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Abstract. The growing and evolving landscape of cybersecurity threats
necessitates the development of supporting tools and platforms that al-
low for the creation of realistic IT environments operating within vir-
tual, controlled settings as Cyber Ranges (CRs). CRs can be exploited
for analyzing vulnerabilities and experimenting with the effectiveness of
devised countermeasures, as well as serving as training environments for
building cyber security skills and abilities for IT operators. This paper
proposes ARCER as an innovative solution for the automatic generation
and deployment of CRs, starting from user-provided descriptions in a
natural language. ARCER relies on the Agentic RAG paradigm, which
allows it to fully exploit state-of-art AI technologies. Experimental re-
sults show that ARCER is able to successfully process prompts even in
cases that LLMs or basic RAG systems are not able to cope with. Fur-
thermore, ARCER is able to target any CR framework provided that
specific knowledge is made available to it.

1 Introduction

In recent years, the increasing number of threats targeting IT systems has led
to a significant focus in the cybersecurity research community on the develop-
ment of Cyber Ranges (CR) as fundamental tools to train IT professionals in
facing cyber threats and attacks. Typically, setting up a CR involves defining
its infrastructure and software in a configuration file. A CR platform admin
(such as cybersecurity instructors) has to manually design, build and deploy
custom scenarios by writing these files, an activity which is both time consum-
ing and prone-to-error. In addition, the complexity of building and maintaining
real-world scenarios, both in enterprise and educational settings, is challenging.

In the last few years, CR frameworks, as indicated in [1] and [2]|, have be-
come a widespread solution in assisting the CR development life-cycle. Several
frameworks have been proposed, each with distinct features and objectives, that
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mainly focus on one (or both) of the following two main aspects: (i) enhance the
generation of increasingly sophisticated training scenarios that accurately reflect
real-world threats and (ii) reduce the time and resources necessary for the config-
uration and execution of CR instances (see Section 6). The latter means that the
framework automatically provides the necessary infrastructure and establishes
connections between machines according to their network topology without the
intervention of the instructor.

The use of machine learning (ML) to improve CR deployment is explored
in [3], where a system based on the OpenStack cloud platform is presented
to automate CR deployment. This system uses ML to classify VMs to reduce
the cost of manual selection. With that platform, the instructor only needs to
provide a YAML description of a virtual environment that is parsed to complete
the automated deployment.

Among the more innovative approaches, the work by [4] stands out as the first
to propose the application of LLM to the CR domain. Their approach transforms
the well known and inherent in LLMs ‘hallucination’ problem into a potential
advantage, allowing the creation of complex scenarios that push the boundaries
of traditional cybersecurity training.

To the best of our knowledge, this is the first work which proposes the use
of Large Language Models (LLMs) and Agentic Retrieval-Augmented Genera-
tion (Agentic RAG) [5] systems for the automated definition and deployment of
training scenarios compatible with multiple CR platforms.

The devised approach aims to simplify this process by generating CR from
natural language descriptions. The ability of Agentic RAGs to plan, use tools
external to the LLM, dynamically adapt to responses from the environment, and
perform multiple retrieval steps from external-supplied documents enables them
to reduce the costs required for fine-tuning an LLM and adapt to multiple CR
instantiation platforms.

Furthermore, the use of augmented knowledge empowers the agent to gener-
ate valid configuration files for a given CR platform. This represents a significant
advance compared to previous works [3,4, 6] that employed specific techniques
for the automatic generation of randomized scenarios. In summary, the main
contributions of this paper are:

— the proposal of a novel approach based on Agentic RAG systems for the
automated instantiation of CR from natural language text descriptions of
the infrastructure that is compatible with multiple CR platforms;

— the support for the autonomous generation of self-devised CR scenarios lever-
aging Agentic RAG systems;

— the design and implementation of ARCER, the first Agentic RAG system for
CR definition and deployment (this tool will be made available open-source
to foster future research in this area).

The effectiveness of ARCER has been assessed by testing it with CyRIS [7]
a well-known CR framework. It has been observed that while the generation of
files based on specific knowledge can generally be accomplished with a pure RAG
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system, employing an Agentic RAG can enhance the accuracy and integrity of
the output while maintaining equivalent complexity.

The remainder of this paper is organized as follows. Section 2 provides the
basic background on Cyber Ranges and (AI) Agents. Section 3 presents the
proposed approach to the automatic instantiation, generation and deployment
of CR using Agentic RAG. Section 4 presents a case study based on CyRIS.
Section 5 discusses the achieved results. Section 6 overviews the related works
and Section 7 draws the conclusions.

2 Background

2.1 Cyber Ranges

The US National Institute of Standards and Technology (NIST) defines Cyber
ranges as interactive, simulated representations of an organization’s local net-
work, system, tools, and applications that are connected to a simulated Internet
level environment. They provide a safe, legal environment to gain hands-on cy-
ber skills and a secure environment for product development and security posture
testing [8]. Cyber ranges are controlled and interactive virtual environments that
are utilized for efficient and secure cybersecurity training, as well as for the se-
cure and controlled emulation of new real-world attacks and malware. For this
reasons, they can be considered as contemporary battlefields for cybersecurity.
Moreover they offer trainees a context for augmenting their cybersecurity skill
set through hands-on activities (such as the real-time analysis frameworks for
CRs as proposed in [9,10]).

A CR comprises an IT infrastructure and a suite of selected security features.
The infrastructure can include, but is not limited to, machines, networks, storage,
and software tools. Security functionalities include the capability to replicate cy-
berattacks and execute malware in a controlled environment. The orchestration
layer of the CR coordinates the diverse technology and service components of
the underlying infrastructure and provides isolation from other resources on the
host systems. This isolation enables the simulation of complex scenarios with-
out compromising live production systems. A CR may also integrate a Learning
Management System (LMS) that allows both instructors and trainees to track
and measure progress through a defined training curriculum [11].

The utilization of CRs has undergone a substantial transition, with a shift
from their initial adoption by military and government agencies to their current
application by a wide array of businesses and organizations including bug-bounty
hunters, researchers and students. Notably, CRs have found application in allow-
ing in a secure way, the dynamic analysis of malware utilized in targeted attacks,
where the execution of the malicious code is necessary to determine its purpose.

According to the NIST, there are four main categories of CRs: (i) simulations,
(ii) overlay, (iii) emulation, and (iv) hybrid ranges. These distinctions assume
particular significance when aligned with the specific use case of an individual
or organization [12].
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Simulations ranges entail the establishment of a synthetic network environ-
ment that simulates the behavior of real network components within virtual
instances (VMs). VMs are used to mimic specific servers or network of various
infrastructures. They offer the advantage of quick reconfiguration because they
use standardized templates. However, the fidelity of the exercise increases as the
simulation closely matches the target infrastructure. Nevertheless, the unpre-
dictable and unrealistic latency and jitter in network performance are factors
that can impact the overall realism of the simulation so they should be limited
to the least possible extent.

Overlay ranges provide a higher level of fidelity as they directly utilize the
actual network infrastructure. However, this increased fidelity comes with no-
table costs for hardware and the potential risk of compromising the underlying
network infrastructure. This type of CRs are often established as global testbeds
for research and experimentation.

Emulation is an approach to CR generation that transforms the physical in-
frastructure into the cyber range itself. It provides closed-network environments
that consist of multiple interconnected components and includes traffic genera-
tion that emulates various protocols, source patterns, traffic flows and attacks.
Emulation gives trainee the authentic experience, rather than pre-programmed
actions. A notable example of the use of emulation in CR is the National Cyber
Range (NCR) [13].

Hybrid ranges are formed through a customized combination of any of the
previously mentioned types that suits specific requirements. A prominent exam-
ple of Hybrid ranges is the Furopean Future Internet Research & Erperimenta-
tion (FIRE) project. [14]

2.2 Agents

An Agent [15] is defined as a computer system situated in an environment that
is capable of acting autonomously in its context in order to reach its delegated
objectives.

Autonomy means the ability and requirements to decide how to act to achieve
a goal. An agent that can perceive its environment, react to changes that occur
in it, take the initiative, and interact with other systems (like other agents or
humans) is called an intelligent agent or AT Agent (Fig. 1). Another core concept
of Al agents is the memory. Effective memory management improves an agent’s
ability to maintain context, learn from past experiences, and make more informed
decisions over time.

As pointed out in [16], the emergence of LLMs represents another moment
of progress in the realization of Al agents. The substantial advancements made
in this direction have culminated in the emergence of LLM agents. In particular,
LLM agents use LLMs as reasoning and planning cores to decide the control flow
of an application while maintaining the characteristics of traditional Al agents.
LLM agents enhanced the LLMs by allowing them to invoke external tools to
solve specific tasks, such as mathematical calculations or code execution. In the
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Fig. 1. AT agent structure [16]

end, the LLM can decide whether the generated answer is sufficient or if more
work is needed.

2.3 Agentic RAG

Despite their flexibility, general purpose LLMs, and the related LLM agents,
often lack the domain-specific knowledge required to solve particular and non-
trivial tasks. Such a problem could be solved by re-training or fine-tuning the
model; however, the cost of these operations is not negligible.

A possible alternative approach is based on the Retrieval-Augmented Gen-
eration (RAG) [17] paradigm where the LLM, in pursuing its goal, cooperates
with two external components: (i) a source of domain-specific knowledge (i.e.
external-supplied documents) and (ii) a retriever which is in charge to search
for relevant information in the external knowledge base and to augment the
context of the LLM. This operation provides the model what is needed to an-
swer complex questions. In RAG systems, external data are loaded and divided
into chunks of the appropriate size. The chunks are then converted into vector
representations and stored in data structures for future use. The functioning of
a RAG system is typically structured as follows: (i) the user provides a query
to the system; (ii) the retriever converts the query into a vector representation
and performs a match with the stored embeddings, fetching the most relevant
chunks; (iii) the original query is enhanced with the fetched chunks and passed
to the LLM; (iv) the context-aware results produced by the LLM are returned
to the user.

An agent system that takes advantage of the RAG paradigm is often referred
to as Agentic RAG. Many state-of-the-art frameworks, such as LangChain [18§],
Llamalndex [19], and Langdroid [20], provide easy-to-use interfaces to create
custom Agentic RAGs.
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3 ARCER: Agentic RAG for Cyber Ranges

Most CR platforms receive as input for CR generation and deployment a de-
scription file containing information about the host running the range and the
CR characteristics (e.g., the virtual machines that make up the range and the
network topology) with the corresponding image files. Description files are writ-
ten in specific formats such as YAML [21] and, depending on the CR platform
and range specification, they can become very complex to write. Traditional CR
instantiation methods require manual configuration.

ARCER leverages Agentic RAG systems to create description files from a
high-level textual description of the desired specifications and then for auto-
matic CRs deployment on remote servers. More in detail, the primary strength
of ARCER lies in its user-friendliness for instructors, who can effortlessly create
a training environment by simply expressing the desired characteristics in nat-
ural language, without the necessity of concern for the underlying framework’s
specific syntax requirements. This feature makes CR management accessible to
users with different levels of expertise. It allows effective use by enabling ad-
vanced attack and defense configurations, adjustable difficulty levels, and full
infrastructure customization to meet specific training needs in a fully automated
manner.

ARCER dynamically and automatically adapts to different CR framework
simply by changing the set of documents provided as external knowledge. This
ensures a high level of flexibility in that it removes any dependence to specific
platforms. This means that alterations in the field, such as the introduction of
new configuration patterns or support for novel scenarios, do not necessitate
modifications to ARCER logic. Only a revision of the reference documents is
required, thereby facilitating maintenance and adaptation to emerging require-
ments.

Furthermore, by eliminating the need to fine-tune a model for each frame-
work, ARCER approach dramatically lowers computational and development
costs, making CR generation more affordable, fast, and adaptable to hetero-
geneous scenarios. Finally, should more efficient LLMs emerge in the future,
ARCER can be upgraded without the need for a complete system rebuild. These
characteristics make the Agentic RAG perfectly suited to the ever-changing con-
text of CRs.

This work demonstrates (see Section 5) that, while pure RAG systems can
indeed address the task of generating responses based on specific documentation
with sufficient effectiveness, the Agentic RAG approach of ARCER leads to
enhanced performance.

3.1 ARCER schema

The overall architecture and the operation of ARCER are illustrated in Fig. 2.
The Agentic RAG structure of ARCER includes an LLM that operates as a
reasoning engine and two external tools: a RAG subsystem and a Checker Tool.
Finally, being the AI agent a stateless system, it is unable to recall previous
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interactions with the user. In contrast, ARCER has effective memory manage-
ment, thereby conferring on the instructor the flexibility to modify CR features
at a subsequent time.

The Checker Tool allows ARCER to check the syntax of the generated output
during runtime and to perform self-correction of errors if they occur.

The RAG subsystem is in charge of completing the retrieval phase of a RAG
system using the Maximal Marginal Relevance [22] (MMR) technique, which
aims to mitigate redundancy in the extracted chunks from the vector store. This
is achieved by selecting the most relevant documents for the query, ensuring those
that differ the most from each other, thereby providing the Agentic RAG with
a substantial amount of relevant knowledge. Specifically, 20 chunks are initially
extracted, and after filtration, only the 8 most relevant ones are transmitted to
the LLM. To achieve an optimal balance between relevance and diversity, the
specific parameter lambda_mult was set to 0.5 [22].
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Fig. 2. Overall approach schema

Given ARCER’s support to interact with disparate CR frameworks it em-
ploys different vector stores to separately save the embeddings’ chunks doc-
uments related to different platforms. All documents (e.g., framework usage
guides and example configuration files) are stored in a database containing a
folder whose name coincides with the name of the specific CR framework. The
RAG subsystem exploits format-specific document loaders (e.g., for PDF and
YAML) to import them.

In more detail, the steps performed by ARCER are the following:

(1) The user prompt is fed to the LLM which parses it and evaluates whether
it is able to handle it directly or if it needs to call an external tool. In the
case it needs to resort to the RAG subsystem it produces a new specific
query to be sent to the RAG subsystem. The RAG subsystem identifies
the suitable vector store and then it searches for relevant chunks using the
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MMR technique. On the basis of the additional knowledge contained in these
chunks, the LLM produces an initial potential output to the user’s query.

(2) The output is sent to an external server that exposes an API to the CR
platform component responsible for checking the syntax of the description
file. The verification step is a critical component of the overall process as it
ensures the integrity of the generated output.

(3) If the above step is successfully completed, the configuration file is created
and subsequently returned to the user. In the event that errors are detected,
they are automatically sent back to ARCER for self-correction and the pro-
cess starts again from step (1).

(4) At the end of the description file generation phase, ARCER asks the user
whether they want to proceed with the actual instantiation of the CR. If
the user agrees, it directly executes the appropriate commands on the host
running the CR framework.

3.2 Implementation details

The current implementation of ARCER uses Anthropic’s Claude 3.7 Sonnet [23]
as LLM and Sentence Transformer Model [24] as embeddings. For the embedding
storage an in-memory vector store is used. The vector store is populated with
chunks of the external-supplied documents. Chunks have a size of 1000 characters
each with an overlap of 200 characters.

The choice of the LLM was made by comparing three different models as
detailed in Section 5. The MMR metric was selected because it yielded better
results with respect to the cosine similarity metric [25] initially used which fre-
quently returned the same chunk multiple times, thereby diminishing the specific
knowledge provided to the LLM.

ARCER has been implemented by using LangChain [18], a framework for
the development of applications powered by LLMs, and its extension Lang-
Graph [26]. LangChain implements a standard interface not only for LLMs
but also for related technologies, such as embedding models and vector stores
of hundreds of providers. LangGraph is designed to build robust and stateful
multi-actor applications with LLMs by modeling steps as edges and nodes in
a graph. LangChain has been chosen because of its popularity in the scientific
community and because of its powerful agent-creation libraries. Beyond agents
with well-defined high-level interfaces, LangGraph also supports creating agents
backed by a low-level, highly controllable API, enabling deep customization of
agent logic.

By using the pre-built ReAct agent constructor we implemented the retrieval
and generation steps of the RAG subsystem as a call to external tools. Docu-
ment chunks, retrieved from the vector store, are incorporated into the message
sequence sent to the LLM just as if they were messages obtained from invoking
any other external tool. This approach offers the advantage that the model itself
generates queries for the retrieval phase, rewriting user messages into more ef-
fective search queries. Furthermore, it fully automates direct responses that do
not require a retrieval phase, such as responses to generic user greetings.
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4 A real case study: the CyRIS framework

CyRIS (Cyber Range Instantiation System) [7] is an open-source tool that pro-
vides a flexible, scalable, and low-cost mechanism for managing security train-
ing environment. CyRIS supports KVM and AWS virtualization for several
guest machines OS, including Ubuntu, CentOS and Windows. The CyRIS in-
put file is structured as a YAML document, which is divided into three sec-
tions: host_settings, guest_settings, and clone_settings (see Listing 1.1).
It should be noted that CyRIS facilitates the deployment of CR instances to one
or more host servers.

Listing 1.1. Basic CyRIS cyber range description file

- host_settings:
id: host_1
mgmt_addr: localhost
virbr_addr: 192.168.10.1
account: user

- guest_settings:
id: desktop
basevm_host: host_1
basevm_config_file: /home/user/images/basevm.xml
basevm_type: kvm

- clone_settings:
range_id: 1
hosts:

- host_id: host_1
instance_number: 1
guests:

- guest_id: desktop
number: 1
entry_point: yes

topology:
- type: custom
networks:

- name: office
members: desktop.ethO

We chose CyRIS as CR instantiation framework because it is one of the few
platforms that can provide security features even at the CR description stage,
such as: (i) traffic capture, (ii) the ability to perform attacks and malware emu-
lation, (iii) the possibility to configure firewall. In addition, the GitHub reposi-
tory [27] is updated and maintained, making it easy to install and use. The main
advantage of CyRIS is its detailed documentation not only on the architecture
of the framework, but also on the syntax and semantics to be used when writing
the input file. This aspect, together with the examples of description files already
provided by the authors, is an excellent knowledge base for ARCER.

Specifically, the initial documents provided to ARCER as external knowl-
edge included the most recent version of the paper outlining CyRIS, its user
guide, and six CR description files. Despite the adequacy of the documentation,
an initial phase of manual document analysis was necessary to remove pages
containing information irrelevant to the preparation of the description file. The
pages removed included those describing the installation of CyRIS and those
documenting performance analysis. To make ARCER working with CyRIS we
used a total of 28 pages of documentation.
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Notwithstanding the present limitations of CyRIS with regard to the sup-
ported security features, including the emulation of only a few types of attacks
and malware, CyRIS emerged as an excellent framework for testing our approach.

5 Results and discussion

In this section we evaluate the coverage that ARCER offers at the current stage
through different methodological strategies.

First, a comparative analysis was conducted among the outputs generated:
(i) by using only an LLM, (ii) through a RAG system, and (iii) by using ARCER.
The comparative assessment yielded significant discrepancies in accuracy, com-
pleteness, and contextual relevance across the three approaches.

Subsequently, we conducted both qualitative and quantitative analyses by
generating 20 CR descriptions, of progressively increasing complexity, encom-
passing all CyRIS characteristics. This test enabled the measurement of the
success rate of ARCER across varying difficulty levels and configuration re-
quirements, thereby providing robust evidence of the system’s capabilities under
diverse operational scenarios.

Additionally, we evaluated ARCER’s performance using various tool-calling
LLMs from different providers: Claude 3.7 Sonnet from Anthropic, Gpt-4o-mini
from OpenAl [28] and Mistral Large from Mistral AT [29]. All models successfully
completed the task, despite the increasing complexity of the CR to be instan-
tiated. However, minor discrepancies among the models were identified, which
ultimately guided the selection of Claude 3.7 Sonnet as the primary LLM for
ARCER.

5.1 LLM-Specific constraints in CR generation

In order to adequately interface an LLM asking for CR generation, some specific
concerns have to be properly addressed. In particular, the amount of required
details in the user prompt and the way external tools are invoked both are both
specific to the employed LLM. The former concern can be easily resolved by
specifying the additional information needed by the specific LLM in the system
prompt, so that the user input can be kept as generic as possible. For example,
in the case of Gpt-4o-mini, it was necessary to specify in the system prompt a
message suggesting that the model first retrieve as much information as possible
about the CR framework chosen by the user. In the case of mistral, it was
necessary to specify that each section of the descriptor files for CyRIS begin
with the character >-’. These specifications are instrumental in reducing the
time required to generate the correct file, but more importantly, they prevent
the LLM from performing superfluous computations, thus avoiding reaching the
token limit.

The second concern regards the ability of the LLM to independently repeat
multiple verification steps on the generated output taking into account the feed-
back of the checker tool. In contrast to the Anthropic and OpenAl models, which
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can perform this task autonomously, the Mistral AI model required the explicit
implementation of a corresponding loop in its agent code.

5.2 ARCER vs. LLM and vs. RAG

We conducted a series of controlled tests across three configurations: the base
LLM, the RAG subsystem, and the full system of ARCER. Specifically, we
wrote the textual descriptions of 10 low-complexity CR scenarios and submit-
ted them to each of the three tool configurations. Then we collected, analyzed,
and compared the outputs produced. During the test involving only the base
LLM, additional details regarding the CyRIS framework syntax were explicitly
provided to the model to ensure a fairer comparison. The results obtained are

summarized in Table 1.
Table 1. Performance Comparison of System Configurations for CR Generation

[Metric [[Base LLM [RAG [ARCER |
Successful tests [[0/10 6/10 10/10
Failure reasons ||Lack of framework |Incomplete user require- -
knowledge despite de-|ments
tails provided Syntax errors
Key capabilities - Specific CR platform|RAG capabilities
knowledge Error correction
User interaction
Generation of configura-
tion files for self-devised
CR scenarios
Main limitations||Ambiguous output Absence of output verifi- Knowledge-base quality
Incorrect syntax cation
Failure to meet require-|Limited human interac-
ments tion
Knowledge-base quality

The analysis of LLMs outputs revealed a conspicuous deficiency in their ca-
pability to generate correct description files, despite the provision of detailed
user inputs, making the base LLM incapable of performing the designated tasks.
The generated output is often ambiguous and does not align with the specifica-
tions of the CR framework stipulated by the user. This outcome underscores the
importance for equipping the base LLM with specialized knowledge about the
CR framework.

The implementation of a system that is exclusively dependent on RAG sig-
nifies a substantial enhancement in the automated generation of description files
within a designated CR framework. The integration of knowledge extracted from
documents allows the model to produce output that is more closely aligned with
the syntax required by the framework, reducing the indeterminacy typical of
unconditional generative models.

More in detail, in six out of ten tests, the pure RAG system correctly gen-
erated configuration files that conformed to both the framework syntax and
the user-specified requirements. In the remaining four tests, the failure was at-
tributed to two main factors: (1) incomplete or inaccurate user requirements,
in one test, and (2) syntax errors, in the other three tests. In the first case,
failures resulted from the user’s omission of mandatory information essential for
CR instantiation, such as the entry_point or the network topology attribute
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required by the CyRIS CR specification format. In the second case, the errors
were caused by formatting issues, such as incorrect indentations in the generated
output.

These issues underscore the inherent limitation of using a pure RAG system.
These limitations can be effectively mitigated through the use of Agentic RAG
techniques, which introduce mechanisms to automatically verify and correct the
LLM generated output at each step.

The Agentic RAG-based approach of ARCER plays a crucial role in reducing
the number of cases in which the system fails to meet user’s requests. The LLM
can interact directly with a remote server, thereby automatically launching the
CR framework and requesting the CR instantiation based on the generated input
file. Moreover, using the error messages returned by the framework, ARCER
successfully passed tests that had previously failed due to syntax errors.

Furthermore, by leveraging the agent’s capacity for iterative interaction with
the user, a human-in-the-loop approach can be employed to address the test
failed in case (1). In these situations, the agent could ask the user if the missing
mandatory parameters should be automatically assigned according to reason-
able criteria or if the user would prefer to specify them manually. Adding this
interaction enabled the successful generation of a correct output also in this case.

5.3 Quantitative and qualitative analysis

In order to assess the current capabilities and limitations of ARCER, 20 textual
descriptions of training scenarios, of increasing complexity, were manually writ-
ten by domain experts. Such descriptions were used as prompts to ARCER re-
questing it to instantiate them on CyRIS. In writing these scenarios, the experts
took care to include of all features supported by CyRIS-based CRs. This was
done to evaluate ARCER in the context of different potential user requirements.
Furthermore, at least 3 of these scenarios were purposely devised to include all
the features supported by CyRIS, in order to evaluate the behavior of ARCER
under the most complex descriptions.

The tests were carried out using the configuration described in Section 3 us-
ing basic subscription accounts to Claude 3.7 Sonnet. The evaluation process en-
tailed a maximum of three retry attempts, with a test considered to be correctly
completed if successfully passed within these bounds. Performance evaluation
was conducted considering three main factors:

1. Correct execution of the required task: the ability to correctly complete the
assigned task, which could consist solely of configuration file generation or
even automatic deployment to a remote server.

2. Number of iterations required for completion: the number of iterations re-
quired to correct any errors in the intermediate output.

3. Semantic validity of the generated output: since the verification performed
by CyRIS via tool calling ensures only the syntactic correctness of the gener-
ated file, domain experts manually checked the semantic consistency. They
examined the configuration files and their instantiated CRs to determine
whether the output was in accordance with the user’s requests.
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Fig. 3. Performance analysis

The results obtained are presented in Fig. 3. An in-depth analysis of the re-
sults yielded the following observations. Of the 18 tasks successfully completed by
ARCER, only 4 instances were solved in one ARCER iteration (see Section 3.1
for more details about ARCER performed iterations). It should be noted that
these 4 instances were the same that would have been correctly addressed also by
the pure RAG configuration. For the other instances the initial output contained
syntactic errors that necessitated agent iterations to be corrected, see Table 2.

These results corroborate the observations made in the preliminary study
and further underscore the need for an Agentic RAG-based approach. Indeed,
instances that were successfully completed on the initial attempt correspond to
low-complexity scenarios, such as those used in the preliminary tests. However,
as the complexity of the user request increased, a pure RAG system proved
incapable of completing the task correctly. Of the 3 tests that included all CyRIS
features, 2 were successfully completed. The failures observed in the remaining
case was mainly due to the token limit constraints associated with LLM usage,
which prevented the complete generation of the required configuration files. A

Table 2. Summary of ARCER test results

\Test category Count Percentage (%)\

Syntactic successfully tests 18 90%
Completed in one iteration 4 20%
Completed in two iterations 9 45%
Completed in three iterations 5 25%

Failed tests 2 10%

Total 20 100%

secondary consideration pertains to the severity of the identified semantic errors.
We identified three categories of errors as follows:
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(i) High-Severity errors: the generated configuration does not include all the
virtual machines requested by the user and/or all the physical hosts re-
quired for deployment;

(ii) Medium-Severity Errors: failure in the emulation set up of important char-
acteristics of the scenario such as attacks or malware emulation;

(iii) Low-Severity errors: failures that result in the incorrect set up of non-
relevant characteristics of the scenario such as alteration of the username
on a VM or the failure to execute a program that is of marginal relevance
to the scenario under investigation.

The analysis revealed that of the 5 tests in which domain experts detected
semantic errors, none were of the highest severity, 2 errors were classified as
medium-severe, while the others 3 had minimal impact. This substantiates the

reliability of the employed approach (see Table 3).
Table 3. Completed tests with semantic errors

High severity errors 0
Medium severity errors 2
Completed in two iterations 1
Completed in three iterations 1
Low severity errors 3
Completed in two iterations 2
Completed in three iterations 1
Total 5

In all the tests the semantic correctness of the output was evaluated just
after the agent has completed the task within a maximum of three attempts.
Nevertheless, it is important to highlight that any identified semantic errors
could have been easily rectified by a user with basic familiarity with the CR
platform. This can be accomplished through interaction with the agent, where
the user can issue an additional request to correct the generated configuration.
Such corrections are facilitated by the memory mechanism embedded within
ARCER architecture, which enables the system to maintain context and adapt
to the user’s requests.

Finally, a notable consideration is related to the distinctive feature of ARCER
to autonomously conceive a simulation scenario and generate the corresponding
configuration file without explicit user specification. Given a prompt requesting
the creation of a CR based on a specific platform (e.g., CyRIS), ARCER was
able to ideate a meaningful scenario, reasonably configure the virtual machines
(e.g., installing appropriate programs and executing coherent scripts), and sen-
sibly connect them within a network. This level of autonomy marks a significant
advancement over previous approaches based on random scenario generation,
offering platform-adapted outputs.

6 Related work

Among the proposed CR systems, several have gained prominence. CRATE (Cy-
ber Range and Training Environment) [2] is a VM-based emulation type CR



ARCER: an Agentic RAG for Cyber Ranges 15

operated by the Swedish Defence Research Agency (FOI). CRATE instantiates
the machines from a JSON description of the configurations to be emulated.
Additionally, graphical support is provided to simplify scenario definition and
access to the CR for users and instructors.

Subsequent improvements in CR portability and scenario sharing were pro-
posed with Nautilus [30], a CR platform that provides a training environment
along with a marketplace platform allowing to share scenarios, scripts or other
pre-implemented vulnerabilities and CVEs. Nautilus leverages cloud technologies
to semi-automate deployment of vulnerable systems. Furthermore, it provides a
graphical interface to initialize/terminate a training scenario through a remote
virtual console available in the Nautilus Web Interface. Real-life scenarios can
be written either in a custom Scenario Definition Language or by using the web
interface.

A novel lightweight framework for CR orchestration is CyExec* [6], a Docker
based CR that encompasses a system that automatically generates multiple
scenarios with the same learning objectives utilizing DAG (Directed Acyclic
Graph)-based scenario randomization. It leverages container-type virtualization,
which offers a lightweight execution environment to run multiple virtual in-
stances efficiently and reducing overall costs using the power of dockerfiles and
docker-compose for topology generation.

Further advancements in CR verification were introduced in [31], where the
authors are the first to propose a method to formally verify the noncontradictory
of the scenario. Their framework relies on the virtual scenario description lan-
guage (VSDL), a domain-specific language for defining high-level features of the
desired infrastructure while hiding low-level details. The VSDL specification is
then converted into an SMT problem. If this problem is found to be satisfiable,
a model is returned that can be used to create the infrastructure.

Despite these advances, many of the proposed solutions have proven vi-
able only for specific CR frameworks for which they were designed. Therefore,
ARCER is the first Agentic RAG for the configuration and deployment of CRs
compatible with multiple CR framework. This implies that ARCER can be em-
ployed to generate CRs based on different frameworks, thus enabling instructors
to leverage the specific advantages offered by each platform.

The present study is situated within the emerging body of research that
explores the application of LLMs agents in the domain of cybersecurity. Specif-
ically, our approach aligns with recent studies that leverage the reasoning and
generation capabilities of LLM agents for threat intelligence, vulnerability de-
tection, malware and anomaly detection, fuzz and program repair, LLM assisted
attack and (in)secure code generation, as reported in [32].

In [33] the authors show that LLM agents can autonomously hack websites,
performing tasks as complex as blind database schema extraction and SQL in-
jections without human feedback and without the need to know the vulnerabil-
ity beforehand. This capability is uniquely enabled by the use of the tool and
leveraging the extended context. Similar is the work presented in [34] where
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the authors presented that LLM agents powered by GPT-4 can autonomously
exploit one-day vulnerabilities in real-world systems given the CVE description.

The use of multi-agent systems for cybersecurity goals is explored using Secu-
rityBot [35], a mechanism to enable effective collaboration between LLM agents
and pre-trained RL agents that supports cybersecurity operations for red-team
and blue-team tasks.

7 Conclusion and future works

In this work ARCER has been presented as a Agentic RAG-based solution for
the automatic generation of CR configuration files, and the subsequent deploy-
ment, starting from a textual description, in a natural language, of the desired
scenario. ARCER is designed to be independent of any specific CR platform
and can interact with different CR frameworks by simply adapting the set of
documents provided as augmented knowledge to the RAG component. ARCER
ensures significantly better performance compared to a pure RAG approach,
while maintaining the same level of system complexity. Furthermore, ARCER
successfully completed the generation of 90% of the tested simulation scenarios,
confirming the validity and effectiveness of the proposed approach.

The most relevant current limitation is that ARCER cannot determine a pri-
ori whether the user’s request is within the capabilities of the CR framework. To
illustrate this point, consider the case of CyRIS. The system is unable to indepen-
dently detect whether the user is requesting an unsupported network topology,
such as a configuration other than the only one currently implemented bus topol-
ogy. This failure can result in attempts to generate configuration files that can
lead to subsequent failures during the CR instantiation phase. To address this
challenge, a potential future development involves integrating a mechanism for
prior validation of the user’s request. This mechanism would be based on struc-
tured knowledge of the target framework, thereby enabling the agent to identify
any inconsistencies prior to output generation. Following this identification, the
agent would then communicate the inconsistencies to the user.

A further extension for future development involves enhancing the Agentic
RAG to enable it to correct semantic errors within the generated configuration.
This would provide a more comprehensive solution by allowing the system to
autonomously address issues related to the configuration that do not adhere to
the user’s specifications.

Another important direction is to test our approach using open-source LLMs,
with the goal of identifying the smallest model within a family of models that
supports RAG interaction and tool invocation, yet is capable of correctly com-
pleting the tasks. By “smallest model”, we refer to the model with the least
dimensionality. This development aims to demonstrate that the Agentic RAG
approach incurs minimal cost while maintaining optimal performance, further
validating the efficiency and scalability of the system.



ARCER: an Agentic RAG for Cyber Ranges 17

Acknowledgment

This work was partially supported by the SERICS project (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the European Union
- NextGenerationEU.

The work of Francesco A. Pironti was supported by Agenzia per la cybersicurezza
nazionale under the 2024-2025 funding program for promotion of XL cycle PhD
research in cybersecurity (CUP H23C24000640005).

References

1.

10.

11.

12.

13.

A. Grimaldi, J. Ribiollet, P. Nespoli, and J. Garcia-Alfaro, “Toward next-
generation cyber range: A comparative study of training platforms,” in Lecture
Notes in Computer Science. Springer Nature Switzerland, 2024, pp. 271-290.
[Online|. Available: http://dx.doi.org/10.1007/978-3-031-54129-2 16

. T. Gustafsson and J. Almroth, “Cyber range automation overview with a case

study of CRATE,” in Lecture Notes in Computer Science. Springer International
Publishing, 2021, pp. 192-209. [Ounline|. Available: http://dx.doi.org/10.1007/
978-3-030-70852-8 12

S. Zhou, J. He, T. Li, X. Lan, Y. Wang, H. Zhao, and Y. Li, “Automating the
deployment of cyber range with openstack,” The Computer Journal, vol. 67, pp.
851-863, 2023. [Online]. Available: http://dx.doi.org/10.1093/comjnl/bxad024

M. Mudassar Yamin, E. Hashmi, M. Ullah, and B. Katt, “Applications of llms for
generating cyber security exercise scenarios,” IEEE Access, vol. 12, pp. 143 806—
143 822, 2024.

A. Singh, A. Ehtesham, S. Kumar, and T. T. Khoei, “Agentic retrieval-
augmented generation: A survey on agentic rag,” 2025. [Online|. Available:
https://dx.doi.org/10.48550/ARXIV.2501.09136

R. Nakata and A. Otsuka, “Cyexec*: A high-performance container-based cyber
range with scenario randomization,” IEEE Access, vol. 9, pp. 109095-109 114, 2021.
R. Beuran, C. Pham, D. Tang, K.-i. Chinen, Y. Tan, and Y. Shinoda, “Cyber-
security education and training support system: Cyris,” IEICE Transactions on
Information and Systems, vol. E101.D, no. 3, pp. 740-749, 2018.

NIST, “Cyber ranges,” 2018. [Online]. Available: https://www.nist.gov/system/
files/documents/2018/02/13/cyber _ranges.pdf

F. Blefari, F. A. Pironti, and A. Furfaro, “Toward a log-based anomaly detection
system for cyber range platforms,” in Proceedings of the 19th International
Conference on Awvailability, Reliability and Security, ser. ARES '24. New York,
NY, USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3664476.3669976

F. Romeo, F. Blefari, F. A. Pironti, and A. Furfaro, “Unveiling attack patterns
from CTF network logs with process mining techniques,” in Proceedings of the
Joint National Conference on Cybersecurity (ITASEC & SERICS 2025), 2025.

H. Taylor, “What is a cyber range? learn hands-on cybersecurity skills,” https:
/ /cybersecurityguide.org/resources/cyber-ranges/, 2023.

NIST, “The cyber range: A guide,” 2023. [Online|. Available: https://www.nist.gov/
system/files/documents/2023,/09 /29 /The%20Cyber%20Range A%20Guide.pdf
B. Ferguson, A. Tall, and D. Olsen, “National cyber range overview,” in 2014 IEEE
Military Communications Conference, 2014, pp. 123-128.


http://dx.doi.org/10.1007/978-3-031-54129-2_16
http://dx.doi.org/10.1007/978-3-030-70852-8_12
http://dx.doi.org/10.1007/978-3-030-70852-8_12
http://dx.doi.org/10.1093/comjnl/bxad024
https://dx.doi.org/10.48550/ARXIV.2501.09136
https://www.nist.gov/system/files/documents/2018/02/13/cyber_ranges.pdf
https://www.nist.gov/system/files/documents/2018/02/13/cyber_ranges.pdf
https://doi.org/10.1145/3664476.3669976
https://cybersecurityguide.org/resources/cyber-ranges/
https://cybersecurityguide.org/resources/cyber-ranges/
https://www.nist.gov/system/files/documents/2023/09/29/The%20Cyber%20Range_A%20Guide.pdf
https://www.nist.gov/system/files/documents/2023/09/29/The%20Cyber%20Range_A%20Guide.pdf

18

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Lupinacci et al.

A. Gavras, A. Karila, S. Fdida, M. May, and M. Potts, “Future internet research and
experimentation,” ACM SIGCOMM Computer Communication Review, vol. 37,
pp. 89-92, 2007. [Online|. Available: http://dx.doi.org/10.1145/1273445.1273460
M. Wooldridge, An Introduction to MultiAgent Systems, 2nd ed. Wiley, 2009.

Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang, S. Jin,
E. Zhou, R. Zheng, X. Fan, X. Wang, L. Xiong, Y. Zhou, W. Wang, C. Jiang,
Y. Zou, X. Liu, Z. Yin, S. Dou, R. Weng, W. Qin, Y. Zheng, X. Qiu, X. Huang,
Q. Zhang, and T. Gui, “The rise and potential of large language model based
agents: a survey,” Science China Information Sciences, vol. 68, 2025.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiittler,
M. Lewis, W.-t. Yih, T. Rocktéschel et al., “Retrieval-augmented generation for
knowledge-intensive nlp tasks,” Advances in neural information processing systems,
vol. 33, pp. 9459-9474, 2020.

H. Chase, “Langchain,” October 2022. [Online|. Available: https://github.com/
langchain-ai/langchain

J. Liu, “Llamaindex,” November 2022. [Online|. Available: https://github.com/
jerryjliu/llama_index

P. Chalasani and S. Jha, “Langdroid.” [Online]. Available: https://github.com/
langroid /langroid

C. E. Ingy doét Net and O. Ben-Kiki.,, “Yaml,” 2001. [Online|. Available:
https://yaml.org/about.html

J. Goldstein and J. Carbonell, “Summarization: (1) using MMR for diversity-
based reranking and (2) evaluating summaries,” in TIPSTER TEXT PROGRAM
PHASE III: Proceedings of a Workshop held at Baltimore, Maryland, October
18-15, 1998. Association for Computational Linguistics, 1998, pp. 181-195.
[Online|. Available: https://aclanthology.org/X98-1025/

Anthropic, “Claude 3.7 sonnet system card,” 2025. [On-
line].  Available:  https://assets.anthropic.com/m/785¢231869ea8b3b/original/
claude-3-7-sonnet-system-card.pdf

N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese
BERT-networks,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 11 2019,
pp. 3982-3992.

H. Steck, C. Ekanadham, and N. Kallus, “Is cosine-similarity of embeddings really
about similarity?” in Proc. of WWW ’24: The ACM Web Conference 2024. ACM,
2024, pp. 887-890.

C. Nuno, B. Vadym, and F. William, “LangGraph.” [Online|. Available:
https://github.com/langchain-ai/langgraph

R. Beuran, “cyb3rlab/cyris.” [Online|. Available: https://github.com/cyb3rlab/
cyris

0. 2024, “Gpt-4o system card,” 2024. [Online|. Available: https://arxiv.org/abs/
2410.21276

M. A. team, “Mistral large 2,” 2024. [Online|. Available: https://mistral.ai/news/
mistral-large-2407

G. Bernardinetti, S. Iafrate, and G. Bianchi, “Nautilus: A tool for automated de-
ployment and sharing of cyber range scenarios,” Proceedings of the 16th Interna-
tional Conference on Availability, Reliability and Security, pp. 1-7, 2021.

G. Costa, E. Russo, and A. Armando, “Automating the generation of cyber range
virtual scenarios with vsdl,” arXiv preprint arXiv:2001.06681, 2020.


http://dx.doi.org/10.1145/1273445.1273460
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://github.com/langroid/langroid
https://github.com/langroid/langroid
https://yaml.org/about.html
https://aclanthology.org/X98-1025/
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://github.com/langchain-ai/langgraph
https://github.com/cyb3rlab/cyris
https://github.com/cyb3rlab/cyris
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407

32.

33.

34.

35.

ARCER: an Agentic RAG for Cyber Ranges 19

J. Zhang, H. Bu, H. Wen, Y. Liu, H. Fei, R. Xi, L. Li, Y. Yang, H. Zhu, and D. Meng,
“When LLMs meet cybersecurity: a systematic literature review,” Cybersecurity,
2025. [Online]. Available: http://dx.doi.org/10.1186,/s42400-025-00361-w

R. Fang, R. Bindu, A. Gupta, Q. Zhan, and D. Kang, “LLM agents
can autonomously hack websites,” arXiv, 2024. [Online]. Available: https:
//arxiv.org/abs/2402.06664

R. Fang, R. Bindu, A. Gupta, and D. Kang, “LLM agents can autonomously exploit
one-day vulnerabilities,” arXiv preprint arXiv:2404.08144, 2024.

Y. Yan, Y. Zhang, and K. Huang, “Depending on yourself when you should: Men-
toring LLM with RL agents to become the master in cybersecurity games,” arXiv
preprint arXiw:2403.17674, 2024.


http://dx.doi.org/10.1186/s42400-025-00361-w
https://arxiv.org/abs/2402.06664
https://arxiv.org/abs/2402.06664

	ARCeR: an Agentic RAG for the Automated Definition of Cyber Ranges

