) ≤ 𝑐}| ≤ ⌊|Ω |𝑚−𝜇𝑚−𝑐 ⌋.

Proof. Let Ω− ≜ {𝜔 | ℎ(𝜔) ≤ 𝑐}, Ω+ ≜ {𝜔 | ℎ(𝜔) > 𝑐}.
Then, 𝜇 = 1

|Ω |
∑
𝜔∈Ω ℎ(𝜔) = 1

|Ω |
(∑
𝜔∈Ω− ℎ(𝜔) +

∑
𝜔∈Ω+ ℎ(𝜔)

)
.

Since ℎ(𝜔) ≤ 𝑐 for all 𝜔 ∈ Ω− , and ℎ(𝜔) ≤ 𝑚 for all 𝜔 ∈ Ω+,
and also |Ω | = |Ω− | + |Ω+ |, |Ω |𝜇 ≤ |Ω− |𝑐 + (|Ω | − |Ω− |)𝑚. So,

rearranging, |Ω |𝜇 − |Ω |𝑚 ≤ |Ω− | (𝑐 −𝑚). Finally, multiplying both

sides by (−1), and dividing, |Ω |𝑚−𝜇𝑚−𝑐 ≥ |Ω− |. Since |Ω− | ∈ N,
|{𝜔 | ℎ(𝜔) ≤ 𝑐}| = |Ω− | ≤ ⌊|Ω |𝑚−𝜇𝑚−𝑐 ⌋. □

C.1 Proof of Lem. 7
Proof of Lem. 7. For each super-view 𝑢 ∈ U, let 𝑍𝑢 be the

random variable with 𝑍𝑢 = 0 if ∃𝑣 ∈ V𝑢 : 𝐿𝑣 ∈ Ph, and 𝑍𝑢 = 1 oth-

erwise, i.e., if ∀𝑣 ∈ V𝑢 : 𝐿𝑣 ∈ Pa. Since |Pa | = 𝑓 ≤ 𝜏ALmax
< 𝑛/2, and

leaders per view are chosen independently and uniformly at ran-

dom, and each super-view has 𝐾views views, E[𝑍𝑢 ] = Pr[𝑍𝑢 = 1] ≤
2
−𝐾views

. Then, from Prop. 1,

Pr

[( ∑︁
𝑢∈U

𝑍𝑖

)
≥ 2 · 2−𝐾views𝑔(Δ′)

]
≤ exp

(
−2−𝐾views𝑔(Δ′)/3

)
. (6)

For any target 𝛿x > 0, by choosing𝐾views = ⌈log2 ( 2𝛿x )⌉, except with
probability exp(−𝛿x𝑔(Δ′)/6), at most 𝛿x fraction of super-views in

U will not have some honest leader: |U𝑐
hl
| ≤ 𝛿x |U|.

Furthermore, due to (Δ, 𝑔, 𝑥)-partial-synchrony and our choice

of Δ′, we get |U𝑐
s
| ≤ 𝑥 |U|. Thus, from a union bound, |U

shl
| =

|Us ∩Uhl
| ≥ |U| − |U𝑐

s
| − |U𝑐

hl
| = (1 − 𝑥 − 𝛿x) |U|. □

C.2 Proof of Lem. 8
Proof of Lem. 8. Let 𝑢 ∈ U

shl
. Assuming the blame counts are

based on all honest transcripts (which they are, as we have argued

at the beginning of Sec. 4 and in Fig. 2), and using the assumption

that some honest node took note of a potential timely-liveness

violation, and using |Pa | ≤ 𝜏ALmax
, so that |P

h
| ≥ 𝑛−𝜏AL

max
, by Lem. 5,

|PA

𝑢 | ≥ 𝑛/3.
Let 𝑢,𝑢′ ∈ U

shl
, so per the above, |PA

𝑢 | ≥ 𝑛/3, |PA

𝑢′ | ≥ 𝑛/3.
Due to Lem. 6, PA

𝑢 ⊆ Pa, PA

𝑢′ ⊆ Pa. Since |Pa | ≤ 𝜏AL
max

, by an

intersection argument, |PA

𝑢 ∩ PA

𝑢′ | ≥ 2𝑛/3 − 𝜏AL
max

.

Since any two 𝑢,𝑢′ ∈ U
shl

have an edge in 𝐺 of Alg. 4 per the

above, and |U
shl
| ≥ (1−𝑥 −𝛿x) |U| > (𝑥 +𝛿x) |U| due to 𝑥-partial-

synchrony and 1−𝑥−𝛿x > 𝑥+𝛿x by assumption, for every𝑢 ∈ U
shl

,

deg𝐺 (𝑢) > (𝑥 + 𝛿x) |U|.
Thus, for every𝑢 ∈ U

shl
, |PA

𝑢 | ≥ 𝑛/3 and deg𝐺 (𝑢) > (𝑥+𝛿x) |U|,
so 𝑢 ∈ U′, as desired. □

C.3 Proof of Lem. 9
Proof of Lem. 9. Recall thatU

shl
⊆ U′ by Lem. 8,U′ ⊆ U by

definition in Alg. 4, and |U
shl
| ≥ (1−𝑥−𝛿x) |U|. Thus, |U′∩Ushl

| =
|U

shl
| ≥ (1 − 𝑥 − 𝛿x) |U| ≥ (1 − 𝑥 − 𝛿x) |U′ |, i.e.,Ushl

makes up at

least (1 − 𝑥 − 𝛿x) fraction ofU′, i.e., at most 𝑥 + 𝛿x fraction ofU′
are not inU

shl
.

Suppose for contradiction that 𝑝 ∈ P
h
is returned by Alg. 4. Then

there is a subsetU′′ ofU′ such that 𝑝 ∈ PA

𝑢 for all 𝑢 ∈ U′′ and
|U′′ | > (𝑥 +𝛿x) |U′ |. From the latter, there must be 𝑢 ∈ U′′ ∩U

shl

so that 𝑝 ∈ PA

𝑢 , i.e., 𝑝 is blamed by at least 𝑛 − 𝜏AL
max

nodes in 𝑢, but,

together with 𝜏AL
max

< 𝑛/2, Lem. 6 rules such 𝑢 ∈ U
shl

out. This is

the desired contradiction. □

C.4 Proof of Lem. 10
Proof of Lem. 10. Consider a |Pa | × |U′ | matrix𝑀 with rows

indexed by 𝑝 ∈ Pa and columns indexed by 𝑢 ∈ U′ of Alg. 4. Let
𝑀𝑝,𝑢 = 1 if 𝑝 ∈ PA

𝑢 , and 0 otherwise. Recall thatU
shl
⊆ U′ (Lem. 8).

Consider 𝑢 ∈ U′ ∩U
shl

= U
shl

. By Lems. 5 and 6,

∑
𝑝∈Pa 𝑀𝑝,𝑢 ≥

𝑛/3. Now consider 𝑢 ∈ U′ ∩ U𝑐
shl

. By definition of U′ in Alg. 4,

deg𝐺 (𝑢) > (𝑥 + 𝛿x) |U|. SinceUshl
makes up at least (1 − 𝑥 − 𝛿x)

fraction ofU′ (proof of Lem. 9), i.e., at most 𝑥+𝛿x fraction ofU′ are
not inU

shl
, there is some 𝑢′ ∈ U

shl
such that {𝑢,𝑢′} ∈ 𝐺 and thus

|PA

𝑢 ∩PA

𝑢′ | ≥ 2𝑛/3−𝜏AL
max

. By Lem. 6,PA

𝑢′ ⊆ Pa, thusP
A

𝑢 ∩PA

𝑢′ ⊆ Pa,
thus |PA

𝑢 ∩ Pa | ≥ 2𝑛/3 − 𝜏AL
max

, thus

∑
𝑝∈Pa 𝑀𝑝,𝑢 ≥ 2𝑛/3 − 𝜏AL

max
.

Since |U′ ∩ U
shl
| ≥ (1 − 𝑥 − 𝛿x) |U′ | (proof of Lem. 9), and

thus |U′ ∩ U𝑐
shl
| ≤ (𝑥 + 𝛿x) |U′ |, and 2𝑛/3 − 𝜏AL

max
≤ 𝑛/3 due to

𝑛/3 ≤ 𝜏AL
max

< 𝑛/2, ∑𝑝∈Pa
∑
𝑢∈U′ 𝑀𝑝,𝑢 ≥ (1 − 𝑥 − 𝛿x) |U′ |𝑛/3 +

(𝑥 + 𝛿x) |U′ | (2𝑛/3 − 𝜏ALmax
) = |U′ | (𝑛/3 + (𝑥 + 𝛿x) (𝑛/3 − 𝜏ALmax

)).
Since there are 𝑓 = |Pa | rows in 𝑀 , the average row weight

𝜇 of 𝑀 is 𝜇 ≜ |U′ | (𝑛/3 + (𝑥 + 𝛿x) (𝑛/3 − 𝜏ALmax
))/𝑓 . Note that for

every 𝑓 ≤ 𝜏AL
max

, 𝜇 > (𝑥 + 𝛿x) |U′ |, since 𝑥 + 𝛿x < 1/2. Consider the
function ℎ : Pa → {0, ..., |U′ |}, 𝑝 ↦→

∑
𝑢∈U′ 𝑀𝑝,𝑢 . Using Lem. 11,

|{𝑝 | ℎ(𝑝) ≤ (𝑥 + 𝛿x) |U′ |}| ≤
⌊
𝑓 −𝑛/3−(𝑥+𝛿x ) (𝑛/3−𝜏ALmax

)
1−𝑥−𝛿x

⌋
.
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Thus, the number of rows in 𝑀 with weight more than (𝑥 +
𝛿x) |U′ | is at least 𝑓 −

⌊
𝑓 −𝑛/3−(𝑥+𝛿x ) (𝑛/3−𝜏ALmax

)
1−𝑥−𝛿x

⌋
. The 𝑝 correspond-

ing to these rows satisfy the return condition of Alg. 4, ∃U′′ ⊆
U′ : (∀𝑢 ∈ U′′ : 𝑝 ∈ PA

𝑢 ) ∧ (|U′′ | > (𝑥 + 𝛿x) |U′ |), where we
recall that𝑀𝑝,𝑢 = 1 if 𝑝 ∈ PA

𝑢 , and 0 otherwise. □

C.5 Proof of Thm. 1
Proof of Thm. 1. Soundness. Suppose a certificate of guilt is

produced for node 𝑝 and time 𝑡 , according to the process of Fig. 2

and Secs. 4 and 5. And towards a contradiction, suppose 𝑝 ∈ P
h
.

Because 𝑓 ≤ 𝜏AL
max

< 𝑛/2, an honest node 𝑝′ has accused 𝑝 . Thus,
𝑝′ obtained 𝑝 ∈ P′ for P′ returned by 𝜓 . Since 𝑝′ is honest, 𝑝′

must have taken note of a potential timely-liveness violation in

Fig. 2. But by Lem. 9, under the given circumstances, no 𝑝 ∈ P
h
is

returned by Alg. 4. This is a contradiction, so 𝑝 ∈ Pa.
Completeness. Suppose an execution with a timely-liveness vi-

olation at 𝑡 . Then more than ⌊(𝑛 − 1)/3⌋ honest nodes have not
voted VoteLive for any of the views in V , and thus all honest

nodes have taken note of a potential timely-liveness violation

at 𝑡 in Fig. 2. Thus, all honest nodes apply 𝜓 , and by Lem. 10

and Rem. 2, and considering that 𝑓 ≤ 𝜏AL
max

, there is a set P′ with
|P′ | ≥ 𝜏AL

max
−

⌊ (1+𝑥+𝛿x ) (𝜏ALmax
−𝑛/3)

1−𝑥−𝛿x

⌋
so that for every honest node,

Alg. 4 as part of𝜓 returns a superset of P′. All honest nodes obtain
(a superset of) P′ from𝜓 by time 𝑡 +Δ′𝑔(Δ′), according to the pro-
cess of Fig. 2 and Secs. 4 and 5, and accuse all P′. By 𝑡 + 2Δ′𝑔(Δ′),
these accusations have propagated to all honest nodes, and since

honest nodes are a majority, they have produced a certificate of

guilt for P′. □

D Addendum Impossibility Results
A key step in establishing the impossibility of accountable liveness

is to obtain executions in which timely-liveness must be violated

for “reasonable” protocols. In this context, a useful consequence of

optimal resilience (cf. Def. 5) is that the liveness guarantee for such

protocols is tight in the sense that there must exist an execution

with 𝜏L + 1 crash faults in which timely-liveness is violated:

Lemma 12. If an atomic broadcast protocol is 𝜏S-safe under partial
synchrony and either 𝜏S > 0 or 𝑛 is even, then, under synchrony, some
execution with ⌈(𝑛 − 𝜏S)/2⌉ crash faults violates timely-liveness.

Proof. The argument proceeds analogously to the classical

“split-brain converse” [24]. Towards a contradiction, suppose Π
satisfies the conditions of Lem. 12, i.e., Π is 𝜏S-safe under partial syn-

chrony, but under (Δ, 𝑔, 𝑥)-partial-synchrony Π preserves timely-

liveness (in fact it suffices to consider traditional liveness) for all

except at most (⌈(𝑛 − 𝜏S)/2⌉ − 1) honest nodes in all executions

with ⌈(𝑛 − 𝜏S)/2⌉ crash faults. Note that 𝜏L ≤ (⌈(𝑛 − 𝜏S)/2⌉ − 1) is
the maximum liveness resilience that can be expected due to Def. 5.

Note that we can partition P into P1,P2,P3 with |P1 | = |P3 | =
⌈(𝑛 − 𝜏S)/2⌉ and |P2 | ≤ 𝜏S. Let tx1, tx2 be two high-entropy trans-

actions, so that Π cannot guess them, and they cannot have been

hard-coded into Π.
Execution 𝐸1: The nodes of P1 crash. The nodes of P2 ∪ P3

are honest. The network is synchronous. The environment inputs

tx1 into all nodes, and does not input tx2 into any node. Since Π is

assumed to preserve liveness for all except at most (⌈(𝑛−𝜏S)/2⌉−1)
honest nodes in all executions with ⌈(𝑛 − 𝜏S)/2⌉ crash faults under

synchrony and |P1 | = ⌈(𝑛 − 𝜏S)/2⌉ and |P3 | = ⌈(𝑛 − 𝜏S)/2⌉ >

⌈(𝑛 − 𝜏S)/2⌉ − 1, by some time 𝑡1, some (honest) node 𝑝3 ∈ P3 will
output a log containing tx1 and not containing tx2.

Execution 𝐸2: The nodes of P3 crash. The nodes of P1 ∪ P2
are honest. The network is synchronous. The environment inputs

tx2 into all nodes, and does not input tx1 into any node. Since Π is

assumed to preserve liveness for all except at most (⌈(𝑛−𝜏S)/2⌉−1)
honest nodes in all executions with ⌈(𝑛 − 𝜏S)/2⌉ crash faults under

synchrony and |P3 | = ⌈(𝑛 − 𝜏S)/2⌉ and |P1 | = ⌈(𝑛 − 𝜏S)/2⌉ >

⌈(𝑛 − 𝜏S)/2⌉ − 1, by some time 𝑡2, some (honest) node 𝑝1 ∈ P1 will
output a log containing tx2 and not containing tx1.

Execution 𝐸3: Before round max(𝑡1, 𝑡2), communication among

the nodes of P1 ∪ P2 is synchronous, and communication among

the nodes of P2 ∪P3 is synchronous, but any nodes 𝑝 ∈ P1, 𝑞 ∈ P3
cannot communicate (asynchrony). Such a delay satisfies partial

synchrony with GST = max(𝑡1, 𝑡2). The nodes of P1 ∪ P3 are

honest. The nodes of P2 behave like the “split-brain” adversary: To
the nodes of P1, they behave like the nodes P2 in 𝐸2. To the nodes

of P3, they behave like the nodes P2 in 𝐸1. The environment inputs

tx1 into all nodes of P2 ∪ P3, and tx2 to all nodes of P1 ∪ P2. Since
𝐸3 is indistinguishable from 𝐸1 until round max(𝑡1, 𝑡2) for the nodes
of P3, and 𝐸3 is indistinguishable from 𝐸2 until round max(𝑡1, 𝑡2)
for the nodes of P1, (honest) node 𝑝3 ∈ P3 (see 𝐸1) will output a log
containing tx1 and not containing tx2, and (honest) node 𝑝1 ∈ P1
(see 𝐸2) will output a log containing tx2 and not containing tx1.
This is a safety violation that contradicts the assumption that Π is

𝜏S-safe under partial synchrony, since |P2 | ≤ 𝜏S. □

D.1 Proof of Thm. 2
Proof of Thm. 2. Towards a contradiction, suppose Π satisfies

the conditions of Thm. 2 for period length Δ′ and is accountably

live with appropriate parameters. Pick any even 𝑛.

Execution 𝐸1: Consider an execution under synchrony where

the crash of the nodes in P1 with |P1 | = 𝑛/2 causes a timely-

liveness violation. Such an execution exists according to Lem. 12.

Let P2 ≜ P \ P1 behave honestly. Due to 𝜏AL
max
≥ 𝑛/2, 𝜏AL

ident
>

0, Π purportedly being accountably live, and the timely-liveness

violation, honest nodes will eventually produce a certificate of guilt

for one of the nodes in P1.
Execution 𝐸2: The roles of P1 and P2 are swapped compared to

𝐸1: P1 are now honest, and P2 are adversary. The adversary nodes

do not communicate with the honest nodes, but otherwise behave

like the honest nodes in 𝐸1.

Because the views (on the protocol execution) of the adversary

nodes in 𝐸2 are identical to those of the honest nodes in 𝐸1, the

adversary nodes will eventually produce a certificate of guilt for one

of the nodes inP1. But allP1 are honest in 𝐸2. This is a contradiction
to the definition of accountable liveness, as desired. □

D.2 Proof of Thm. 3
Proof of Thm. 3. Without loss of generality, we consider 𝑥 =

1/2. If 𝜏AL
max
≥ 𝑛/2, we are done by Thm. 2. Sowe assume 𝜏AL

max
< 𝑛/2.

Towards a contradiction, suppose protocolΠ satisfies the conditions
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Figure 3: Illustration of indistinguishable executions 𝐸𝐵, 𝐸𝐶 , 𝐸𝐴 = 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 used in the proof of Thm. 3. Nodes (with their
respective transaction input at round 0) are indicated on the vertical axis, time (from the beginning of round 0 to the beginning
of round Δ′𝑔(Δ′)) is indicated on the horizontal axis. Green/red bars at the edge of the rectangles indicate honest/adversary
nodes and synchronous/asynchronous rounds, respectively. Green/red arrows indicate communication between groups of nodes
that does/doesn’t occur. Red “Þ” indicates a network partition, “�Þ” indicates an adversary-emulated network partition.

of Thm. 3 for some period length Δ′. We require the mild regularity

condition that Δ′𝑔(Δ′) is an even number.

We proceed in two steps: (1)We describe three executions 𝐸𝐴 , 𝐸𝐵 ,

and 𝐸𝐶 that are indistinguishable in terms of which and when mes-

sages are received by honest nodes. We assume that timely-liveness

is violated (with a particular set of nodes that do not confirm) in

𝐸𝐴 (and due to indistinguishability also in 𝐸𝐵 and 𝐸𝐶 ). We then

show that if Π is accountably live with 𝜏AL
ident

> 0, then a certificate

of guilt must eventually be produced in 𝐸𝐵 for an adversary node,

but since 𝐸𝐵 and 𝐸𝐶 are indistinguishable, a certificate of guilt is

eventually produced in 𝐸𝐶 for the same node, but that node is hon-

est in 𝐸𝐶 . This is the contradiction, and thus such Π cannot exist.

(2) We show, using five executions 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, where 𝐸𝐴 = 𝐸1,

that due to the protocol being optimally-resilient, timely-liveness

must indeed be violated (with a particular set of nodes that do not

confirm) in 𝐸𝐴 , discharging the earlier assumption used in (1).

We start with (1). Partition P into P1,P2,P3 with |P1 | = 𝜏L+1 ≤
𝜏AL
max

, |P2 | = 𝜏L+1 ≤ 𝜏ALmax
, |P3 | = 𝑛−2(𝜏L+1) ≤ 𝜏S. See Fig. 3, which

illustrates all subsequently detailed executions from the beginning

of round 0 to the beginning of round Δ′𝑔(Δ′). For easy reference to
sets of rounds of the executions, let𝑇𝑖 ≜ 𝑖Δ

′𝑔(Δ′)/2 for 𝑖 ∈ {0, 1, 2},
T𝑖 ≜ [𝑇𝑖−1,𝑇𝑖 ) for 𝑖 ∈ {1, 2}, and T ≜ T1 ∪ T2.

Execution 𝐸𝐴 (cf. Fig. 3, “Execution 𝐸𝐴 = 𝐸1”): All nodes are in-

put tx at time 0. No other transactions are input. All nodes are

honest. The network is asynchronous during T (see Fig. 3), and

next-round-delay afterwards for all nodes (not shown in Fig. 3).

(By “next-round-delay” we mean every message arrives in the

next round of the model. Recall, the network delay bound is Δ
rounds.) During asynchrony, communication between any nodes

𝑝 ∈ P1, 𝑞 ∈ P2 is delayed until 𝑇2. During T1, communication in

P1 ∪ P3 is next-round-delay. All other communication is delayed

until𝑇1. During T2, communication in P2 ∪ P3 is next-round-delay.
All other communication is delayed until 𝑇2.

Note that we are not invoking accountable liveness in 𝐸𝐴 , and
therefore 𝐸𝐴 does not have to be 𝑥-partially-synchronous, and we

may (and do) assume that the network is asynchronous for the

entire T . We only assume (for the purposes of part (1), and this

assumption is subsequently discharged in part (2)) that there is a

timely-liveness violation in 𝐸𝐴 . More specifically, we assume that

tx is not confirmed by any honest node 𝑝1 ∈ P1 by the end of T in

𝐸𝐴 .

Execution 𝐸𝐵 (cf. Fig. 3): All nodes are input tx at time 0. No

other transactions are input. Nodes in P1 ∪ P3 are honest. Nodes
in P2 are adversary. The network is asynchronous during T2, and
otherwise has next-round-delay for all nodes. During T , adversary
nodes in P2 delay the sending to and receiving from nodes in P1
until𝑇2. During T1, adversary nodes in P2 also delay the sending to
and receiving from nodes in P3 until𝑇1. During T2, adversary nodes
in P2 communicate with nodes in P3 using next-round-delay (and

the network asynchrony allows this). During network asynchrony,

communication between any node 𝑝 ∈ P1 and any node outside P1
is delayed until 𝑇2. After 𝑇2, the adversary nodes behave honestly.
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Execution 𝐸𝐶 (cf. Fig. 3): All nodes are input tx at time 0. No

other transactions are input. Nodes in P2 ∪ P3 are honest. Nodes
in P1 are adversary. The network is asynchronous during T1, and
otherwise has next-round-delay for all nodes. During T , adversary
nodes in P1 delay the sending to and receiving from nodes in P2
until𝑇2. During T2, adversary nodes in P1 also delay the sending to
and receiving from nodes in P3 until𝑇2. During T1, adversary nodes
in P1 communicate with nodes in P3 using next-round-delay (and

the network asynchrony allows this). During network asynchrony,

communication between any node 𝑝 ∈ P2 and any node outside P2
is delayed until 𝑇1. After 𝑇2, the adversary nodes behave honestly.

Note that 𝐸𝐴, 𝐸𝐵, 𝐸𝐶 are indistinguishable to honest nodes be-

cause they receive the same messages at the same rounds dur-

ing each of the executions. Recall that we have assumed a timely-

liveness violation in 𝐸𝐴 , where for every 𝑝 ∈ P1, tx ∉ Λ
𝑝

Δ′𝑔 (Δ′ )−1,
i.e., 𝑝 has not confirmed tx by the end of T in 𝐸𝐴 . So there must

be a timely-liveness violation in 𝐸𝐵 , and eventually a message

is produced in 𝐸𝐵 that identifies an adversary node 𝑝′ ∈ P2 as

guilty for the timely-liveness violation, because Π is assumed to

be accountably live with 𝜏AL
ident

> 0. Then, due to 𝐸𝐵 and 𝐸𝐶 be-

ing indistinguishable in terms of which and when messages are

produced, eventually a message is produced in 𝐸𝐶 that identifies

𝑝′ ∈ P2 as guilty for a timely-liveness violation. (Note that there

was no timely-liveness violation in 𝐸𝐶 because P1 are adversary in

𝐸𝐶 . Regardless, due to the indistinguishability of 𝐸𝐵 and 𝐸𝐶 , honest

nodes go along with the adversary nodes to eventually produce a

certificate of guilt for 𝑝′ ∈ P2 in 𝐸𝐶 .) But that is a contradiction
because P2 are honest in 𝐸𝐶 .

We now proceed to (2), showing that 𝐸𝐴 must indeed have a

timely-liveness violation (namely where none of P1 confirms) if

Π is optimally-resilient. We consider five executions 𝐸1, 𝐸2, 𝐸3, 𝐸4,

𝐸5, where 𝐸𝐴 = 𝐸1, see Fig. 3.

Execution 𝐸1 (cf. Fig. 3, “Execution 𝐸𝐴 = 𝐸1”): All nodes are in-

put tx at time 0. No other transactions are input. All nodes are

honest. The network is asynchronous during T , and next-round-

delay afterwards for all nodes. During asynchrony, communication

between any nodes 𝑝 ∈ P1, 𝑞 ∈ P2 is delayed until 𝑇2. During T1,
communication in P1 ∪ P3 is next-round-delay. All other commu-

nication is delayed until 𝑇1. During T2, communication in P2 ∪ P3
is next-round-delay. All other communication is delayed until 𝑇2.

Execution 𝐸2 (cf. Fig. 3): All nodes are input tx′ at time 0. No

other transactions are input. All nodes are honest. The network

is asynchronous during T , and next-round-delay afterwards for

all nodes. During asynchrony, communication between any nodes

𝑝 ∈ P1, 𝑞 ∈ P2 is delayed until 𝑇2. During T1, communication in

P2 ∪ P3 is next-round-delay. All other communication is delayed

until𝑇1. During T2, communication in P1 ∪ P3 is next-round-delay.
All other communication is delayed until 𝑇2.

Execution 𝐸3 (cf. Fig. 3): Same as 𝐸1, except nodes P2 are input
tx′ at time 0.

Execution 𝐸4 (cf. Fig. 3): Same as 𝐸2, except nodes P1 are input
tx at time 0.

Execution 𝐸5 (cf. Fig. 3): Nodes P1 are input tx, nodes P2 are

input tx′, and nodes P3 are input tx, tx′ at time 0. Nodes P1 ∪ P2
are honest. Nodes P3 are adversary. The network is asynchronous

during T , and next-round-delay afterwards for all nodes. During

asynchrony, communication between any nodes 𝑝 ∈ P1, 𝑞 ∈ P2
is delayed until 𝑇2. During T1, communication in P2 ∪ P3 is next-
round-delay and communication in P1 ∪ P3 is next-round-delay.
All other communication is delayed until 𝑇2. Nodes P3 perform a

split-brain attack, behaving to P1 like in 𝐸3 and to P2 like in 𝐸4.
Towards a contradiction, assume that there is no timely-liveness

violation in 𝐸1 and in 𝐸2 where none of P1 and none of P2 confirm
tx and tx′, respectively, i.e., by time Δ′𝑔(Δ′), some honest node

𝑝1 ∈ P1 has confirmed tx and not confirmed tx′ in 𝐸1 (because

they had no way of knowing tx′ which is assumed to be high-

entropy), and some honest node 𝑝2 ∈ P2 has confirmed tx′ and not
confirmed tx in 𝐸2 (because they had no way of knowing tx which
is assumed to be high-entropy). (If either 𝐸1 or 𝐸2 has a timely-

liveness violation where either none of P1 or none of P2 confirm,

we can take that as 𝐸𝐴 and adjust (1) accordingly and we are done—

which is hinted in Fig. 3 with executions 𝐸𝐵′ , 𝐸𝐶′ .) Note that from

the perspective of the nodes P1, 𝐸1 and 𝐸3 are indistinguishable
until 𝑇2, thus 𝑝1 ∈ P1 confirms tx in 𝐸3 and does not confirm

tx′ in 𝐸3 by time Δ′𝑔(Δ′). Note that from the perspective of the

nodes P2, 𝐸2 and 𝐸4 are indistinguishable until 𝑇2, thus 𝑝2 ∈ P2
confirms tx′ in 𝐸4 and does not confirm tx in 𝐸4 by time Δ′𝑔(Δ′).
Note also that from the perspective of the nodes P1, 𝐸3 and 𝐸5 are
indistinguishable until𝑇2, and from the perspective of the nodes P2,
𝐸4 and 𝐸5 are indistinguishable until 𝑇2. Thus, 𝑝1 ∈ P1 confirms

tx in 𝐸5 and does not confirm tx′ in 𝐸5 by time Δ′𝑔(Δ′). Likewise,
𝑝2 ∈ P2 confirms tx′ in 𝐸5 and does not confirm tx in 𝐸5 by time

Δ′𝑔(Δ′). Since both 𝑝1 and 𝑝2 are honest in 𝐸5, this constitutes a
safety violation, even though |P3 | ≤ 𝜏S in 𝐸5, giving the required
contradiction. Thus, there must be a timely-liveness violation in

either 𝐸1 or 𝐸2 where either none of P1 or none of P2 confirm, and

we can use that as 𝐸𝐴 in (1). □

D.3 Proof of Thm. 4
Proof of Thm. 4. Towards a contradiction, suppose for some

𝑘 ≥ 3, Alg. 1 with some liveness accountability mechanism satisfies

the conditions of Thm. 4 for 𝑥 = 1/𝑘 (which is without loss of

generality) with (𝜏AL
ident
−1) ≥ (𝜏L +1) −

⌊
𝜏AL
max
−(𝜏L+1)
𝑘−2

⌋
. Then P can

be partitioned into P0,P1, ...,P𝑘 ,P𝑘+1, such that |P0 | = 𝜏AL
ident
− 1,

|P𝑖 | =
⌊
𝜏AL
max
−(𝜏L+1)
𝑘−2

⌋
for 𝑖 ∈ {1, ..., 𝑘}, |P𝑘+1 | = 𝑛 − ∑𝑘

𝑖=0 |P𝑖 |.
Note that for every 𝑖 ∈ {1, ..., 𝑘}, |P0 | + |P𝑖 | ≥ 𝜏L + 1 > 𝜏L, and

|P0 | +
∑𝑘−1
𝑖=0 |P𝑖 | ≤ 𝜏ALmax

, |P0 | < 𝜏AL
ident

.

We require the mild regularity condition that 𝑘 divides Δ′𝑔(Δ′).
Partition the first Δ′𝑔(Δ′) rounds into 𝑘 equally-sized intervals

T𝑖 for 𝑖 ∈ {1, ..., 𝑘}: Let 𝑇𝑖 ≜ 𝑖Δ′𝑔(Δ′)/𝑘 for 𝑖 ∈ {0, ..., 𝑘}, T𝑖 ≜
[𝑇𝑖−1,𝑇𝑖 ) for 𝑖 ∈ {1, ..., 𝑘}, and T ≜

⋃𝑘
𝑖=1 T𝑖 .

Now consider the executions 𝐸𝑘,𝑖 for 𝑖 ∈ {1, ..., 𝑘} (see Fig. 4 for
an illustration), where in the 𝑖-th execution the following holds: P0
are crashed, P𝑘+1 are honest, P𝑖 are honest, and all other nodes

are adversary. All nodes are input a high-entropy transaction tx
at round 0. Furthermore, T𝑘−𝑖+1 is asynchronous, the remaining

rounds are next-round-delay. During asynchrony, messages to,

from, and within P𝑖 are delayed until the end of asynchrony; all

other messages have next-round-delay. For every 𝑗 ∈ {1, ..., 𝑘} \ {𝑖},
the non-crashed adversary nodes in P𝑗 behave during T𝑘− 𝑗+1 as
if messages to, from, and within P𝑗 are delayed until the end of
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Figure 4: Illustration of indistinguishable executions used in Thm. 4, for 𝑘 = 3 and 𝑘 = 4. See caption of Fig. 3 for legend. Red
“��” indicates adversary-emulated crashed nodes.

T𝑘− 𝑗+1, i.e., they delay processing incoming messages and sending

messages until the end of T𝑘− 𝑗+1. Other than the extra delay, adver-

sary nodes follow the protocol. Observe that all executions 𝐸𝑘,𝑖 for

𝑖 ∈ {1, ..., 𝑘} are indistinguishable from the perspective of honest

nodes in terms of which messages they receive and when.

Observe that in every execution 𝐸𝑘,𝑖 , according to Alg. 1, tx is not
confirmed by any of the honest nodes by 𝑇𝑘 , i.e., by the beginning

of round Δ′𝑔(Δ′). This is because for every view 𝑣 before Δ′𝑔(Δ′),
the following holds (let 𝑡𝑣 ≜ 12Δ𝑣): The block 𝑏𝑣 proposed by 𝐿𝑣
at 𝑡𝑣 + 2Δ (Alg. 1, ln. 13) reaches, by 𝑡𝑣 + 4Δ, only 𝐿𝑣 (if for some

𝑗 ∈ {1, ..., 𝑘}, 𝑡𝑣 ∈ T𝑘− 𝑗+1 and 𝐿𝑣 ∈ P0 ∪ P𝑗 ) or less than 𝑛 − 𝜏L
nodes (otherwise). In any case, 𝑏𝑣 reaches at most 2𝑛/3 nodes (since
𝜏L = ⌊(𝑛 − 1)/3⌋ for Alg. 1, cf. Lem. 2) by 𝑡𝑣 + 4Δ. But no node

votes stage-1 for 𝑏𝑣 after 𝑡𝑣 + 4Δ (Alg. 1, ln. 17). As a result, at most

2𝑛/3 stage-1 votes are ever produced for 𝑏𝑣 according to Alg. 1, and
thus no stage-1 QC is ever produced for 𝑏𝑣 , and thus 𝑏𝑣 is never

confirmed (Alg. 1, ln. 8). This implies a timely-liveness violation.

Recall that Alg. 1 was assumed to be equipped with a liveness

accountability mechanism that would render it accountably live

with sensitivity 𝜏AL
ident

, so in all of the executions 𝐸𝑘,𝑖 (for our pur-

poses here it suffices that this is the case in one of the executions),

eventually, a proof of guilt is produced for 𝜏AL
ident

adversary nodes.

Since |P0 | = 𝜏AL
ident
− 1 < 𝜏AL

ident
, it follows that there must be a proof

of guilt for some node not in P0. But then by indistinguishability

of the executions, there is an execution among the 𝐸𝑘,𝑖 where that

node is honest, yet a certificate of guilt is produced for that node.

This is the desired contradiction. □

D.4 Proof of Thm. 5
Proof of Thm. 5. We follow the steps of the proof of Thm. 4.

Only the network delay (both real and adversary-emulated) in the

executions 𝐸𝑘,𝑖 is slightly adjusted to leverage the now-or-never

property.

Partition the first Δ′𝑔(Δ′) rounds into equally-sized intervals

T (𝑣) of length Δ′′. This is possible because Δ′′ divides Δ′𝑔(Δ′)/𝑘
by assumption. Consider the executions 𝐸𝑘,𝑖 of the proof of Thm. 4.

The adversary nodes in P0 no longer crash. During asynchrony,

within each T (𝑣) , messages to, from, and withinP𝑖∪P0 are delayed
until the end of T (𝑣) . For every 𝑗 ∈ {1, ..., 𝑘} \ {𝑖}, the non-crashed
adversary nodes in P𝑗 ∪ P0 behave during T𝑘− 𝑗+1, within each

T (𝑣) , as if messages to, from, and within P𝑗 ∪ P0 are delayed until
the end of T (𝑣) . Observe that all executions 𝐸𝑘,𝑖 for 𝑖 ∈ {1, ..., 𝑘}
are still indistinguishable from the perspective of honest nodes in

terms of which messages they receive and when.

In every execution 𝐸𝑘,𝑖 and every T (𝑣) , ⌈𝑛/3⌉ nodes are parti-
tioned off temporarily until the end of T (𝑣) . Thus, by the now-or-

never property, tx is not confirmed by any of the honest nodes by

𝑇𝑘 , i.e., by the beginning of round Δ′𝑔(Δ′). This implies a timely-

liveness violation. The rest of the proof proceeds as in the proof of

Thm. 4. □

E Additional Related Work
We survey additional related works beyond those discussed in Sec. 7.

Achieving consensus among distributed nodes is a decades-old prob-

lem, traditionally defined by two fundamental properties: safety
and liveness [16, 17]. Safety ensures that honest nodes never di-

verge on decided values, while liveness guarantees that decisions

19



Andrew Lewis-Pye, Joachim Neu, Tim Roughgarden, and Luca Zanolini

are eventually reached, all despite possible asynchrony and up to a

threshold of adversary nodes.

Accountable Safety. With the advent of blockchain technology,

and in particular proof-of-stake (PoS) protocols, a stronger notion

of safety called accountable safety has emerged [10, 14, 19, 28, 29, 37–

39, 43–45]. While accountable safety keeps the traditional require-

ment that decisions remain consistent under an adversarial thresh-

old, it also allows to identify specific misbehaving nodes in the event

of a safety violation. This property is especially powerful in PoS

settings, where such identification can trigger financial penalties

(slashing [14]) on adversary nodes, thus creating strong economic

incentives to follow the protocol [12, 43].

A key challenge arises when extending accountable safety to

systems with dynamic participation [33]. A recent work [38] for-

malizes an availability-accountability dilemma, proving that no

protocol can remain fully accountably-safe while also guarantee-

ing liveness if the active set of nodes fluctuates like in the sleepy

model [40]. Neu et al. design an accountability gadget that check-

points a longest-chain protocol and can be combined with any BFT

protocol providing accountable safety under static participation,

thus addressing this dilemma in practical settings.

Slashing. While existing PoS protocols with accountable safety

can identify adversary nodes, they do not always ensure that those

nodes’ stakes are actually slashed—thereby falling short of pro-

viding slashable safety. In particular, adversary nodes can exploit

posterior corruption attacks by reusing previously held stakes after

withdrawal, making slashing ineffective [22]. To address this gap,

Tas et al. [49, 50] and Azouvi and Vukolić [6] propose leveraging

Bitcoin [36] as a checkpointing mechanism, anchoring critical PoS

states within Bitcoin’s immutable ledger. This design prevents ad-

versary nodes from rewriting or invalidating older blocks—thereby

circumventing long-range attacks—once the stake is withdrawn.

Simultaneously, if a safety violation is detected in recent PoS blocks,

the protocol can identify and slash the responsible nodes.

Recovery Mechanisms. Another important aspect of accountable

safety involves recovery following a slashable event. In blockchain

systems like Ethereum, for instance, a major slashing often relies on

social consensus to coordinate recovery—potentially including hard

forks to stabilize the network. To formalize and automate this pro-

cess, Lewis-Pye and Roughgarden [34] propose a wrapper approach
that runs an execution of an accountably-safe, optimally-resilient

SMR protocol until a consistency violation occurs. When this oc-

curs, the wrapper initiates a recovery procedure to reach consensus

on a set of adversary nodes for which proof of misbehavior exists,

along with a long initial segment of the log generated by, below

which no consistency violations have been detected. The wrap-

per then restarts the protocol with the adversary nodes removed.

Gong et al. [27] further explore recovery under alive-but-corrupt

nodes and partial synchrony. These works mark initial steps toward

automating post-slashing recovery.

Responsive and Network Adaptive Protocols. Responsive synchro-
nous protocols [3, 41] operate under synchrony assumptions but can

improve their latency if actual message delivery happens to be faster

than the network’s delay bound. For instance, Thunderella [41]

achieves near-instant confirmation via an asynchronous fast path

under favorable conditions but falls back to a slow synchronous

path if responsiveness fails, ensuring safety and liveness. These pro-

tocols leverage a fast path to achieve low latency when the network

is responsive while falling back to a conservatively timed execution

when conditions degrade. While such protocols do not achieve full

partial-synchrony safety (i.e., safety under arbitrarily long message

delays), for any 𝑥 < 1, the implied synchronous model allows them

to operate at the Δ∗ time scale when network conditions are not

optimal, benefiting from the fast path whenever possible. On the

other hand these protocols have a tradeoff between resilience on

the responsive fast path and the synchronous fallback. A sequence

of works [7–9] explored whether it is possible to design Byzantine-

fault tolerant protocols that tolerate more than one-third Byzantine

faults under synchrony, while still ensuring resilience to a certain

fraction of faults—ideally up to one-third—in asynchrony or partial

synchrony (the fast path). Their results establish that a BFT protocol

can simultaneously tolerate 𝑓a < 𝑛
3
faults under asynchrony and

𝑓a ≤ 𝑓s < 𝑛
2
faults under synchrony, if and only if the condition

2𝑓s + 𝑓a < 𝑛 holds. Momose and Ren [35] further demonstrate that

it is possible to separate fault tolerance thresholds for different

timing models and for safety and liveness. Specifically, they show

that safety under synchrony can be improved while still preserving

other fault thresholds, including liveness under synchrony and both

safety and liveness under asynchrony.
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