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Abstract—In the context of cloud computing, services are
held on cloud servers, where the clients send their data to the
server and obtain the results returned by server. However, the
computation, data and results are prone to tampering due to the
vulnerabilities on the server side. Thus, verifying the integrity
of computation is important in the client-server setting. The
cryptographic method known as Zero-Knowledge Proof (ZKP)
is renowned for facilitating private and verifiable computing.
ZKP allows the client to validate that the results from the
server are computed correctly without violating the privacy of
the server’s intellectual property. Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zkSNARKs), in particular,
has been widely applied in various applications like blockchain
and verifiable machine learning. Despite their popularity, existing
zkSNARKs approaches remain highly computationally intensive.
For instance, even basic operations like matrix multiplication
require an extensive number of constraints, resulting in significant
overhead. In addressing this challenge, we introduce zkVC, which
optimizes the ZKP computation for matrix multiplication, enabling
rapid proof generation on the server side and efficient verification
on the client side. zkVC integrates optimized ZKP modules, such
as Constraint-reduced Polynomial Circuit (CRPC) and Prefix-Sum
Query (PSQ), collectively yielding a more than 12-fold increase
in proof speed over prior methods. The code is available at
https://github.com/UCF-Lou-Lab-PET/zkformer.

Index Terms—Private and Verifiable Computing, Zero-
Knowledge Proof, Machine Learning

I. Introduction

Zero-knowledge proof (ZKP) [1], [2] is a cryptographic
primitive that enables a prover to convince a verifier of the
correctness of a computation without revealing the prover’s
secret input. ZKP ensures that a proof passes verification only
if the computation was performed correctly, guaranteeing both
verifiability and privacy. By providing strong guarantees on the
integrity of computations while preserving the privacy of the
server’s input, ZKP has found broad applications in domains
where computational integrity is critical, such as blockchain
and verifiable machine learning.

In Figure 1, we illustrate one use case of ZKP in verifiable
machine learning. ZKP allows the owner of a proprietary ma-
chine learning model, prover, to prove to the users, verifier, that
predictions have been accurately computed by the pre-trained
model, without compromising the model’s confidentiality. As
depicted, the client-side verifier first sends input data 𝑋 to the
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server, where the server’s prover performs the neural network
inference 𝑓 (𝑋,𝑊) to output a prediction. ZKP is then used to
generate a proof for this inference, ensuring 𝑓 (𝑋,𝑊)’s validity
without revealing the model weights, enabling the client to
verify the proof.

Server

Input 𝑿

Client

Model 𝑾
Zero Knowledge Proof 

Verification

𝑿

𝒇(𝑿,𝑾) proof: 𝒇 (𝑿,𝑾)	is true! 𝑾	is not disclosed

Fig. 1: Example of use case in verifiable and private neural
network inference based on Zero-knowledge Proof (ZKP).

While promising, ZKP often leads to large computation
overhead in practice, especially when proving matrix multi-
plication. Proving a single matrix multiplication of dimension
[49, 320] × [320, 512] on a 16-Core CPU with a commonly
used ZKP scheme [2] known for efficiency, can take up to ∼ 3
minutes. Matrix multiplication is a fundamental operation in
numerous applications, including data analysis and machine
learning. However, the inefficiencies in current ZKP frameworks
make it impractical to directly scale them for real-world
scenarios involving massive matrix multiplications. For instance,
Transformer-based models [3], [4], widely used in machine
learning, rely heavily on extensive matrix multiplications.
Proving the correctness of a single inference using a ViT-Base
model [4] on the ImageNet dataset [5] results in prohibitively
high computational costs, rendering such approaches infeasible.

A series of works have explored how to scale up ZKP-based
verifiable computations for real-world applications [6]–[9],
where many of them are built upon zk-SNARKs. zk-SNARKs
is a branch of general ZKP, which features short proof sizes,
fast verification, and non-interactivity and is suitable for cloud
computing. The main challenge in reducing the overhead of
zk-SNARKs is to reduce the number of constraints. Recent
works [6], [9] reduce proving complexity by expressing convolu-
tion as polynomial multiplication within a polynomial quadratic
arithmetic program (QAP). However, their optimization highly
depends on the convolution’s unique feature, which cannot
directly extend to general matrix multiplication. The efficient
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Fig. 2: The workflow of zero-knowledge proof systems.

construction of zk-SNARKs for matrix multiplication remains
an open problem.

Proving the correctness of matrix multiplication begins
by transforming it into an arithmetic circuit, which is then
represented as a QAP. The efficiency of zk-SNARKs relies
heavily on the complexity of the QAP, determined by two
key factors: (1) the number of constraints, dictated by the
multiplication gates in the arithmetic circuit, which also defines
the degree of the constraint system, and (2) the number of
variables, corresponding to the length of a full assignment to
the circuit. Previous work [6] proposed reducing the number of
constraints in convolution operations by introducing additional
variables, referred to as dummy terms. However, directly
applying this approach to matrix multiplication significantly
increases the variable count, reducing overall efficiency. Notably,
similar to the construction in vCNN [6], our verification process
remains succinct and is largely independent of the complexity
of the original computation.
Our Contributions. This paper introduces zkVC, an efficient
zk-SNARK construction tailored for general operations such
as matrix multiplication and their applications in machine
learning, including attention-based Transformers. We propose
Constraint-Reduced Polynomial Circuits (CRPC) to min-
imize the constraints required for matrix multiplication in
ZKP. By transforming matrix multiplication into polynomial
multiplication represented in a quadratic arithmetic program
(QAP), CRPC reduces the number of constraints from 𝑂 (𝑛3)
to 𝑂 (𝑛). Additionally, we introduce Prefix-Sum Query (PSQ),
a technique that reduces the number of variables by optimizing
the circuit for product accumulation in matrix multiplication.
Experimental results demonstrate that the combination of CRPC
and PSQ achieves a 12× improvement in proving time for
matrix multiplication compared to prior methods. Furthermore,
we apply zkVC to verifiable Transformer inference, achieving
over a 15× runtime reduction on ViT models compared to
baselines without our optimizations.

II. Background and Motivation

ZKP Systems. ZKP is a cryptographic protocol enabling a
prover P to assure a verifier V of a statement’s truth without
disclosing anything beyond its validity. In verifiable neural
networks, it lets a model owner P confirm the accuracy of a
neural network inference to a client V. Figure 2 outlines a
ZKP system’s process. To prove a computation like 𝑦 = (𝑥1 +
𝑤) · (𝑥2+𝑤), it is first translated into an arithmetic circuit using
addition and multiplication gates. This circuit is then converted

TABLE I: The comparison between zkVC and prior verifiable
DNN methods including SafetyNets [14], Keuffer’s [15],
vCNN [6] , VeriML [16], ZEN [17] , zkCNN [7], zkML [8]
and pvCNN [9].

Schemes zk.
Non- Const. No Trusted Trans- Efficient zk-ML
Inter. Proof Setup formers MatMult Codesign

SatetyNets X X X ✓ X X X
zkCNN ✓ X X ✓ X X X

Keuffer’s ✓ ✓ ✓ X X X X
vCNN ✓ ✓ ✓ X X X X

VeriML ✓ ✓ ✓ X X X X
ZEN ✓ ✓ ✓ X X X X
zkML ✓ ✓ X X X X X

pvCNN ✓ ✓ ✓ X X X X
zkVC ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 3: Proving Time Comparison for Matrix Multiplication
with Prior Work.
into a constraint system, such as the Rank-1 Constraint System
(R1CS) [1], which generalizes arithmetic circuit satisfiability.
In R1CS, additions are represented by row vectors, for instance,
[0, 1, 0, 1] for (𝑥1+𝑤), while multiplications are encoded using
element-wise products. Therefore, proving the original compu-
tation’s correctness equals satisfying the R1CS. Efficient R1CS
checking involves encoding it into polynomials. Schemes like
[1], [2] use Quadratic Arithmetic Programs (QAP) to encode
R1CS, derived through polynomial interpolation on R1CS
instances. Other approaches employ univariate polynomials
[10], [11] or multivariate polynomials [12], [13] for encoding.

The verification of R1CS or its polynomial equations requires
specific cryptographic tools like groth16 [2] or Spartan [13].
groth16, a widely-used ZKP construction, employs probabilis-
tically checkable proofs (PCPs) and elliptic curve pairings for
QAP verification. Spartan, on the other hand, uses Interactive
Oracle Proof (IOP) [18] and polynomial commitment schemes
[19] for multivariate polynomial checks, notably without
requiring a trusted setup. A ZKP construction consists of
three Probabilistic Polynomial Time (PPT) algorithms: Gen,
Prove, and Verify. Gen creates public parameters from security
parameters. Prove uses these parameters, public and private
inputs, to produce a proof. Verify, using the public parameters,
input, and proof, decides its validity. ZKP ensures proof
completeness and soundness, meaning correct computations
pass verification, and it is computationally hard for a dishonest
prover to validate incorrect computations.
Homomorphic Encryption for Private Computation. Ho-
momorphic encryption (HE) enables computations directly
on encrypted data, removing the need for decryption and
thus supporting privacy-preserving outsourcing of computa-
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Fig. 4: Comparison of (a) basic constraint circuits with 12 multiplications and our (b) CRPC with 2 multiplications by
transforming original matrix multiplication into polynomial multiplications of an intermediate variable 𝑍 .

tions [20]–[23]. However, HE alone does not inherently offer
computational verifiability as ZKP do [24], [25]. Conversely,
while ZKP ensures computational integrity, it lacks the data
privacy guarantees provided by HE [26]–[29].
Comparison with Related Work. Table I shows the com-
parison of our zkVC and related works. SafetyNets [14]
lacks zero-knowledge properties, leaving model weight privacy
unprotected. Only SafetyNets and zkCNN [7] are interactive,
necessitating ongoing communication between prover and
verifier. Interactive ZKPs offer quicker proving times but
require ongoing exchanges between the prover and verifier.
While zero-knowledge polynomial commitment [30] and the
Fiat-Shamir heuristic [31] could theoretically make these non-
interactive, their security and efficiency impacts are unclear.
The need for constant connectivity in interactive setups is
a limitation, particularly for clients with limited hardware
and power resources [17]. Table I’s third column indicates
that in SafetyNets, zkCNN, and zkML’s [8], proof size grows
logarithmically with model size, increasing verifier workload.
Other schemes maintain a constant proof size. Non-interactive
schemes generally require a trusted setup for public parameter
generation, but interactive ones like SafetyNets and zkCNN
do not. zkVC, using transparent zk-SNARKs such as Spartan,
also bypasses the need for a trusted setup. Previous research
concentrated solely on CNNs, while zkVC focuses on general
matrix multiplication, introducing efficient modules for proving
matrix multiplication.
Motivation. Matrix multiplication is essential in many applica-
tions but challenging to prove using ZKP. Figure 3 shows that
in prior vCNN [6], proving a small matrix multiplication of di-
mension [49, 64]×[64, 128] takes as long as 9 seconds. Despite
ZEN [17] introducing advanced quantization and zkML’s [8]
using a more efficient ZKP method, their improvements in
matrix multiplication speed are still limited. This motivates
us to design efficient ZKP modules for matrix multiplication.
The proposed zkVC achieves a 12.5× reduction in proof time
compared to the previous vCNN.

III. zkVC Design

A. Constraint-reduced Polynomial Circuits (CRPC)
Matrix multiplication plays a foundational role in various

computational tasks, but its efficient representation in QAP
remains challenging. As in Figure 4 (a), in vanilla QAP, every

individual multiplication requires a distinct constraint. As every
𝑦𝑖 𝑗 is a dot product between a row vector of 𝑋 and a column
vector of 𝑊 , we have 𝑦00 = 𝑥00 · 𝑤00 + 𝑥01 · 𝑤10, ... and
𝑦21 = 𝑥20 ·𝑤01 + 𝑥21 ·𝑤11, where 12 multiplications result in 12
constraints in the QAP. Consider the matrix multiplication 𝑌 =

𝑋 ×𝑊 where 𝑋 ∈ R𝑎×𝑛, 𝑊 ∈ R𝑛×𝑏 and 𝑌 ∈ R𝑎×𝑏. Our insight
is that the products in {𝑥𝑖𝑘 · 𝑤𝑘 𝑗 }𝑛−1

𝑘=0 for 𝑦𝑖 𝑗 can be encoded
in polynomial multiplications. One intuitive transformation is:

(𝑦00 + 𝑦01 + 𝑦10 + 𝑦11 + 𝑦20 + 𝑦21)
= (𝑥00 + 𝑥10 + 𝑥20) · (𝑤00 + 𝑤01)
+ (𝑥01 + 𝑥11 + 𝑥21) · (𝑤10 + 𝑤11)

When matrix multiplication is satisfied, the above equation is
also satisfied. However, the converse is not guaranteed. It is
possible that the sum of all 𝑦𝑖 𝑗 is correct while individual 𝑦𝑖 𝑗
is not. Essentially, this transformation ensures completeness
but compromises the soundness required by zk-SNARKs.

As prior work’s approach [6] suggests, it is possible to
encode the matrix multiplication in one single polynomial
multiplication, if the coefficients are properly arranged. Another
possible transformation is:

(𝑍1𝑦00 + 𝑍3𝑦01 + 𝑍5𝑦10 + 𝑍7𝑦11 + 𝑍9𝑦20 + 𝑍11𝑦21)
≠ (𝑍1𝑥00 + 𝑍0𝑥01 + 𝑍5𝑥10 + 𝑍4𝑥11 + 𝑍9𝑥20 + 𝑍8𝑥21)

· (𝑍0𝑤00 + 𝑍2𝑤01 + 𝑍1𝑤10 + 𝑍3𝑤11)

where 𝑦00 = 𝑥00 ·𝑤00 + 𝑥01 ·𝑤10 is incorporated within 𝑍1𝑦00 =

𝑍1 (𝑥00 · 𝑤00 + 𝑥01 · 𝑤10). However, this transformation is not
strictly equivalent. Firstly, the equation itself is not satisfied.
The polynomial multiplication results in a lot of superfluous
terms such as 𝑍0𝑥01𝑤01, which does not belong to any 𝑦𝑖 𝑗 .
Secondly, to equate the two sides, all these dummy terms need
to be included, which leads to increased number of variables
and makes the circuit hard to prove.

While the above two transformations can reduce the number
of multiplications, they cannot ensure the integrity of matrix
multiplication. We propose CRPC to address this issue. Our
insight is that the products in {𝑥𝑖𝑘 ·𝑤𝑘 𝑗 }𝑛−1

𝑘=0 for 𝑦𝑖 𝑗 result only
from the multiplications between elements in the 𝑘𝑡ℎ column
in 𝑋 and elements in 𝑘𝑡ℎ row in 𝑊 . As shown in Figure 4
(b), we transform each column of 𝑋 and each row of 𝑊 into
polynomials of a random intermediate variable Z, for example,
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(b) Lightweight left wires in PSQ

Fig. 5: Comparison: (a) traditional long addition with 6 left-wire variables vs. (b) our PSQ using only 3 variables.

the first column of 𝑋 is 𝑋0 (𝑍) = 𝑍0𝑥00 + 𝑍2𝑥10 + 𝑍4𝑥20. The
matrix 𝑌 is converted accordingly. We have:

(𝑍0𝑦00 + 𝑍1𝑦01 + 𝑍2𝑦10 + 𝑍3𝑦11 + 𝑍4𝑦20 + 𝑍5𝑦21)
= (𝑍0𝑥00 + 𝑍2𝑥10 + 𝑍4𝑥20) · (𝑍0𝑤00 + 𝑍1𝑤01)
+ (𝑍0𝑥01 + 𝑍2𝑥11 + 𝑍4𝑥21) · (𝑍0𝑤10 + 𝑍1𝑤11)

where only 2 multiplications are needed. We generalize CRPC’s
transformation for matrix multiplication 𝑌 𝑎×𝑏 = 𝑋𝑎×𝑛 ×𝑊𝑛×𝑏

as:
𝑏−1∑︁
𝑗=0

𝑎−1∑︁
𝑖=0

𝑍 𝑖𝑏+ 𝑗 𝑦𝑖 𝑗 =
𝑛−1∑︁
𝑘=0

(
𝑎−1∑︁
𝑖=0

𝑍 𝑖𝑏𝑥𝑖𝑘

) ©­«
𝑏−1∑︁
𝑗=0

𝑍 𝑗𝑤𝑘 𝑗
ª®¬

where only 𝑛 constraints are needed, where as 𝑎 ·𝑏 ·𝑛 constraints
are needed in vanilla circuits.

Polynomial multiplication offers significant advantages in
computational efficiency, especially when representing matrix
multiplication in ZKP protocols. Our proposed CRPC reduces
the constraint complexity from 𝑂 (𝑛3) to 𝑂 (𝑛) for matrix
multiplication. The proving efficiency of zk-SNARKs systems
is thereby improved by a significant margin. The overall proving
time of ZKP-based matrix multiplication of different sizes in
Transformer layers can be 7 ∼ 9× faster.

B. Prefix-Sum Query (PSQ)
The CRPC method notably decreases the constraint count

needed for matrix multiplication representation. Additionally,
it is observed that the number of left wires influences proving
performance. We propose PSQ to reduce the number of left
wires. Our insight is that, although an arbitrary number of
additions can be encapsulated within a single constraint, a
prolonged sequence of additions can result in a considerable
computational overhead, leading to a large number of left wires
number, as is shown in Figure 5(a). Consider a dot product in
matrix multiplication, represented as 𝑦00 = 𝑥00 ·𝑤00+𝑥01 ·𝑤10+
𝑥02 · 𝑤20. This calculation requires 4 constraints. The initial
three constraints calculate the intermediate products: 𝑥00𝑤00,
𝑥01𝑤10, and 𝑥02𝑤20, which are assigned to variables 𝑎7, 𝑎8,
and 𝑎9. To achieve the final result 𝑦00, one more addition is
required, incorporating the three intermediate variables 𝑎7, 𝑎8,
and 𝑎9 in the left wires. Consequently, this approach uses 6

left variables/wires. Heavy left wires in large matrices can be
computationally demanding. Then, we introduce PSQ to avoid
extended additions in matrix multiplication, as illustrated in
5 (b). Instead of holding actual intermediate product values
in 𝑎7, 𝑎8, and 𝑎9, we record their prefix sums. Specifically,
𝑎7 = 𝑥00𝑤00, 𝑎8 = 𝑎7 + 𝑥01𝑤10, 𝑎9 = 𝑎8 + 𝑥02𝑤20.

Here, the final result 𝑦00 is directly available in 𝑎9, eliminat-
ing the need for an additional constraint for the long addition.
PSQ reduces the left wire variables to only 3, making it a more
efficient approach for both verification and proving stages.

The proposed PSQ effectively reduces the complexity. Con-
sider the general matrix multiplication 𝑌 𝑎×𝑏 = 𝑋𝑎×𝑛 ×𝑊𝑛×𝑏.
There are (𝑎 ·𝑛+𝑎 ·𝑏 ·𝑛) variables involved, where the (𝑎 ·𝑏 ·𝑛)
intermediate products make proving rather complex. With PSQ,
the proving is only associated with the (𝑎 ·𝑛) variables, and the
complexity is reduced from 𝑂 (𝑛3) to 𝑂 (𝑛2). PSQ effectively
contributes to a lightweight R1CS, and the computation of the
R1CS thus becomes significantly more efficient. Specifically,
the cost of computing the R1CS is reduced by approximately
70% during the proving phase. By building on the foundation
of CRPC, PSQ further reduces the proving cost for matrix
multiplication by 30%. This results in a total speedup of 12×
for the proving time.

C. Nonlinear-Function Approximation

CRPC and PSQ significantly improves the efficiency of
proving matrix multiplication with ZKP. To demonstrate the
efficiency of our zkVC, we apply it to verifiable Trans-
former inference. To verify the correctness of computation
in transformers, we need to verify the non-linear functions
like 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥, and GeLU with ZKP. However, ZKP can not
directly support these non-arithmetic functions. We design
accurate arithmetic approximations for these complex non-
arithmetic functions. Given a vector 𝑥 ∈ R𝑑 , the 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥

function is defined as 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥𝑖 (𝑥) = 𝑒𝑥𝑖/∑ 𝑗∈[𝑑 ] 𝑒
𝑥 𝑗 . The

main challenge is to accurately express the exponential function
in ZKP constraints. Although the exponential function can not
be directly represented by addition and multiplication, it is
possible to closely approximate the exponential function on
negative inputs. Based on this idea, we show how the SoftMax
function is verified in our design as follows.
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Fig. 6: A comparison of zkVC and prior works on matrix multiplication. zkVC leads in proving time of all non-interactive
methods, close to interactive zkCNN, and excels in verification time, proof size, as well as online verification duration.

Computing 𝑥𝑚𝑎𝑥 . We first normalize the input vector 𝑥 by
(𝑥−𝑥𝑚𝑎𝑥), where 𝑥𝑚𝑎𝑥 is the max element in 𝑥. The subtraction
can easily be encoded in ZKP circuits. To verify the max
computation, we check two constraints: (1) 𝑥𝑚𝑎𝑥 ≥ 𝑥 𝑗 for
all 𝑗 ∈ [𝑑] and (2)

∏
𝑗 (𝑥𝑚𝑎𝑥 − 𝑥 𝑗 ) = 0. The first constraint

ensures 𝑥𝑚𝑎𝑥 is greater than all other values in 𝑥 and the
second constraint ensures 𝑥𝑚𝑎𝑥 is indeed one of the values
from 𝑥. Since ZKP supports comparison operations by bit-
decomposition [7], these constraints are compatible with ZKP.
Approximating 𝑒𝑥 on negative inputs. After normalizing 𝑥

by (𝑥 − 𝑥𝑚𝑎𝑥), all elements in the resulting vector are negative.
It is evident that computing 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥(𝑥 − 𝑥𝑚𝑎𝑥) is equivalent
to computing 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥(𝑥). Thus, the SoftMax function can
be computed as 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥𝑖 (𝑥) = 𝑒𝑥𝑖−𝑥𝑚𝑎𝑥/∑ 𝑗∈[𝑑 ] 𝑒

𝑥 𝑗−𝑥𝑚𝑎𝑥 ,
where only the exponential function on negative inputs is
needed to compute. We approximate 𝑒𝑥 on negative inputs
using the Taylor series:

𝑒𝑥 ≈
{

0, if 𝑥 < 𝑇

(1 + 𝑥/2𝑛)2𝑛 , if 𝑥 ∈ [𝑇, 0] .

where T is the pre-defined threshold deciding the clipping
branch. We apply a two-bit decomposition to compare 𝑥 with 𝑇

and compute the division by 2𝑛. The power-to-2𝑛 computation
is essentially a series of multiplications that can be easily
encoded in ZKP circuits.

Putting together, we verify the SoftMax function in ZKP
via a close approximation using three sets of bit decom-
position and two sets of multiplication. The GELU ac-
tivation function is used in NLP transformers such as
BERT. The GELU function is defined as GELU(𝑥) =

0.5𝑥
(
1 + Tanh[

√︁
2/𝜋(𝑥 + 0.044715𝑥3)]

)
. Similar to the expo-

nential function in 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥, the Tanh function can not be
directly represented by addition and multiplication gates. We
use polynomial approximation to represent the GELU function
efficiently. Specifically, we use GELU(𝑥) ≈ 𝑥2/8 + 𝑥/4 + 1/2.

IV. Experimental Methodology
Models and Datasets. In our experiments, we explored both
computer vision and language transformers. For computer
vision, we tested three vision transformer architectures on
different datasets, adapting settings from [32], [33] for small
datasets. On CIFAR-10, the ViT configuration was 7 layers, 4

heads, a hidden dimension of 256, and a patch size of 4. For
Tiny-ImageNet, we used 9 layers, 12 heads, a hidden dimension
of 192, and a patch size of 4. On ImageNet, a hierarchical
architecture from [34], [35] was implemented with 12 layers
and 4 stages, with embedding dimensions of 64, 128, 320, 512.
For NLP, we chose a BERT model with 4 layers, 4 heads, and
an embedding dimension of 256. This model was fine-tuned
and assessed on GLUE benchmarks [36], including MNLI,
QNLI, SST-2, and MRPC tasks.
Implementation Details. In our experiments, we utilized
groth16 from libsnark [37] and Spartan [13] for the ZKP
backend, referred to as zkVC-G and zkVC-S, respectively.
These cryptographic tests were conducted on AMD Ryzen
Threadripper PRO 3955WX 16-Core CPU systems with 128GB
RAM, running Ubuntu 22.04.1. Transformer model experiments
were performed on NVIDIA GeForce RTX 3090 GPUs.
For Transformer architectures, zkVC was built on ViT [4]
and MetaFormer’s frameworks [35], incorporating efficient
token mixers like scaling attention modules [38], [39], linear
transformation modules [40], average pooling, and differentiable
NAS [41]. We employed the quantization technique from [42]
for converting model parameters to integer formats. This marks
the first instance of verifiable Transformers being tested on the
ImageNet dataset [5].

V. Results

A. Micro-benchmarks
Matrix Multiplication Benchmark. Figure 6 shows a com-
parison of zkVC with previous works on matrix multiplication
benchmarks. The dimensions of the matrices are set according
to the embedding layers in ViT [4], i.e., [#𝑡𝑜𝑘𝑒𝑛𝑠, 𝑑𝑖𝑚1] ×
[𝑑𝑖𝑚1, 𝑑𝑖𝑚2]. The number of tokens are set to 49 for simplicity.
For example, when the embedding dimension is 128, the
dimension of matrix multiplication is [49, 64] × [64, 128]. For
non-interactive schemes, zkVC-G is based on groth16 [2], and
zkVC-S on Spartan [13]. vCNN [6] and ZEN [17] also use
groth16, while Kang’s [8] employs halo2 [43]. The interactive
scheme included is zkCNN [7], with vanilla groth16 and
Spartan serving as baselines. zkVC significantly enhances
proving time, achieving 5 to 12 times faster performance than
the groth16 and Spartan baselines. Among non-interactive
options, zkVC-G stands out for its proving efficiency. Though



TABLE II: Ablation study on matrix multiplication microbench-
mark.

CRPC PSQ
groth16 Spartan

Prove(s) Verify(s) Prove(s) Verify(s)
X X 9.12 0.002 9.04 0.36
X ✓ 8.69 0.002 8.95 0.32
✓ X 1.01 0.002 1.79 0.08
✓ ✓ 0.73 0.002 1.75 0.05

TABLE III: Comparison of various token mixers with our zkVC
on ViT Models. SoftApprox. includes approximated SoftMax,
Softfree-S (scaling), Softfree-P (pooling), with P𝐺 for Groth16
and P𝑆 for Spartan.

Dataset Model Top1(%) P𝐺 (s) P𝑆 (s)

Cifar-10

SoftApprox. 93.5 725.2 1006.2
SoftFree-S 88.3 568.4 742.8
SoftFree-P 75.1 262.7 300.6

zkVC 91.6 458.6 591

Tiny ImageNet

SoftApprox. 60.5 1609.6 2197.4
SoftFree-S 51.4 1004.9 1348.8
SoftFree-P 42.7 443.7 503.6

zkVC 55.8 879.3 1161.4

ImageNet

SoftApprox. 81 10700 12857.7
SoftFree-S 78.5 4521.3 5812.7
SoftFree-P 77.2 2904 3667.8

zkVC 80.3 3457.1 4417.1

zkCNN is about twice as fast in proving compared to zkVC-G,
it requires interaction and suffers from slower verification and
larger proof sizes. Specifically, zkCNN’s verification is up to
200 times slower and its proofs are 1 to 2 orders of magnitude
larger than those of zkVC. The online time means the time
that the client and server need to maintain online during the
proving. zkCNN also demands additional verifier online time
due to its interactive nature.
Technical Ablation Study. In Table II, we present the
latency results from a matrix multiplication microbenchmark
to highlight the effectiveness of the proposed CRPC and PSQ
in transformer patch embedding layers. CRPC significantly
reduces proving time, boosting the groth16 backend by ap-
proximately 9× and the Spartan backend by around 5×. While
groth16 maintains a consistent verification time, CRPC cuts
Spartan’s verification time by about 4×. The application of PSQ
further speeds up groth16, achieving up to a 12× faster rate.
Directly applying PSQ to Groth16 can also improve proving
time, but the enhancement is more significant when PSQ is
coupled with CRCP. However, PSQ’s impact on Spartan’s
proving time is minimal, this is because CRPC already reduces
the number of constraints for both backends, while PSQ
primarily simplifies specific complex queries for groth16.

B. End-to-end Performance
Vision. Table III illustrates zkVC’s accuracy-latency balance
on three popular vision datasets. For smaller datasets like
Cifar-10 and Tiny ImageNet, using average pooling instead
of SoftMax self-attention notably reduces accuracy. Although
scaling attention models are more accurate, their efficiency gain
in ZKP proving is minimal due to low-resolution images (e.g.,
32 × 32 in Cifar-10) and fewer transformer input tokens (e.g.,

TABLE IV: Comparison of various token mixers with our
zkVC on NLP Models. SoftFree-L denotes a model using
linear transformation for token mixing.

Model
Acc. on Tasks(%)

P𝐺 (s) P𝑆 (s)
MNLI QNLI SST-2 MRPC

SoftApprox. 74.5 83.9 85.8 71.2 1299.5 1793.3
SoftFree-S 72.7 81.1 85.2 70.4 917.1 1201.4
SoftFree-L 67.3 75.3 84.5 68.7 680.8 782.0

zkVC 70.8 80.2 84.7 69.3 798.9 992.2

64 tokens for 4-size patches). Average pooling alone struggles
with low-res images, and scaling attention alone shows limited
efficiency for short token sequences. zkVC, blending 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥

self-attention with 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥-free options, achieves around 40%
faster proving on Cifar-10 with under 2% accuracy loss, and
about 50% faster on Tiny ImageNet with less than 5% accuracy
loss.

High-resolution ImageNet images, with many input tokens
(e.g., 3136 for a 224 × 224 image with patch size 4), strain
SoftMax self-attention’s quadratic complexity. Scaling atten-
tion’s linear complexity better manages these long sequences.
SoftMax-free methods, like scaling attention and average
pooling, excel on larger datasets, speeding up computations by
60% to 70% with less than 5% accuracy loss. zkVC achieves
similar speedups with under 1% accuracy loss, likely due to
reintegrating SoftMax self-attention in later transformer layers
with shorter token sequences.
NLP. Table IV shows zkVC’s evaluation on NLP transformers
like BERT. Linear transformation improves efficiency by 50%
but can drop accuracy by up to 7% on MNLI. Scaling
attention increases proving efficiency by 30%, with better,
more stable performance across tasks. zkVC is about 15%
faster than scaling attention models while being around 3%
more accurate on average compared to linear transformation.
The results indicate that replacing all SoftMax attention with
SoftMax-free alternatives isn’t always ideal for accuracy and
latency demands. zkVC, using our planner, combines a hybrid
transformer architecture. It matches SoftMax-centric models in
accuracy and outperforms Linear Attention models in latency.

VI. Conclusion

In this paper, we introduced zkVC, an efficient zk-SNARK
construction designed to optimize matrix multiplication ver-
ification. Traditional ZKP approaches for verifying matrix
multiplication often require an excessive number of constraints,
leading to high computational overhead. zkVC addresses this
challenge by leveraging CPRC to minimize constraints and PSQ
to reduce variables, achieving a 12× improvement in proof
efficiency over prior methods. We further demonstrated zkVC’s
effectiveness in verifiable Transformer inference, verifying
the integrity of ViT models efficiently. Given that matrix
multiplication underpins a wide range of applications, we
believe zkVC offers a significant step forward in enhancing
the computational integrity of these applications.
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