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As Ethereum continues to thrive, the Ethereum Virtual Machine (EVM) has become the cornerstone powering
tens of millions of active smart contracts. Intuitively, security issues in EVMs could lead to inconsistent
behaviors among smart contracts or even denial-of-service of the entire blockchain network. However, to
the best of our knowledge, only a limited number of studies focus on the security of EVMs. Moreover, they
suffer from 1) insufficient test input diversity and invalid semantics; and 2) the inability to automatically
identify bugs and locate root causes. To bridge this gap, we propose OPDIFFER, a differential testing framework
for EVM, which takes advantage of LLMs and static analysis methods to address the above two limitations.
We conducted the largest-scale evaluation, covering nine EVMs and uncovering 26 previously unknown
bugs, 22 of which have been confirmed by developers and three have been assigned CNVD IDs. Compared
to state-of-the-art baselines, OPDIFFER can improve code coverage by at most 71.06%, 148.40% and 655.56%,
respectively. Through an analysis of real-world deployed Ethereum contracts, we estimate that 7.21% of the
contracts could trigger our identified EVM bugs under certain environmental settings, potentially resulting in
severe negative impact on the Ethereum ecosystem.

CCS Concepts: « Software and its engineering — Software testing and debugging;  Security and
privacy — Software security engineering.

Additional Key Words and Phrases: Ethereum Virtual Machine, Differential Testing, Large Language Model

1 Introduction

Ethereum is the second-largest blockchain platform, supporting smart contracts as its killer appli-
cation [6]. Numerous applications are built upon smart contracts, such as NFTs [26], decentralized
finance [23], and games [16]. At the time of writing, the total market capitalization of Ethereum
has reached up to $307.21 billion [12]. To support the execution of smart contracts, the Ethereum
Virtual Machine (EVM) serves a critical role as the core execution environment. Instead of running
on each client node, EVMs can also be executed in local environments, such as simulating execution
results for smart contracts during prototype testing [52].

Given that vulnerabilities in smart contracts can result in substantial financial losses, the security
of smart contracts has drawn considerable attention from both academia and industry [52, 63, 66, 67].
In contrast, the security of the underlying EVM has been underexplored, which can result in even
more severe negative impacts. CVE-2021-39137 [17], a consensus vulnerability in Go-Ethereum
(Geth) [21], triggered a chain fork on Ethereum mainnet in August 2021. Due to Geth’s widespread
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deployment as the dominant Ethereum client, this vulnerability allowed malicious contracts to
fork Geth nodes from the mainnet as a result of inconsistent contract results, introducing double-
spending risks. The vulnerability stemmed from memory corruption in the EVM precompiled
contract datacopy, highlighting the necessity for rigorous EVM implementation testing.

To the best of our knowledge, only a few tools are available for testing the EVM, including
EVMFuzzer [28], NeoDiff [45] and go evmlab [56, 59]. Specifically, EVMFuzzer is the first differential
testing tool for EVM, using mutation on the source code of smart contracts to generate test inputs,
while NeoDiff directly generates contract bytecode through predefined template. Meanwhile, go
evmlab employs state transition tests based on similar pre-defined templates.

However, testing EVMs are hindered by some inherent limitations. On the one hand, it is
challenging to generate diverse and semantically-valid test inputs. Current work either generates
test inputs on source-code-level through compilation, which greatly reduces diversity [28], or only
performs syntax-correct mutations on bytecode-level without considering semantic validity [45, 56,
59]. It is hard to find a balance between these two requirements. On the other hand, it is challenging
to achieve automated bug identification and root cause localization for identified EVM inconsistencies.
Current approaches directly provide EVM developers with contracts that trigger inconsistencies,
which brings a huge time and manpower burden to their subsequent debugging work.

This work. We present OPDIFFER, an opcode-level differential testing framework for EVM, which
can generate semantically-valid and diverse test inputs for differential testing and automatically
identify EVM implementation bugs with the corresponding root causes inside EVM. We take advantage
of Large Language Models (LLMs) with static analysis methods to extract opcode definitions from
the specification, applying control-flow-oriented mutation and argument-oriented mutation to
generate opcode-level test inputs. With collected results from differential testing, we focus on three
critical metrics to identify bugs and propose a root cause localization algorithm leveraging LLMs to
link the bug back to its corresponding implementation within the EVM. We have evaluated the
effectiveness of OPDIFFER on nine EVM implementations covering multiple scenarios. Compared
with state-of-the-art baselines, OPDIFFER increases code coverage by 71.06%, 148.40% and 655.56%,
respectively. Moreover, OPDIFFER has successfully uncovered 26 distinct bugs, 22 of which have
been confirmed, and three of which are assigned CNVD IDs.

Contribution. We make the following contributions in this work:

e We present OPDIFFER, an opcode-level differential testing framework for EVM, which can
generate semantical-valid and diverse test inputs by taking advantage of LLMs and static analysis.

e We propose an automated bug identification and root cause localization algorithm, leveraging
LLMs to locate the faulty implementations in EVMs to facilitate risk assessment and bug patch.

o OpPDIFFER has identified 26 unknown bugs from nine EVM implementations, among which 22
have been confirmed or patched with our timely disclosure. Additionally, three vulnerabilities
have been assigned with CNVD IDs.

e Our evaluation of real-world Ethereum contracts indicates that opcodes with faulty implementa-
tions are widespread (7.21% of existing contracts) within Ethereum mainnet.

2 Background

2.1 Ethereum Virtual Machine

Ethereum Virtual Machine. The Ethereum Virtual Machine (EVM) serves as the runtime environ-
ment for executing Ethereum smart contracts. Designed as a stack-based virtual machine, the EVM

executes bytecode at a low level. The architecture of the EVM encompasses several foundational
concepts that are essential to Ethereum’s execution[62]:
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o Stack. The EVM operates with a stack-based architecture, maintaining a stack of up to 1024
elements, each represented as a 256-bit word.

o Memory. The memory model of EVM is a volatile, word-addressable byte array, with all memory
locations initially defined as zero.

e Gas. To prevent network abuse and address challenges inherent to Turing completeness, all
computations in the EVM incurs fees, measured in units of gas. The gas fees are charged on
opcode level, whose price may fluctuate according to the concrete behavior of the opcode. For
instance, the EVM opcode BALANCE has a variable gas cost: if the address queried by BALANCE
has already been accessed within the same transaction, the gas cost is 100; otherwise, a higher
dynamic gas charge of 2600 applies.

e Storage. The storage in EVM is a persistent key-value store which is part of the Ethereum state,
with all locations initially set to zero. Storage can be read and written using the specific opcodes,
like SLOAD and SSTORE.

e Code. The bytecode of the smart contract to be executed is stored in an immutable ROM within
EVM, accessible only through specialized opcodes (e.g., CODESIZE, CODECOPY).

e Program Counter. The program counter (pc) in the EVM indicates the position of the next opcode
to be executed. For opcodes that include operands (e.g., PUSH1 0x60), the pc is incremented by
1+ x, where x represents the number of operands.

Ethereum Virtual Machine Opcodes. An EVM opcode is an atomic instruction that the EVM
can interpret and execute. Opcodes are building blocks of smart contract bytecode and are used
to perform various operations within the EVM. Each opcode is represented by a single byte (8
bits), which allows for a range of 256 possible opcodes (from 0x00 to 0xFF in hexadecimal). As of
October 2024, Ethereum had undergone its latest mainnet upgrade, known as Dencun [25], which
has expanded the EVM to include 149 opcodes.

Ethereum Specifications. The Ethereum network is a continuously evolving decentralized system.
To effectively test the security of the EVM, it is essential to understand its design and security
features based on Ethereum specifications. Currently, the primary specifications for Ethereum
include The Yellow Paper, Ethereum Improvement Proposals (EIPs), and Ethereum Execution Client
Specifications.

o The Yellow Paper. The Ethereum Yellow Paper [62] provides a mathematically rigorous formal
specification of the Ethereum protocol and the EVM execution model. While its mathematical
formalism ensures precision, it presents comprehensive challenges for programmers and has not
been updated beyond the Shanghai fork of April 2023 [25].

o Ethereum Improvement Proposals. Ethereum Improvement Proposals (EIPs) [13] are standards that
define potential new features or processes for the Ethereum network. Once an EIP is accepted
and implemented, it may modify or extend the specifications presented in the Yellow Paper,
ensuring that the formal documentation remains consistent with protocol developments.

o Ethereum Execution Layer Specifications. For the purpose of providing a more programmer friendly
and up-to-date specification of Ethereum than the traditional Yellow paper [60], the Ethereum
Execution Layer Specification (EELS) [20] was introduced. The EELS serves not only as an EVM
implementation, but also as a specification of the core components of an Ethereum execution
client. It is written in Python, with a focus on clarity and readability. EELS provides a current
and detailed description of the Ethereum execution client specifications, integrating the latest
protocol updates to ensure continued compatibility with the Ethereum mainnet.
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1 ++ func expModulus () *big.Int {
2 ++ m := &big.Int{}
3 ++ return m.Exp(big.NewInt(2), big.NewInt(256), nil)
4 ++ 3}
5
6 func (i *Int) Exp(e *xInt) *Int {
7 -- i.Int.Exp(i.Int, e.Int, nil)
8 ++ i.Int.Exp(i.Int, e.Int, expModulus)
9 return i.toI256()
0 }
(a) How SealEVM implements the EXP opcode, as well as the patch.
1 def exp(evm: Evm) -> None:
2 base = Uint(pop(evm.stack))
3 exponent = Uint(pop(evm.stack))
4 exponent_bits = exponent.bit_length()
5 exponent_bytes = (exponent_bits + Uint (7))
6 charge_gas (
7 evm, GAS_EXPONENTIATION + GAS_EXPONENTIATION_PER_BYTE x exponent_bytes
8 )
9 result = U256 (pow(base, exponent, Uint(U256.MAX_VALUE) + Uint(1)))
0 push(evm.stack, result)
1 evm.pc += Uint (1)

(b) The specification of the EXP opcode.
Fig. 1. A motivating example about the bug of the EXP opcode in SealEVM.

2.2 Differential Testing

Over the past decade, fuzzing has emerged as an exceptionally effective approach for uncovering
software bugs [50]. Fuzzing generally requires a test oracle—a mechanism to identify whether
the output is correct or erroneous. In cases where an oracle is not easily available, differential
testing comes to use. Specifically, differential testing is used to identify bugs or inconsistencies
by comparing the behavior or outputs of multiple implementations of the same functionality. In
this approach, the same input is provided to each implementation, and their outputs are compared.
Any discrepancies between the outputs can indicate unexpected behavior or potential bugs in
one or more of the implementations. Differential testing first requires generating test inputs for
target programs to execute. During the execution, the runtime information will be collected for
comparison and further bug report. Differential testing is particularly effective for uncovering
semantic or logical bugs that do not exhibit explicit erroneous behaviors, such as crashes or assertion
failures.

3 Challenges & Solution

In this section, we will detail the challenges in performing differential testing for EVM by providing
motivating examples in §3.1. Then, we will propose our high-level solution in §3.2.

3.1 Motivating Example & Challenges

Given the complexity of the EVM, fully avoiding implementation bugs remains challenging. To
illustrate this, we present the following motivating example. Fig. 1a shows a bug (as well as its
patch) in SealEVM [51], a custom third-party EVM implementation. Specifically, this bug is a
mathematical calculation related bug within the implementation of opcode EXP. When executing
the opcode EXP with crafted parameters, SealEVM will be stuck, disrupting the normal execution of
subsequent opcodes. The root cause is that SealEVM lacks the modulus implementation defined in
the specification, as shown at Line 9 of Fig. 1b. Triggering this bug requires 1) a deep understanding of
the semantics of the EXP opcode in the specification, and 2) careful construction of the corresponding
parameters as input.
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def jump(evm: Evm) -> None: // bytecode 602056...6080
jump_dest = Uint(pop(evm.stack)) 1 PUSH1 20 // Counter
charge_gas (evm, GAS_MID) 3 JUMP // Jump to counter

if jump_dest not in evm.
valid_jump_destinations:
raise InvalidJumpDestError
evm.pc = Uint(jump_dest) 20 PUSH1 8@ // Not a JUMPDEST

(a) The specification of the JUMP opcode. (b) A semantically invalid case.

Fig. 2. An example for illustrating a semantically-invalid case.
Table 1. A comparison of existing differential testing tools for EVM, where Level and Approach refer to their
test inputs generation methods. The @, ©, and O symbols represent full, partial, and no semantic validity or
diversity, respectively.

Tool Level A h Challenge #1 Challenge #2
oo eve pproac Validity Diversity | Bug Identification Root Cause Localization
EVMFuzzer | source code compilation [ ] o opcode length, gas -
NeoDiff bytecode template O © type-hash, state-hash Opcode
FuzzyVM bytecode template o ()] state transition -

In summary, conducting differential testing against different EVM implementations presents

significant challenges, which can be summarized into two aspects in Table 1.
Challenge #1: Generating test inputs that satisfy both diversity and semantic validity
requirements is challenging. Testing the EVM implementation first requires the generation of
test inputs. Currently, source-code-level and bytecode-level test input generation exist, which suffer
from this challenge.

Specifically, source-code-level methods require source code as inputs to generate more test inputs.
However, leveraging source code for testing has certain limits. According to the prior work of
P. Ma et al. [43], only 2% of the contracts are open-source. In addition, our analysis of recently
verified open source contracts (Etherscan dataset at §5.3) has shown that 88.42% contracts are
ERC20 contracts. Those ERC20 contracts represent real-world business logic, and attackers are
unlikely to open source malicious contracts or share their bytecode. This limits the characterization
of malicious behaviors and hinders the effective testing of EVM implementations against corner
cases. In other words, the diversity of test inputs generated from source-code-level methods cannot
satisfy the real-world requirements.

As for bytecode-level methods, they directly take contract bytecode as inputs and perform
mutation to enlarge the diversity of the test input corpus. However, the mutation only considers
the syntax correctness without semantic constraints. For example, Fig. 2b illustrates a JUMP related
bytecode snippet. Though it meets the syntax correctness, like stack balance, it does not consider
that each JUMP requires a corresponding JUMPDEST as its semantic validity requirement, which is
illustrated in Fig. 2a. Consequently, the bytecode-level methods would generate test inputs with
semantic invalidity.

Challenge #2: It is challenging to achieve automated bug identification and root cause
localization for EVM inconsistencies. Though differential testing does not require oracles,
identifying the specific bug and localizing the corresponding root cause in EVM is still challenging.
Specifically, different EVM adopts different programming languages and component architectures
in their implementations. Moreover, they may behave distinctively on the same metric. For ex-
ample, due to language-specific features, EVM implementations handle errors differently across
platforms. Consequently, identifying if bugs, i.e., discrepancies, really exist by comparing EVM be-
haviors is difficult. As for the root cause localization, it also puts forward further requirements on
the scalability of the method. Specifically, only providing bytecode test input is of limited help to
developers, because they do not know which opcode or which logic problem in the EVM causes
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this inconsistency. However, as mentioned above, different EVMs adopt different programming
languages and architectural designs, leading to the challenges in locating the root cause.
Limitations of current tools. To the best of our knowledge, only a few tools are available for
testing the EVM, i.e., EVMFuzzer [28], NeoDiff [45], and FuzzyVM [56, 59]. We underline all existing
tools have certain limitations.

Specifically, EVMFuzzer is the first differential testing tool for EVM, utilizing source codes of smart
contracts as seeds and employing 8 predefined mutators to generate new contracts. Subsequently,
these contracts are compiled into bytecode for execution within the EVM. Intuitively, its method is
limited by Challenge #1. Moreover, it requires huge manual effort to confirm bugs and localize
root causes, i.e., the ones stated in Challenge #2.

As for NeoDiff, it is a feedback-guided differential fuzzing framework for EVMs. It directly
generates contract bytecode based on predefined templates and mutates them with feedback
information. Due to the use of human-crafted templates, the generated bytecode exhibits similar
structures, leading to insufficient diversity (Challenge #1). Moreover, the excessive length of
the NeoDiff generated bytecode complicates the process of bug identification and it is limited to
reporting only the opcode responsible for the inconsistencies, lacking a comprehensive analysis of
their underlying causes as discussed in Challenge #2.

FuzzyVM [59], maintained by developers from the Go-Ethereum Team [21], generate test inputs
based on pre-defined templates and performs fuzzing on Geth. The actual execution is handled by
Go evmlab [56], which facilitates differential testing with other EVM implementations. Specifically,
FuzzyVM conducts state transition testing to find EVM bugs. State transition tests [15] first define
the pre-state and execution environment of the EVMs, then execute a sequence of transactions to
achieve a post-state. However, since the state test requires a well-defined execution environment
setting and complicated transaction sequences, expert knowledge is necessary to write state tests
effectively, which reflects the issues discussed in Challenge #1. Besides, FuzzyVM requires manual
effort to review inconsistencies, which also faces the Challenge #2.

3.2 Solution

In response to these two challenges, we propose the following ideas: To tackle Challenge #1, we
propose the concept of opcode-level test inputs generation. It refers to generating short snippets for
each opcode based on specifications. To ensure the semantic validity and diversity of generated test
inputs, we combine static analysis with Large Language Models (LLMs). Leveraging the advanced
capabilities of LLMs in natural language understanding and the ICFG parsed by static analysis,
as well as the control-flow-oriented and argument-oriented mutation strategies, we can generate
semantically valid and diverse inputs tailored for differential testing. Regarding Challenge #2, we
instrument the target EVMs and introduce three metrics designed to evaluate EVM implementation
consistency for automated bug detection. For confirmed bugs, we propose a root cause localization
algorithm leveraging LLMs to locate the responsible implementation in the source code.

4 Approach

This section presents the design of our framework, dubbed as OPDIFFER.

4.1 Overview

Fig. 3 illustrates the workflow of OPDIFFER. As we can see, it can be divided into three phases,
i.e., LLM-assisted test input generation (§4.2), differential testing (§4.3), and bug identification &
root cause localization (§4.4). Specifically, OPDIFFER takes EELS (the specification for each opcode
written in Python, see §2.1) as inputs. Then, OpDIFFER will generate test inputs, while considering
diversity and semantical validity, with the help of LLMs and static analysis. Before conducting the
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Fig. 3. The workflow overview of OPDIFFER.
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differential testing, OPDIFFER will initiate the execution context for all EVMs. After the execution,
the results and runtime data from instrumented EVMs will be parsed in a uniform format for bug
identification, which will be further utilized for root cause localization. At last, OpDIFFER will
output the corresponding bug reports.

4.2 LLM-Assisted Test Input Generation

Instead of using the existing source code of smart contract, which intertwines the implementation
correctness of the compilers as described in Challenge #1, we employ a generation-based method
to directly generate EVM bytecode for testing. Initially, we employed template-based methods to
generate test inputs derived from the Ethereum Execution Layer Specification (EELS). However,
this approach requires significant human effort to read the specification and manually design the
templates. Considering the presence of code comments and definitions within specifications and
the recent advancements demonstrated by Large Language Models (LLMs) in code generation and
natural language processing tasks [31, 38, 40, 55, 64], LLMs offer an effective approach to interpret
and generate test inputs based on opcode specifications. In order to improve the performance of
LLMs on this specific type of task, we take advantage of the EELS to construct prompts. This phase
can be further divided into four steps.

4.2.1 Step I: Opcode Seeds Construction. To facilitate the test input generation, we leverage LLMs
to build initial seeds for each opcode. Specifically, we first explored the GitHub repository of EELS!
[20], where the semantics of each opcode is defined and written in Python functions. For each
opcode, we generate prompts to create the corresponding seed generators. Fig. 4 is a prompt used
for constructing a seed generator for the EVM opcode BYTE. As we can see, the prompt consists of
context, task description, output requirements, additional notes, and the opcode definition from
EELS. Fig. 5 presents an example seed generator of the opcode BYTE opcode generated by LLMs.
The seed generator can generate a bytecode sequence, i.e., seed, that correctly invokes the BYTE
opcode by placing valid parameters on the stack, ensuring the semantical validity.

Existing research [18] has demonstrated that GPT-4 could achieve high accuracy in Python code
generation tasks, particularly for short code snippets. Our evaluation indicates that the length of
the seed generator is an average of 14 lines of code. Furthermore, our experimental results validate
GPT-4’s high accuracy, underscoring the feasibility of this approach.

4.2.2  Step lI: Specification-Based ICFG Extraction. Though Step I illustrates that directly taking
the EELS as input to construct seeds is feasible, since there may be function calls within the EELS
(such as the charge_gas call at Line 4 in Fig. 4), considering only the specification function defined
in EELS cannot cover its control flow completely. For example, if external function calls are not
taken into consideration, only two paths of opcode BYTE will be generated, as shown in Fig. 6a.
However, callee may introduce additional control flows, if these are overlooked, it can prevent the

EELS defines the EVM opcodes in the src/ethereum/fork/vm/instructions folder.
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Prompt 1: Opcode seed generator construction

System: You are an expert in Ethereum Virtual Machine (EVM).

Task: Given the following opcode specification, you should write a Python function that
generates executable bytecode test case for the given opcode.

Requirements:

1. The function should create a valid bytecode sequence, including any required push opera-
tions and memory operations for operands.

2. The function should also add the bytecode corresponding to the opcode itself.

3. Use random to generate random values where necessary, such as for operand lengths.

4. The function should return the bytecode as a hex string.

Note: There is no need to explain your answer, just return the Python code.

Input: EVM opcode BYTE and its specification.

1 def get_byte(evm: Evm) -> None:
For a word (defined by next top element of the stack), retrieve the
Nth byte (@-indexed and defined by top element of stack) from the
left (most significant) to right (least significant).
evm : The current EVM frame.

# STACK
2 byte_index = pop(evm.stack)
3 word = pop(evm.stack)
# GAS
4 charge_gas(evm, GAS_VERY_LOW)
# OPERATION
5 if byte_index >= 32:
6 result = U256(0)
7 else:
8 extra_bytes_to_right = 31 - byte_index
# Remove the extra bytes in the right
9 word = word >> (extra_bytes_to_right * 8)
# Remove the extra bytes in the left
10 word = word & OxFF
11 result = U256 (word)
12 push(evm.stack, result)
# PROGRAM COUNTER
13 evm.pc += 1
. J

Fig. 4. Prompt for generating seed generator of the BYTE opcode.

generation of test inputs that cover the certain control paths each opcode may execute at runtime.
As shown in Fig. 6b, the pop will introduce an additional control flow if the stack is empty, and the
charge_gas will revert if the given gas has been exhausted. Therefore, we parse and extract the
inter-procedural control flow graph (ICFG) for each opcode’s specification, which could capture
the control flow relationships across different functions.

4.2.3  Step Ill: Control-Flow-Oriented Mutation. To generate test inputs with diversity and seman-
tical validity, we utilize the reasoning and inferential capabilities of LLMs to mutate the existing
seeds to cover more paths defined in the control flow of opcode specification. Specifically, to ensure
that the test inputs generated by LLMs remain valid and executable, we leverage the previous
seeds from §4.2.1 to construct the input prompts. These seeds produced by seed generators serve
as concrete examples that guide the LLMs in producing test inputs that adhere to the expected
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def generate_byte_bytecode() -> str:
# Initialize an empty bytecode array
bytecode = bytearray()
# Generate and push a random value (1 to 32 bytes) onto the stack
lengthl = random.randint (1, 32)
push_bytecode_hex1 = generate_push_bytecode(lengthl)
push_bytecodel = bytes.fromhex (push_bytecode_hex1)
bytecode.extend (push_bytecodel)
# Push a byte index (0x@ to @xff) onto the stack
length2 =1
push_bytecode_hex2 = generate_push_bytecode(length2)
push_bytecode2 = bytes.fromhex (push_bytecode_hex2)
bytecode.extend (push_bytecode2)
# Append the BYTE opcode (@x1a)
bytecode.extend(b"\x1a")
return bytecode.hex()

Fig. 5. A generated seed generator for the BYTE opcode.

@ len(stack) > 0 len(stack) < 0

index < 32 index > 32 /®\

len(stack) > 0 len(stack) < 0 Path 1

Stack
Underflow
gas_lefi >3 gas_left<3
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¥

Path 3

len(stack) < 1024 len(stack) > 1024 len(stack) < 1024

.H Path 7 Path 5, Path 6 Path 4

(a) Without considering ICFG. (b) Considering ICFG.

Fig. 6. The control flow of BYTE in EVM, where the specification and line numbers in Fig. 4.

structure and specifications, ensuring semantical validity. Considering that LLMs may struggle
with interpreting hexadecimal bytecode seed, we convert the seed into its mnemonic representation
to enhance the LLM’s comprehension of the example. The input of the prompt consists of the
opcode name, an example bytecode seed in both its hexadecimal and mnemonic forms, and an
inter-procedural control flow graph (ICFG). Leveraging their reasoning and inferential capabilities
regarding control flow within the ICFG, LLMs are expected to mutate the seeds and output a list
of valid bytecode, tailored for execution within the EVM environment. An example prompt for
control-flow-oriented mutation is shown in Fig. 7.

4.2.4 Step 1V: Argument-Oriented Mutation. Considering that reaching certain branches in the
control flow paths outlined in the opcode specification requires operands to be boundary values
(For example, Path 4 in Fig. 6b), LLMs may fail to mutate seeds to cover all the paths in the CFG.
Moreover, relying solely on LLMs to produce diverse bytecode is economically expensive. Therefore,
we propose an argument-oriented mutation strategy to mutate the arguments in the mutated seed
to introduce diversity and randomness for differential testing. The Algorithm 1 illustrates the details
of argument-oriented mutation strategy. Specifically, as shown in Line 15, Line 17 in Algorithm
1, we apply mutations to the operands following the PUSHX opcodes by replacing them with their
boundary values or random values with a probability, where X is the byte length. This approach
aims to introduce diversity in operand values, increasing the likelihood of reaching edge cases in
the execution paths.
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Prompt 2: Opcode control-flow-oriented mutation

System: You are an expert in Ethereum Virtual Machine (EVM).
Task: You will receive a JSON object with these four fields about an EVM opcode:
Requirements:

1. opName: The name of the EVM opcode.

2. seed: An example of a valid hex string bytecode seed for the opcode BYTE.

3. seed_mnemonics: The mnemonic representation of the seed, which is helpful to understand
the bytecode.

4. ICFG: The inter-procedural control flow graph (ICFG) described in Python, covering all
possible paths of the opcode’s specification, constructed using the Graphviz dot tool. The
bytecode provided in seed field represents one possible execution path in the ICFG.

Objective:

1. Generate a comprehensive set of test inputs that cover all possible paths through the
opcodes as defined by the provided ICFG.

2. Each test input must be a valid hex string representing valid bytecode. You may refer to
the format of the provided example, but you do not need to strictly follow it.

3. Return the test inputs in a comma-separated list format, where each element is the corre-
sponding hex string.

Input format: A JSON object containing the four values above.

Output format: Only a comma-separated list, where each element is a bytecode string

executable within the EVM environment.

EXAMPLE OUTPUT:

[hexstr_1, hexstr_2, ..., hexstr_n]

Note: No explanation is needed, just output the test inputs in a comma-separated list.

Fig. 7. Prompt for implementing control-flow-oriented mutation for opcode BYTE.

4.3 Differential Testing

In the second phase, OpDIrFER will conduct differential testing by taking the generated test inputs
from §4.2 as inputs on EVMs. However, given the target EVMs are implemented in a different
manner, we need to provide a consistent context for them. Moreover, instead of only examining
the final state for each EVM, we also analyze the intermediate states during the differential testing.

4.3.1 Consistent Context Initialization. To avoid false alarm during differential testing, we initialize
all EVMs in a consistent context, including forks, account states, and global states.

Forks. Ethereum adopts forks to introduce technical upgrades or changes [25]. In the context of
EVM, different forks may represent different instruction sets, and even functionalities. To ensure
the compatibility among EVMs, we configure all EVMs under the same fork, i.e., Cancun [25].
Account states. Ethereum can be taken as a state machine, where transactions can lead to the
changes of permanent data, e.g., accout balance. To avoid the distinctions brought by these
account states, we initialize a set of accounts under the same addresses with identical balances
and embedded codes (i.e., smart contracts).

Global states. Apart from account states, Ethereum has several inherent global attributes, which
may affect the state of the whole blockchain, e.g., chainid, block number, and timestamp. Similarly,
to ensure the testing consistency, we must unify their values across EVMs.
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Algorithm 1: The algorithm of argument-oriented mutation

Input: seed — the EVM bytecode seed to be mutated
p — the mutation probability
t — the number of mutation iterations
Output: testinputs — the set of test inputs after mutation
1 Function Mutation(seed, p, t):

2 testinputs «— @;
3 for iteration « 0 to t do
4 seedpyr <— """ // Initialize empty seed
5 for index < 0 to seed.length do
6 opcode « seed[index : index + 2];
7 seedmyur < seedmy; || opcode;
8 index < index + 2;
9 if opcode € PUSHX_SET then
10 byteslen «— getBytelLen(opcode);
11 index < index + 2 X byteslen;
12 r < RandomFloat(0, 1);
13 if r < p then
14 if r < p/2 then
15 ‘ operand « 00 X byteslen ; /1 All zeros
16 else
17 ‘ operand «— FF X byteslen ; // All ones
18 else
19 ‘ operand « RandomBytes(byteslen) ; // Random valid operand
20 seedp,y; — seedpy, || operand;
21 testinputs « testinputs U seedpmy; ; // Add the mutated seed to the set
22 return testinputs

For each round of differential testing, the context should be initialized consistently as we men-
tioned above. However, we have to argue that different context setting may lead to different
behaviors. For example, the Path 3 in Fig. 6b is related to the gas availability, which will be triggered
exclusively by insufficient gas allocation. Thus, before each round of testing, we will randomize
the context while ensuring its consistency among EVMs. Note that, since not all EVMs support
custom context configurations, we had to modify the source code of certain EVM implementations
to achieve such a consistency.

4.3.2 Differential Testing. After setting the context, OPDIFFER takes test inputs generated from
the §4.2 as inputs and conducts differential testing. Besides the final state, the runtime intermediate
states, e.g., stack and memory, are also considered by OpDi1FFER for the following bug identification
and root cause localization. Inspired by the EIP-3155 [46], we manually record the EVM state before
the execution of each opcode in a same format. Specifically, for each opcode, we pay attention to
the program counter, the opcode name, remaining gas, consumed gas, stack, memory, and other
auxiliary data. This enables us to record necessary runtime information, ensuring comprehensive
capture of execution details for each EVM.
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4.4 Bug ldentification & Root Cause Localization

With collected states from the differential testing in the second phase, we specifically pay attention
to some fields that are critical to cause EVM bugs. By leveraging LLMs, we can further pinpoint the
corresponding functions in EVMs, reducing the burden of debugging for developers.

4.4.1 Bug Identification. To identify bugs from EVM inconsistencies, we focus specifically on to
the following three metrics abstracted from collected states in the second phase.

o Return data. The return data inside EVM is primarily utilized for messages calls to return values. It
works similarly to a hash representing the outcome of execution, directly reflecting inconsistency
between EVMs.

o Gas usage. As the EVM is designed to use gas to restrict the resource abuse, EVM will charge the
gas for each opcode before the operation is actually executed. If the gas usage is inconsistent, it
means that either opcode is not implemented according to the specification, or a different control
flow is taken by an EVM.

e Storage. Storage is one of the permanent data stored on-chain. Intuitively, its changes can
also be used as an indicator. In total, six opcodes are related to storage changes, i.e., SSTORE,
TSTORE, CREATE, CREATE2, SELFDESTRUCT, and REVERT?. Before and after the execution of these
six opcodes, we parse and record values in storage to identify if any inconsistency exists.

To ensure that the bug is reproducible, we will reproduce the identified bugs using the previously
saved information. Specifically, we will re-execute the test input that triggered the bug on the EVMs
with the same configuration as the prior run. In summary, we will extract these three metrics from
all intermediate and final states to assess any discrepancies between EVM implementations.

4.4.2  Root Cause Localization. After bugs are identified as mentioned in §4.4.1, it is essential to
locate their root causes to reduce duplicates and assist developers in fixing the corresponding issues.
Thus, we propose a root cause localization algorithm, as shown in Algorithm 2.

Firstly, we compare all values in fields of all states generated from different EVM implementations
to locate the specific opcode that triggered the inconsistency (Lines 2 — 4). With the opcode
corresponding to the identified bug, we further need to figure out which part of the implementation
in EVM is responsible for that. We utilize LLMs to extract the mapping relations between opcodes
and their corresponding functions in EVMs (Line 5). Based on our analysis of the specification,
we found that the logic in EELS for handling opcodes can be divided in to four phases: stack, gas,
operation, and pc. Therefore, when inconsistencies are detected, the root cause is identified by
pinpointing the specific phase where the discrepancy occurs (Lines 10 — 17). For instance, if the
divergence is observed in the stack values, it indicates the issue lies in the implementation on
handling the EVM stack. Finally, the responsible opcode, its corresponding function in EVMs, as
well as the root cause identified by Algorithm 2 are returned.

5 Implementation and Evaluation

We implemented OPDIFFER with Python, building on top of EVMFuzzer. To parse the ICFG from
the Ethereum Execution Layer Specification, we use Scalpel [37], a static analysis framework for
Python. For the integrated LLM, we choose the latest version of GPT-4o, the state-of-the-art LLM
from OpenAl. Our experiments aim to answer the following four research questions:

RQ1 How is the performance of OPDIFFER compared to baselines?
RQ2 How many real-world bugs in EVM implementations can be identified by OpDIFFER, and
what are their root causes?

ZPlease refer to [53] for their detailed explanations.
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Algorithm 2: Root Cause Localization Algorithm

Input: testinput: the EVM test input that triggered inconsistency
sc: the source code of the EVM
Output: opcode: the opcode responsible for the inconsistency
func: the function implementing the opcode
cause: the root cause
1 Function RootCauselLocalization(testinput,sc):

2 cause «— "";

3 runtime;nr, < Execute(testinput) ; // Get runtime information
4 opcode «— Compare(runtimepf,) ; // Get the responsible opcode
5 funcMap < LLM4ExtractFunc(opcode, sc) ; // Extract opcode-function map
6 foreach pair € funcMap do

7 if pair.key is opcode then

8 func « pair.value;

9 diff « getDiff(runtime_info, opcode) ; /! Compare runtime information
10 if diff found in stack then

11 ‘ cause <« cause || "stack handling implementation”;

12 if diff found in gas then

13 ‘ cause «— cause || "gas handling implementation"”;

14 if diff found in memory then

15 ‘ cause < cause || "operation execution implementation”;

16 if diff found in pc then

17 ‘ cause «— cause || "program counter handling implementation";
18 return (opcode, func, cause)

RQ3 What are the characteristics and the real-world impacts of the detected bugs?
RQ4 How does each component of OPDIFFER contribute to its code coverage?

Experiment Setup & Baseline Selection. All experiments were performed on a desktop running
Ubuntu 20.04 with an Intel i7-12700 CPU and 128GB RAM. We selected the state-of-the-art EVM
testing frameworks, EVMFuzzer [28], NeoDiff [45] and FuzzyVM [59] as baselines for our evaluation.
For test input generation, EVMFuzzer operates at the source-code-level to produce bytecode for
EVM execution, which faces challenges in §3.1. In addition, NeoDiff generates bytecode-level test
inputs using predefined templates, but similarly struggles with a lack of diversity, as discussed
in §3.1. FuzzyVM generates state test inputs using different strategies, which are also limited in
diversity, as illustrated in §3.1.

Targeted EVMs. To systematically test the EVM implementations, we collected 49 EVM imple-
mentations in the Ethereum ecosystem to the best of our efforts. Out of them, we choose three
categories of EVM as our targets, which together cover more than 97% execution clients on the
Ethereum mainnet [2] and include all officially recommended standalone EVM implementations
[24]. Besides, to test the completeness of minority third-party EVM implementations, we also select
two relatively niche EVMs for analysis. Our target EVMs can be divided into three categories, i.e.,
Ethereum mainnet execution client’s EVM, Ethereum officially recommended standalone EVM, and
Third-party custom EVM, as shown in Table 2. All these EVMs are actively maintained by developers,
with their most recent commits pushed within the past two months.
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Table 2. Overview of the selected EVM implementations.

Category EVM Project Language Github Stars Version

Geth [21] Golang 47.4k 1.14.9
execution client Besu [33] Java 1.5k 24.8.0
Nethermind [47] C# 1.3k 1.29.1
Py-EVM [22] Python 2.3k 0.8.0b1
evmone [19] C++ 867 0.11.0
standalone EVM ethereumjs [14]  TypeScript 2.6k 2.1.0
revm [1] Rust 1.6k 0.9.0
SealEVM [51] Golang 16 0.3.0
custom EVM Chainmaker [48] Golang 3 2.3.3

Table 3. Code coverage results for 12 hours.

Tool ‘ Geth (All) Geth (Opcode Funcs) ‘ SealEVM (All) SealEVM (Opcode Funcs)

OPDIFFER 54.40% 91.85% 90.10% 89.87%
EVMFuzzer 31.80% 44.12% 56.60% 57.38%
NeoDiff 21.90% 17.98% N/A N/A
FuzzyVM 7.20% 1.43% N/A N/A

5.1 RQ1: Comparison with Baselines

To compare the performance of OPDIFFER with baselines, we mainly focus on their code coverage
on EVMs. As Geth is the only EVM supported by all tools, we first take Geth into consideration.
As OpDIFFER is implemented based on EVMFuzzer, thus both of them support SealEVM. Finally,
against Geth and SealEVM, we ran OpDIFFER, EVMFuzzer, NeoDiff and FuzzyVM for 12 hours. As
both targeted EVMs are implemented in Golang, we take advantage of its official code coverage
tool [29]. We measured not only the code coverage of the EVM as a whole, but also the specific
functions responsible for opcode processing. We recorded the code coverage on an hourly basis,
where the results are shown in Fig. 8 and Table 6.
Overall Results. As shown in Table 6, when considering Geth/evm as a whole, OPDIFFER achieves
a code coverage of 54.4%, surpassing the coverage of EVMFuzzer, NeoDiff, and FuzzyVM by 71.06%,
148.40% and 655.56%, respectively. When only considering the opcode-related functions, OPDIFFER
can cover 91.85% of statements, which is 108.18%, 410.85% and 6323.08% more than EVMFuzzer,
NeoDiff and FuzzyVM, respectively. FuzzyVM reached the lowest coverage for Geth that only 1.43%
of the lines in the opcode implementation functions were touched. This may be attributed to its
inability to generate semantically valid and diverse test inputs. In the case of SealEVM, the results
are similar. Compared to EVMFuzzer, OPDIFFER achieves 59.18% and 56.62% higher code coverage
when considering SealEVM as a whole or only opcode-related functions. The reason behind such a
significant improvement is that OpPDIFFER proposes an opcode-level test input generation approach
based on the EVM specification, which can generate semantically valid and diverse test inputs
with LLM’s assistance. In contrast, due to EVMFuzzer generates bytecode through compilation,
while NeoDiff and FuzzyVM utilizes templates-based approach for test input generation; these tools
struggle to produce semantic-valid and diverse test inputs capable of covering certain statements
in EVM implementations.
Coverage Trend. We measured the code coverage on an hourly basis. After twelve hours, the
coverage results of all tools eventually converge, which are displayed in Fig. 8.

As shown in Fig. 8a, OPDIFFER achieves higher coverage than EVMFuzzer, NeoDiff and FuzzyVM
throughout the entire testing process. The coverage of other tools has converged within less than
one hour, indicating that existing tools fail to test the Geth implementations of EVM opcodes due to
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Fig. 8. Coverage results of OPDIFFER, EVMFuzzer, NeoDiff and FuzzyVM on Geth and SealEVM. Bars represent
the achieved code coverage, while lines represent the coverage improvement by which OpDIFFER exceeds
EVMFuzzer, NeoDiff and FuzzyVM.

lack of diversity of test inputs. Although baselines may generate more test inputs than OPDIFFER,
their generated inputs cannot further improve the coverage across target EVM implementations.
In contrast, OPDIFFER generates more diverse and semantically valid test inputs, resulting in its
increase in coverage even after eight hours. In addition, Fig.8b demonstrates OPDIFFER’s coverage of
opcode-related functions compared to baselines. While EVMFuzzer initially shows higher coverage
by testing multiple opcodes simultaneously through compiler-generated bytecode, OPDIFFER’S
depth-first strategy focuses on thorough testing of individual opcodes. Despite a lower initial
coverage in the first five hours, OPDIFFER ultimately achieves 59.18% and 56.62% higher coverage
than EVMFuzzer after 12 hours on SealEVM, as shown in Fig.8c and Fig. 8d.

Answer for RQ1: Compared with three state-of-the-art baselines, OPDIFFER achieves at most
148.40% and 410.84% coverage improvement when considering the EVM as a whole and only the
opcode-related functions, respectively. The continuous growth of the code coverage proves the
effectiveness of our proposed test input generation method.
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Table 4. Details of all identified bugs of OPDIFFER, Qty is the number of affected opcodes, Opcode is an
example affected opcode. Symbols @,0, and O represent bugs assigned CNVD/CVE IDs, currently under
review, or not reported, respectively.

No. Project State Root Cause Opcode Qty Issue CNVD
1 Fixed Network fork PUSHO 6  #29782 (@)
2 Geth Fixed Instruction set ~ PREVRANDAO 1 #29722 ©
3 Fixed Address setting BALANCE 1 #30254 @)
4 Fixed Fee setting BASEFEE 1 #30279 O
5 Fixed Gaslimit setting GASLIMIT 1 #7432 (@)
6 Besu Fixed Fee setting BASEFEE 1 #7433 (@)
7 Fixed Tracing REVERT 1 #7608 @)
8 Fixed Entry point N/A N/A #7430 (@)
9  Nethermind Confirmed Instruction set PUSHO 6 #7629 @)
10 EthereumJ$ Confirmed Address setting N/A N/A #3236 [ J
11 Will fix ~ Memory tracing N/A N/A #3561 (@)
12 Pv-EVM Fixed Missing field ~ SELFDESTRUCT 1 #2176 [ ]
13 y Reported Fee setting N/A N/A #2162 [
14 revm Confirmed Fee setting N/A N/A #1702 O
15 Reported  Address setting N/A N/A #1704 (@)
16 EELS Reported Memory N/A N/A  #981 (@)
17 Reported Description N/A N/A  #992 (@)
18 Will fix Fee setting N/A N/A  #18 @)
19 Fixed Stack CREATE?2 1 #21 @)
20 Fixed Pc manipulation N/A N/A  #27 ©
21 SealEVM Fixed Memory MSIZE N/A  #28 ©)
22 Fixed Storage EXTCODESIZE N/A  #30 @)
23 Fixed Math EXP 6 #31 ©
24 Fixed Stack CREATE?2 1 #1092 @)
25  ChainMaker Fixed Pc manipulation N/A N/A #1140 ©
26 Fixed Math EXP 6 #1173 ©

5.2 RQ2: Real-World EVM Bugs

We have shown that OpDIFFER can achieve higher coverage than the state-of-the-art baselines. We
will further explore the capability of OpDIFFER in detecting real-world EVM bugs.

In total, OPDIFFER has identified 26 bugs, whose detailed information is shown in Table 4. To
assist further investigation, we prepare detailed and reproducible steps and potential root causes
for every identified bug. We collect all identified bugs as well as the output reports and report
them to the corresponding EVM developers. As we can see, of the 26 identified bugs, 22 of them
have been confirmed by the developers already, and 17 have been fixed at the time of writing.
Additionally, the developers have indicated plans to fix two of the remaining issues in future updates.
We further conducted manual analysis to identify if there are security vulnerabilities. Among the
26 confirmed bugs, three vulnerabilities have been assigned with China National Vulnerability
Database (CNVD) IDs, while five of them are still under review by CNVD and NVD. From Table 4,
we can observe that: 1) Regardless of which of the three categories the EVM falls into, bugs affect
them uniformly. 2) Developers have an active attitude towards the bugs identified by OPDIFFER, as
they promptly confirmed and fixed the bugs with our assistance. We attribute this responsiveness
to the comprehensive and reproducible bug reports provided, which streamline the debugging and
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Table 5. Statistics of two datasets that are used to evaluate the real-world impact for identified buggy opcodes.

Dataset #Contracts #Opcodes #Buggy Opcodes Buggy Rate

Gigahorse 10,000 55,777,530 1,874,626 3.36%
Etherscan 10,000 58,979,456 4,253,359 7.21%

validation processes for developers. 3) Execution client EVM implementations have the fewest
security-related bugs due to extensive testing before their deployment. In contrast, standalone and
custom EVMs remain vulnerable to several bugs, underscoring the critical importance of rigorous
testing across all EVM implementations.

Answer for RQ2: Out of nine Ethereum mainnet execution client EVMs, standalone EVMs,
and third-party custom EVMs, OPDIFFER can successfully identify 26 bugs. With our timely
disclosure, 22 bugs have been confirmed, while 3 of them may lead to severe impacts and have
been assigned CNVD IDs.

5.3 RQ3: Bug Characterization

To further illustrate the impact of identified bugs on blockchain systems, we assess the real-
world consequences of these EVM bugs by analyzing smart contracts from the Ethereum mainnet.
Additionally, we present case studies for two critical identified bugs.

Real-world impact. Out of 26 identified bugs, there are 21 opcodes that are responsible for them,
accounting for 14.1% of all valid opcodes defined in the specification. To evaluate the real-world
impact of our detected bugs, we assume that if a contract contains one of the buggy opcodes, when
it is executed on the corresponding EVM with specific context, the bug can be triggered. We have
to argue that this rate is the upper bound of real-world impacts of detected EVM bugs as there
is still much effort left to exploit the vulnerability. However, an attacker could deploy malicious
contracts containing buggy opcodes on the mainnet and send specific transactions designed to
trigger the associated bugs in the affected EVM implementations. Such an attack could disrupt
normal clients by causing issues during block synchronization and the execution of transactions.

Specifically, we collected two datasets. One is from Gigahorse [30], consisting of 10,000 compiled
contract bytecode, while another is 10,000 recently verified contracts from Etherscan [27], as certain
buggy opcodes are introduced in recent Ethereum forks, like PUSH® and MCOPY. The second dataset
was compiled using the latest version of the Solidity compiler (solc 0.8.28). Our analysis indicates
that 88.42% of the contracts in this dataset conform to the ERC20 standard, which reflects the
homogeneity of the source-code-level test input generation methods.

As presented in Table 5, our experimental results indicate that 1,874,626 and 4,253,359 opcodes
respectively in the two datasets could be affected by our identified EVM bugs. The corresponding
rates of affected opcodes are 3.36% and 7.21%, respectively. This evaluation demonstrates that the
opcodes with EVM implementation bugs we detected are widely distributed across the Ethereum
ecosystem, highlighting their widespread existence in real-world smart contracts. Although the
proportion of potentially affected opcodes is currently around 3.36% on the Ethereum mainnet, this
rate could increase when new compiler features are enabled and become more widely used.

Case #1. The first case is the 12th entry in Table 4, which has been assigned with CNVD-2024-
40890. This is a bug of Py-EVM 0.8.0b1, which is a Python implementation of EVM. It is related
to the Py-EVM implementation for opcode SELFDESTRUCT, as shown in Fig. 9. As we can see,
before executing the opcode, Py-EVM will first look up the implementation function opcode_fn
for the specific opcode (Line 2). However, because in the function for SELFDESTRUCT, the field
mnemonic is not defined yet (Line 7). As a result, Py-EVM raises an error and halts the execution
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1 for opcode in computation.code:
2 opcode_fn = computation.get_opcode_fn(computation.opcodes, opcode)
3 computation.logger.trace(
4 "OPCODE : _Ox%x_(%s)_|_pc_:%s",
5 opcode ,
6 # Bug here: the mnemonic field for the SELFDESTRUCT func is not defined
7 opcode_fn.mnemonic,
8 max (@, computation.code.pc - 1),
9 )
10 e
Fig. 9. Case study #1: the buggy implementation of SELFDESTRUCT in Py-EVM.
1// ...
2 LondonBlock: new(big.Int),
3 ArrowGlacierBlock: nil,
4 GrayGlacierBlock: nil,
5 TerminalTotalDifficulty: big.NewInt (Q),
6 TerminalTotalDifficultyPassed: true,
7 // Bug fix: add the following lines to support newly introduced opcodes
8 MergeNetsplitBlock: nil,
9 ShanghaiTime: &shanghaiTime,
10 CancunTime: &cancunTime
11 //

Fig. 10. Case study #2: the buggy implementation of PREVRANDAQ in Geth, as well as the patch.

for following opcodes. Attacker could exploit this vulnerability by crafting malicious bytecode,
enabling a denial-of-service (DoS) attack on Py-EVM.

Case #2. This case includes the 2nd entry in Table 4, related to the well-known Geth. According to
statistics [2], Go-Ethereum (Geth) is the most widely used execution client on the Ethereum mainnet
as of October 2024. We find that when executing the opcode PREVRANDAO, Geth/evm triggers a
runtime error, indicating an invalid memory address or nil pointer dereference. This issue is caused
by an incorrect instruction set configuration, preventing the opcodes introduced in the post-Paris
forks from executing correctly. With our detailed reports, the developers confirmed and fixed
this bug. As shown in Fig. 10, developers fixed this bug by adding correct configurations for the
supported instruction set from Line 8 to 10.

Answer for RQ3: On the one hand, the opcode-related bugs we found are widely present in
the real world and can be triggered after setting appropriate parameters for EVMs. On the other
hand, we found that these bugs can be triggered by a single opcode, highlighting the necessity
of opcode-level testing.

5.4 RQ4: Ablation Studies

To assess the contribution of each component of our differential testing framework OPDIFFER,
we performed ablation studies focusing on three key components: the seed generator (Seed), the
control flow mutator (CFMut), and the argument mutator (ArgMut). In a series of three independent
experiments, we sequentially removed one component at a time and evaluated the impact on code
coverage for both Geth and SealEVM. Specifically, in the first experiment, we removed the seed
from the seed generator along with its mnemonics (as shown in Fig. 7) and generated test inputs
without them. In the second experiment, we removed the ICFG (as shown in Fig. 7) and disabled the
control-flow-oriented mutation. While in the third experiment, we disabled the argument mutator,
using the raw output of LLMs as test inputs without mutation. The impact of each component
was assessed based on the observed code coverage. As shown in Table 3, the results demonstrated
that each component positively contributed to the code coverage of the target EVMs. Removing
any component led to a reduction in coverage. Next, we will analyze the effect of each component.
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Table 6. Code coverage results of ablation Study. "w/o" denotes "without," while "CFMut" and "ArgMut" refer
to the control flow mutator and argument mutator, respectively.

Tool ‘ Geth (All) Geth (Opcode Funcs) ‘ SealEVM (All) SealEVM (Opcode Funcs) ‘ Average Coverage Reduction

w/o Seed 48.30% 66.02% 71.20% 80.83% -14.96%
w/o CFMut 52.70% 89.50% 88.60% 89.27% -1.54%
w/o ArgMut 53.20% 90.36% 89.20% 89.28% -1.05%

OPDIFFER 54.40% 91.85% 90.10% 89.87% N/A

We first examined the impact of the seed generator. As shown in Table 3, removing the seed
generator resulted in the largest drop in code coverage (average code coverage loss of -14.96%),
followed by CFMut (-1.54%) and ArgMut (-1.05%). We argue that the seeds and its mnemonics
from seed generator provide a structured and well-defined example, enabling the LLMs to reason
and generate meaningful test cases. Without the ICFG, the LLMs failed to generate test cases that
explore additional execution paths in the opcode definition, leading to a 1.54% reduction in coverage.
Finally, we investigated the effect of the argument mutator. Since the argument mutator modifies
arguments in the stack to generate random operands, disabling it restricted the exploration of
corner cases in the specification, reducing the diversity of test inputs.

Answer for RQ4: Our ablation studies demonstrate that each component of OPDIFFER is
essential for enhancing code coverage on target EVM implementations, underlining the necessity
of integrating all three modules within OPDIFFER.

6 Discussion

Ethical Consideration. Our differential testing has detected 26 distinct bugs from various EVMs,
of which 22 have been confirmed or fixed by developers. To meet the ethical standards, we provide
detailed bug reports and reproducible test inputs to developers once after the analysis is done. More-
over, all identified vulnerabilities are reported to both developers and relevant security databases,
including the CNVD and NVD, for further disclosure and remediation.

Limitation. 1) Test input generation. As we utilize LLM to generate test inputs, the main limitation
lies on the LLM’s restricted reasoning capabilities due to their intrinsic limitations. To solve this, we
can introduce symbolic execution for a more accurate and comprehensive input generation, which
is reserved for future work. To mitigate the potential unreliability of LLM’s outputs caused by hallu-
cinations, the self-refinement [44] mechanism can be applied to iteratively enhance the consistency
and correctness of the output. 2) Root cause localization. Once we identified the responsible opcode,
determining the underlying root cause for non-execution-stage bugs remains challenging, such as
the bugs introduced at the EVM initialization stage. However, the localized responsible opcode can
still aid the process by excluding irrelevant opcodes for the following manual inspection. 3) Opcode
specification compatibility. Ethereum is evolving rapidly, which means that a new set of opcode
specifications may be introduced in the future, like EOF [3]. However, we underline that OpPDIFFER
is scalable. By extracting the semantics of the corresponding specifications, we can equip LLMs
with essential domain knowledge, enabling them to autonomously reason and generate effective
test inputs. This method ensures that OPDIFFER remains adaptable to the evolving landscape of
Ethereum’s development.

7 Related Work

Blockchain Security. Much of the existing research on blockchain security has focused on smart
contract, with notable contributions from various tools and frameworks designed to identify
weaknesses in smart contracts [32, 34, 52, 54, 55, 57, 58]. While substantial advances have been
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made in analyzing and detecting vulnerabilities in contract code, there is comparatively less focus on
the security aspects of the foundational EVM. EVMFuzzer [28] is the first differential testing tool for
EVM. NeoDiff [45] utilizes bytecode-level generation test input generation method to fuzz the EVM.
FuzzyVM [59] and go evmlab [56] are official differential testing tools maintained by Go-Ethereum
Team. However, as introduced in section §3.1, existing tools are limited in generating semantic-valid,
diverse test inputs and lack an effective root cause analysis for identifying potential bugs. Besides,
several studies have explored methods for testing blockchain consensus protocols [9, 41, 61, 65]
and RPC services [35, 36] in Ethereum execution clients.

Differential Testing. Differential testing has been widely applied in both academia and industry,
such as detecting issues in SSL/TLS implementations [5, 8, 49], compilers [31] , runtime [4, 7, 10,
11, 39, 68]. Specifically, PyRTFuzz designs a framework for Python runtime testing, which can
generate applications covering runtime APIs for fuzzing. WASMaker [7] uses real-world binaries
to generate semantic-rich test inputs. WADIFF [68] integrates symbolic execution techniques for
the generation of test inputs. OpDIFFER is fundamentally inspired by existing differential testing
methodologies and employs targeted testing approaches specifically designed for the unique context
of the Ethereum Virtual Machine.

8 Conclusion

In this paper, we present OPDIFFER, a differential testing framework for Ethereum Virtual Machine
(EVM) based on opcode-level test input generation. By leveraging LLM’s reasoning and compre-
hension capabilities and static analysis methods, OPDIFFER can generate semantically valid and
diverse test inputs according to the specifications. To assist following debugging processes, we also
propose an automated bug identification and root cause localization algorithm. Compared with
state-of-the-art baselines, our evaluation illustrates that OpDIFFER can achieve up to 410.8% code
coverage improvement. Among nine EVM implementations spanning multiple scenarios, we have
uncovered 26 previously unknown real-world bugs, 22 of which have been confirmed or fixed and
three of them have been assigned CNVD IDs. Additionally, we investigated that 7.21% real-world
smart contracts can trigger these bugs under certain environmental settings.

Data Availability

The dataset, artifact and the main experimental results of OPDIFFER are available at [42].
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