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Abstract

The large integration of microphones into devices increases
the opportunities for Acoustic Side-Channel Attacks (AS-
CAs), as these can be used to capture keystrokes’ audio sig-
nals that might reveal sensitive information. However, the
current State-Of-The-Art (SOTA) models for ASCAs, includ-
ing Convolutional Neural Networks (CNNs) and hybrid mod-
els, such as CoAtNet, still exhibit limited robustness under
realistic noisy conditions. Solving this problem requires ei-
ther: (i) an increased model’s capacity to infer contextual
information from longer sequences, allowing the model to
learn that an initially noisily typed word is the same as a
futurely collected non-noisy word, or (ii) an approach to fix
misidentified information from the contexts, as one does not
type random words, but the ones that best fit the conversation
context. In this paper, we demonstrate that both strategies
are viable and complementary solutions for making ASCAs
practical. We observed that no existing solution leverages
advanced transformer architectures’ power for these tasks and
propose that: (i) Visual Transformers (VTs) are the candidate
solutions for capturing long-term contextual information and
(ii) transformer-powered Large Language Models (LLMs) are
the candidate solutions to fix the “typos” (mispredictions) the
model might make. Thus, we here present the first-of-its-kind
approach that integrates VTs and LLMs for ASCAs.

We first show that VTs achieve SOTA performance in
classifying keystrokes when compared to the previous CNN
benchmark. Second, we demonstrate that LLMs can mitigate
the impact of real-world noise. Evaluations on the natural sen-
tences revealed that: (i) incorporating LLMs (e.g., GPT-4o) in
our ASCA pipeline boosts the performance of error-correction
tasks; and (ii) the comparable performance can be attained by
a lightweight, fine-tuned smaller LLM (67 times smaller than
GPT-4o), using Low-Rank Adaptation (LoRA). Our results
and findings highlight the practical viability of our solution
toward effective ASCA.

∗These authors contributed equally.

1 Introduction

Acoustic Side-Channel Attacks (ASCAs) exploit the acoustic
emanations from electronic devices to infer sensitive infor-
mation without directly accessing the targeted systems. This
adversarial method represents a substantial cybersecurity risk,
particularly today as microphones become ubiquitous com-
ponents integrated into common consumer devices, such as
smartphones, laptops, digital assistants, and conferencing
equipment. Although initially perceived as a novel theoretical
threat, practical acoustic attacks have emerged to compromise
sensitive information in various contexts [10, 11, 35, 50].

Previous research has demonstrated the feasibility of re-
covering typed passwords and PINs covertly by analyzing
keystroke sounds [3,4,8,25,50], reconstructing confidentially
printed text from dot-matrix printer noises in sensitive en-
vironments such as medical and banking facilities [6], and
extracting cryptographic information or CPU operation de-
tails from subtle hardware acoustic signals [36, 40]. Among
these, keyboard-focused acoustic attacks have been proven
to be especially threatening due to their widespread applica-
bility and ability to compromise passwords and confidential
communications effectively [4, 23, 25, 50].

Early ASCA methodologies primarily depended on
straightforward statistical analyses and signal-processing tech-
niques, leveraging acoustic features like cepstrum coeffi-
cients and inter-keystroke timing patterns for keystroke re-
covery [50]. Despite enhancements through cross-correlation
analysis and time-based localization techniques that improved
keystroke identification [8, 14], these approaches exhibited
significant limitations when faced with realistic scenarios in-
volving ambient noise. Machine-Learning (ML) methods
such as Hidden Markov Models (HMMs) and Support Vector
Machines (SVMs) subsequently improved accuracy by mod-
eling sequential structures and key feature distinctions [6, 46].

However, these early systems remained vulnerable to real
environmental conditions, where significant amounts of ambi-
ent noise and recording artifacts could drastically degrade re-
sults—potentially causing incorrect keystroke identifications.
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Previous research has shown accuracy reductions of 30–50%
in noisy environments [23, 25]. Our experiments confirm
this, with accuracy dropping over 50% under high ambient
noise. Such inaccuracies are critical, particularly when attack-
ers aim to recover sensitive information such as passwords,
where even minor incorrect inferences make full password
reconstruction near-impossible. Recent Deep-Learning (DL)
approaches, notably Convolutional Neural Networks (CNNs)
and architectures like CoAtNet [12], have further advanced
acoustic classification accuracy by enabling effective hierar-
chies of acoustic feature extraction [25].

Despite these latest improvements, the fundamental
challenge–vulnerability to noisy environmental conditions–
remains largely unaddressed in the existing literature. More-
over, incorrect keystroke predictions under such conditions
render traditional ASCA pipelines significantly less practical
and reliable. Therefore, solutions for the noisy problem are
still warranted. Our key observation and insight about it is
that solving this problem requires either: (i) an increased
model’s capacity of inferring contextual information from
longer sequences, allowing the model to learn that an initially
noisily typed word is the same as a futurely collected non-
noisy word, making the model learn a noisy representation for
the characters directly from noisy data; or (ii) an approach to
fix misidentified information from the contexts, exploiting the
fact that one does not type random words, but the ones that
best fit the conversation context. In this case, we would train
the model with non-noisy data and allow the model to make a
wrong prediction from the noisy spectrogram, a spectrogram
“typo”, but we would fix the prediction based on the context.
However, technical solutions to deploy these strategies were
not available in the literature until recently.

At the same time we identified the above limitations and
needs, transformer architectures have emerged as a power-
ful class of neural network solutions capable of capturing
complex long-range correlations and contextual relationships
within data. Originally developed for sequence modeling
in the language domain, transformers have demonstrated re-
markable performance across multiple modalities—including
language (LLMs), vision (VTs), and more recently audio—by
leveraging their ability to globally correlate data patterns. In
particular, vision transformers (e.g., ViT [18] and Swin [33])
successfully model spatial correlations in images and spectro-
gram representations, while large language models (e.g., GPT-
3 [9] and GPT-4 [1]) excel at contextual inference, error de-
tection, and text correction tasks. These advantages naturally
position transformers as candidate solutions for deploying our
above-mentioned strategies. Despite these advantages, to the
best of our knowledge, no research has yet leveraged trans-
former architectures—either vision or language variants—to
handle noisy acoustic keystroke data. This position our work
as the first-of-its-kind in making ASCAs practical.

Considering the above, we postulate three key scientific
hypothesis: (1) The global modeling capability of visual trans-

formers, particularly their unparalleled skill in capturing long-
range contextual relationships, might effectively mitigate er-
rors introduced by acoustic noise and improve ASCA reliabil-
ity, making them the most suitable candidate for solving the
problem via the first above-pointed strategy (i); and, similarly
(2) Large Language Models (LLMs) have significant error
correction (e.g., rewritting, passphrase, translation, and so on)
capabilities, which makes them the most suitable solutions to
solve the problem via the second above-mentioned strategy
(ii); finally, (3) These solutions can complement each other
and be used in tandem to solve the problem at a higher scale.

To test our hypothesis in practice, we developed a novel
transformer-driven framework for enhancing acoustic side-
channel attacks on keyboards and conducted experiments
with it on reference datasets. More specifically, we leveraged
advanced transformer-based architectures, employing both
VTs (for spectrogram image classification) and LLMs (for
contextual error correction), to substantially improve accuracy
and robustness in noisy real-world settings. Our framework
will be made available as open-source. 1

Our experimental evaluation was conducted using the
Phone (keystrokes recorded via a smartphone microphone)
and Zoom (keystrokes captured through Zoom audio call)
datasets [25], considering two realistic settings. To simu-
late noise conditions, we introduced low, medium, and high
noise levels. We compared GPT-4o [27] with Llama-3.2-3B
(fine-tuned) and tested Llama-3.2-1B, 3B, and 8B (non-fine-
tuned) [45] to assess their effectiveness in mitigating noise-
related errors.

In sum, the contributions in this work are the following:

• We design, implement, and evaluate VT-based frame-
works for ASACs based on the Swin transformer and
the CoAtNet model and demonstrate how their hypoth-
esized capabilities of identifying long-range patterns
enable them to establish the new SOTA performance in
the reference ASAC benchmark.

• We design, implement, and evaluate LLM-based frame-
works for ASACs based on GPT-4 and demonstrate that
their hypothesized correction abilities allow extending
the previous VT operation to noisy scenarios.

• We demonstrate that fine-tuned lightweight LLMs
(via Low-Rank Adaptation, LoRA) can achieve typo-
correction performance comparable to very large LLMs
like GPT-4o, while having substantially fewer parame-
ters—making these solutions practical even for resource-
constrained attack scenarios.

In sum, the main findings of this work are the following:

1. Our proposed VT framework achieved a new SOTA per-
formance on the reference dataset, with an increase in

1https://github.com/seyyedaliayati/EchoCrypt
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absolute precision of 5.0% on the Phone dataset and
5.9% on the Zoom dataset compared to the previous
CNN baselines.

2. Our proposed LLM framework, incorporating GPT-4o
to handle noisy cases, when applied to the EnglishT-
ense dataset (1K sentences), significantly boosts BLEU
scores from approximately 0.07 to 0.90 under intermedi-
ate noise conditions, transforming an impractical classifi-
cation case into a case with almost perfect key recovery.

3. Our proposed fine-tuned LLM (Llama-3.2-3B), via Low-
Rank Adaptation (LoRA), achieves accuracy scores
closely comparable to GPT-4o (98-99% of it) while be-
ing 67x smaller, which makes ASACs not only practi-
cal in noisy scenarios but also brings ASACs to one’s
pocket.

The remainder of this paper is structured as follows. Sec-
tion 2 presents a clear example of our solution’s goals and
potential. Section 3 presents background information to sup-
port our developments towards making ASCAs practical. Sec-
tion 4 details our methodology, including our proposed vision
transformer and LLM approaches, data preprocessing strate-
gies, noise simulation methods, fine-tuning procedures, and
experimental setups. Section 5 presents our evaluation results,
highlighting comparative analysis between previous state-of-
the-art methods and our approach across two datasets and
multiple metrics, and demonstrating the effectiveness of our
proposed transformer architectures under noisy conditions.
Section 6 provides an in-depth discussion of our results, prac-
tical implications, and limitations, outlining directions for
future research. Section 7 positions our contributions among
related work, highlighting previous methodologies in acoustic
keyboard side-channel classification, the evolution of classifi-
cation techniques, and the emergence of transformer-based
methods. Finally, Section 8 concludes the paper by summa-
rizing our key contributions and findings.

2 Motivating Example

To understand the goal and the potential of our solution, con-
sider the case of the ASCAs attack shown in Figure 1.

The first line displayed in Figure 1 represents the text typed
by the victim. Most works on the literature consider non-noisy
scenarios; thus, this same text is recovered, which makes them
claim high recovery rates. In noisy scenarios, however, the
recovered text will be similar to the one displayed in the
second line of Figure 1, which explains why most works fail
in recovering the text in these scenarios. Ideally, we would
like to have a correction mechanism that allows this text to
be mapped back to the original text as much as possible, as
shown in the last line.

While textual examples illustrate the impact of noise,
it is also insightful to visualize the differences at the sig-

they attended a music festival and danced under the starry skyReference

they attwnded a 0usi2 fectivalwand dancsd under the3s5arrg sky

they attended a music festival and danced under the starlit sky

CoAtNet
Output

LLM
Output

Figure 1: Example of Error Detection and Correction Using
LLMs: The initial text sequence (top) represents the ideal out-
put. The noisy prediction (middle) introduces typographical
and semantic errors due to environmental noise or model in-
accuracies. The corrected output (bottom) demonstrates how
LLMs refine the sequence using contextual understanding,
substituting errors (e.g., attwnded to attended).

nal level.Figure 2 presents two Mel spectrograms of the
same keystroke—specifically, the digit “0” from the phone
dataset—one in a clean setting and the other in a noisy setting.
The spectrogram on the left corresponds to the clean scenario,
where the keystroke exhibits distinct frequency characteristics.
On the right, background noise distorts these features, making
classification significantly harder. This visual evidence sup-
ports our argument that a robust classification and correction
mechanism is necessary to achieve reliable text recovery in
real-world settings.
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Figure 2: Comparison of Mel spectrograms for the keystroke
corresponding to digit “0” from the phone dataset in a clean
(left) and noisy (right) scenario. The noisy spectrogram
exhibits additional artifacts that distort and attenuate the
keystroke’s spectral features, reducing the signal energy and
making classification significantly more challenging.

These presented examples were obtained by applying the
proposed tool to the reference benchmark, which positions our
solution closer to the ideal scenario than the previous related
works. This demonstrates the effectiveness of our approach
in handling noisy conditions, ensuring higher accuracy in text
recovery. The following sections describe how this result can
be achieved.
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3 Background

In ASCA, keystroke classification relies on transforming
raw audio signals into representations like mel-spectrograms,
and training models to identify the acoustic patterns within
them. Recent developments in deep learning offer architec-
tures specifically tailored for image data, including spectro-
grams [19, 42, 48]. Several key architectures are discussed in
this paper and introduced in the following.

CoAtNet (Convolutional Attention Network) [12] is a hy-
brid architecture that integrates Convolutional Neural Net-
works (CNNs) with self-attention mechanisms. It leverages
the strength of both architectures. The convolutional layers
are suitable for extracting local spatial features, e.g., edges
and textures in the mel-spectrogram for keystroke audios. The
self-attention mechanism captures long-range dependencies
across the entire input. It focuses on the temporal relation-
ships in the keystrokes. CoAtNet’s capability of analyzing
local and long-term features is promising for the ASCA task.
Its staged design by stacking convolutional blocks before
transformer layers enables efficient hierarchical feature ex-
traction.

Swin Transformer enhances Vision Transformers (VTs)
by introducing a hierarchical, shifted-window approach to
self-attention [33]. Unlike standard VTs that treat images as
sequences of patches and apply global self-attention, Swin
partitions images into non-overlapping patches and computes
self-attention within local windows, significantly reducing
computational complexity. It periodically shifts these win-
dows, enabling partial overlaps that facilitate global context
aggregation. Furthermore, Swin Transformer adjusts patch
and window sizes at different stages, allowing it to efficiently
capture varying levels of detail and improving both scalability
and performance in vision tasks.

Audio models, particularly those designed for speech
recognition, such as OpenAI Whisper [39] and Mozilla Deep-
Speech [24], are primarily built for tasks like speech-to-text
or text-to-speech conversion. While these models excel at pro-
cessing linguistic content, they are not optimized for detecting
short-duration, transient events like keystrokes. As a result,
their pre-trained models cannot be directly applied to the task
of ASCA on keyboards unless a large dataset containing long
sequences of keystrokes is available.

Architecturally, these models share similarities with
the method proposed in this work, as they also transform
audio signals into mel-spectrograms and analyze the result-
ing visual representations. However, due to the need to pro-
cess a significantly larger vocabulary, these models are inher-
ently heavyweight. Consequently, this work does not utilize
general-purpose audio-to-text models.

4 Methodology

We here describe the methodological approaches we designed
for making ASCAs viable under noisy conditions. We initially
present an overview of our methodology for handling noisy
data in the proposed pipeline. Later, we discuss the required
steps to implement our strategy. The steps are three. First, we
describe how we built a SOTA baseline for the ASCAs task,
benefiting from the long-range correlation capabilities of VTs.
Second, we show how to apply LLMs to fix the spectrogram’s
“typos” with their interpretation abilities. Finally, we show
how to fine-tune a model to bring it to the user’s pockets.

4.1 Threat Model

This work considers two attack scenarios. First, Phone
Recording, in which an attacker covertly places a smartphone
or microphone-equipped device near a target’s keyboard to
record keystroke sounds. Modern smartphone microphones
effectively capture detailed acoustic signals from short dis-
tances. The attack assumes sensitive typing activity, such
as passwords or confidential messages, occurring unnoticed
by the victim. Such scenarios are realistic in public spaces,
offices, or co-working environments where a hidden device
can passively collect keystroke audio.

Second, Zoom Recording, executed remotely by capturing
keystroke sounds transmitted through conferencing applica-
tions such as Zoom, MS Teams, or Google Meet. Unlike
phone recordings, this method doesn’t require physical prox-
imity. Laptop microphones frequently transmit keystroke
sounds despite built-in noise suppression, making residual
acoustic information available. Given widespread remote
work and virtual meetings, attackers monitoring audio streams
can reconstruct sensitive inputs using machine learning. Stud-
ies indicate keystroke sounds persist even amid compression
and bandwidth constraints, enhancing attack feasibility [11].

The adversary is assumed to have computational resources
and expertise in deep learning-based ASCA methodologies.
The attack involves capturing keystroke audio, generating Mel
spectrograms, and classifying keystrokes using a transformer-
based model (VTs) capable of modeling complex dependen-
cies. To address potential errors due to noise, an LLM-based
correction mechanism leverages contextual understanding to
refine predictions, significantly improving keystroke recovery
accuracy.

The success of these attacks depends on microphone sen-
sitivity, typing speed, keyboard type, and environmental
noise. Under controlled conditions, our VT-based classifi-
cation achieves over 96% accuracy, surpassing CNN-based
techniques. In noisy conditions, integrating LLM-based error
correction raises text recovery accuracy from approximately
50% to over 90%. These findings highlight vulnerabilities
in keystroke-based systems and raise broader concerns for
password authentication and digital communication security.
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4.2 Overview: Handling Noise

A key innovation in our design is the introduction of con-
trolled noise in the audio signals, combined with additional
random time-shifting of audio signals and random time and
frequency masking applied to the mel-spectrogram repre-
sentations. Specifically, we employ Gaussian noise at three
levels—low, medium, and high—to analyze model robustness
under challenging conditions. The noise is added directly to
the waveform signal before the features are extracted. This
makes sure that the degradation is realistic and sounds like
background noise, such as chatter or hum.

The rationale behind introducing random time shifts is to
account for the natural variations in keystroke timing that
occur due to human typing inconsistencies and microphone
delays. This step prevents models from overfitting to precise
timing patterns, improving their generalization to real-world
conditions. Similarly, the frequency and time masking that
was used on the mel-spectrograms simulates the loss of in-
formation that can happen during real-life recordings, where
spectral components may be partially blocked by the place-
ment of the microphone or other sounds in the background.

In our experiments, noise augmentation was applied to
the entire dataset—both during training and inference—to
comprehensively evaluate model robustness. This ensures that
the model encounters realistic noise conditions throughout
the pipeline, rather than relying solely on clean training data.

Figure 3 provides an overview of the preprocessing
pipeline. It shows how raw audio is turned into mel-
spectrograms, which are then enhanced by steps such as
adding noise, shifting time, and masking frequencies before
classification. The figure also highlights the integration of
LLMs for correcting noisy keystroke predictions, ensuring
robust and contextually accurate outputs.

4.3 Building a SOTA Baseline model

Prior to addressing noise scenarios, we first developed a new
SOTA model to be used as a baseline for performance mea-
surements. Our concern is not to attribute to noise effects the
impact actually caused by poor model performance. There-
fore, we ensured to first build a reliable baseline that allowed
us to isolate variables and further focus exclusively on noisy
cases.

To build the new SOTA model, we utilized CoAtNet along-
side five state-of-the-art vision transformer models: ViT [18],
Swin [33], DeiT [44], CLIP [38], and BEiT [7]. We selected
CoAtNet for its hybrid architecture, combining convolutional
and transformer-based processing. This architecture is ideal
for mel-spectrogram classification, as it captures both local
features and long-range dependencies.

Each additional VT model was included to ensure com-
prehensive evaluation, with each offering distinct advantages.
ViT serves as a pure transformer-based benchmark, while

Swin introduces efficient hierarchical feature extraction via
shifted windows. DeiT is optimized for data efficiency, suited
for limited-sample datasets. CLIP was tested for potential
performance gains from its vision component, despite its mul-
timodal nature. BEiT’s masked image modeling pre-training
allowed us to assess the benefits of strong visual pretraining
in keystroke classification. This diverse selection enabled
systematic evaluation and ensured our final choice was driven
by empirical performance rather than arbitrary selection.

We used pre-trained VT models and fine-tuned them with
our data. For the CoAtNet model, since the previous study’s
[25] CoAtNet (it will be refered to it as B-CoAtNet for base-
line CoAtNet) model does not specify the number of blocks
or channel sizes, we configured the number of parameters to
align with the smallest reported parameter size in the CoAt-
Net’s original paper [12]. Notably, unlike the other selected
VTs, CLIP is a multimodal model, meaning it incorporates
both vision and language embeddings for downstream tasks.
In our experiments, we exclusively utilized the vision compo-
nent of the CLIP model, augmenting it with a fully connected
layer before the softmax layer.

4.4 Finding and Fixing Errors with LLMs
Detecting and correcting errors in noisy textual predictions
is challenging due to the unpredictable nature of acoustic
distortions. Unlike traditional spell-checking tasks, where
errors follow common typing patterns, ASCA errors involve
random character substitutions, deletions, or insertions caused
by waveform perturbations. Thus, an LLM must infer miss-
ing or altered characters based on broader linguistic context,
reconstructing meaningful sequences even without clear word
boundaries (e.g., missing spaces). Our approach leverages
few-shot prompting to adapt LLMs effectively to these distor-
tions, ensuring robust correction across varying noise levels
and keystroke misclassification patterns.

Detecting and correcting errors in noisy textual predictions
is a critical step in enhancing the robustness of ASCA systems.
This section details the methodology employed to address er-
rors arising from noisy datasets by leveraging LLMs through
few-shot prompting techniques. The process involves both
datasets, noise environments, and evaluation metrics, provid-
ing a comprehensive analysis of error correction effectiveness.
We did not consider a noise-free environment, as it is highly
unlikely to encounter zero noise in real-world scenarios.

The selected sentences were mapped to acoustic data under
different noise environments to simulate real-world scenarios,
as shown in Table 2. Noise factors were categorized as Low,
Medium, and High. For each syllable or digit in a sentence,
the corresponding sound wave was adjusted with noise us-
ing different noise factors. See Eq. 1 to see how noises are
applied.

Snoisy = S+η ·N (0,1) (1)

where S indicates acoustic signal (i.e. sound wave) and η is

5



Audio Files
Separate Key Strokes Background Noise Time Shift

Augmentation Mel-spectrogam

Frequency and Time Masking Classification with CoAtNet and VT Models LLMs

Figure 3: Audio pre-processing pipeline for classification and LLM-based typo correction.

a noise factor. We carefully selected noise factor values to
ensure that the resulting accuracies for Low, Medium, and
High noise levels were approximately 95%, 85%, and 70%,
respectively. The accuracy was calculated between the true
sentence and sentence with errors. See Eq. 2 for more details.

Accuracy =
2 · |M|

|S1|+ |S2|
(2)

where:

• |M|: The total number of matching characters between
the two strings S1 (the true sentence) and S2 (the pre-
dicted sentence). Matches are determined by optimizing
the alignment of characters, not restricted to contiguous
sequences.

• |S1|: The length (number of characters) of the true sen-
tence S1.

• |S2|: The length (number of characters) of the predicted
sentence S2.

Pre-Processing

CoA
tN

et

Sentence without corrections

LLM

Sentence with corrections

Figure 4: Pipeline for Detecting and Correcting Errors in
Keystroke Predictions Using LLMs: From noisy audio wave-
forms to mel-spectrogram processing, keystroke classification
via CoAtNet, and error detection/correction with LLMs, re-
sulting in an accurate and more probable textual output.

The noisy audio waveforms were processed through the
pipeline illustrated in Fig. 4. After generating noisy textual
predictions, typographical and semantic errors were corrected
using LLMs. Few-shot prompting techniques, as outlined in
Table 1, were employed. The LLM was prompted with exam-
ples of sentences containing typos and their corrected coun-
terparts. We utilized Llama-3.2-1B, Llama-3.2-3B, Llama-
3.1-8B, and GPT-4o for LLM models. The system prompt
established the role of the LLM as an expert in correcting
typos, while the user prompt included examples and the target
sentence.

4.5 Detecting and Correcting Errors with Fine-
tuned LLMs

We hypothesized that GPT-4o could outperform smaller mod-
els (i.e., Llama family) in accurately correcting typos and
mistakes in sentences. This is because models with a high
number of parameters tend to perform better than smaller
models. However, a significant drawback is its high inference
time, attributed to its substantial model size (∼200 billion
parameters). To circumvent this issue, we propose a method
to create a much smaller model specifically designed for typo
correction task. We used Low-Rank Adaptation fine-tuning
methods [16] to achieve the objective on the smaller model.
That is, instead of fine-tuning the full set of parameters in
the model, a set of low-rank update matrices is introduced on
top of the pre-trained weights to train the LLM for the error
correction task. This allows task-specific learning without
modifying the original weights, further reducing the compu-
tational cost and memory footprint.

We took a pre-trained Llama-3.2-3B (∼3 billion param-
eters) model and chose the more efficient QLoRA method
[13] for the fine-tuning task. The smaller low-rank update
matrices have a dimension of d × c where d is the dimension
of the original weight matrices, and c is chosen arbitrarily but
satisfying d >> c. Training is carried out on specific training
tasks where the predicted sentences from the audio are the
input, and the correct output is the actual sentences being
typed. To enhance the robustness of the model against noise,
we progressively increase the noise level in the training data.

6



Role Content

System You are an expert in correcting typos in sentences.

User Here are pairs of sentences with typos; learn from them:

sentence: {S1
pred}

corrected: {S1
true}

sentence: {S2
pred}

corrected: {S2
true}

Now, please correct these sentences and output only the corrected version with no additional text: {Spred}

Table 1: Few-shot prompting structure for generating messages to correct typos using LLMs. The System role sets the task
context, and the User role provides pairs of sentences (1) before correction Spred (sentence with errors) and (2) after correction
Strue (sentence without errors)

Following Table 2, the training for each dataset starts with
a low noise factor and goes up to high noise intensity, one
epoch for each noise level. AdamW optimizer, with a learning
rate of 0.0002, is used for fine-tuning over three epochs: the
first with low, the second with medium, and the third with
high noise sentences. Since we train the model on the er-
ror correction task specifically, zero-shot prompting is used.
The gradient updates were only applied to the LoRA weights,
while the original Llama weights were frozen. The updates
can be expressed in Eq. 3.

W =W0 +∆W =W0 +AB (3)

where W is the updated weight after fine-tuning, W0 is the
original pre-trained weight, and ∆W is the update being ap-
plied. Traditional fine-tuning directly operates on ∆W , where
W,W0,∆W ∈ Rd×d for large d. In contrast to traditional fine-
tuning methods, we used QLoRA to operate on weighs A,B
where A ∈ Rd×c,B ∈ Rc×d for a much smaller c. Instead
of computing ∆W directly, we calculate ∆W = AB and only
make updates on small matrices A and B.

Concluding the methodology section, our comprehensive
approach demonstrates the robustness of the (fine-tuned)
LLM-based error detection and correction framework across
diverse noise environments and datasets. The results, pre-
sented in the subsequent section, demonstrate the performance
improvements achieved by integrating LLMs with the ASCA
pipeline, offering insights into their potential for real-world
applications.

5 Evaluation

This section is organized into four subsections: (1) Data, (2)
CoAtNets vs VTs, (3) Mitigating errors with LLMs, and (4)
Mitigating errors with fine-tuned LLMs.

5.1 Dataset
The original keystroke dataset consists of two datasets, which
are from the noise-free Phone and Zoom recordings with
lacked space characters. To simulate real-world sentences, we
assumed spaces existed in the dataset with the same prediction
accuracy as other letters and digits. To evaluate error detection
and correction, the EnglishTense dataset [5] was used, which
contains a rich corpus of categorized English sentences. From
this dataset, 1,000 sentences were randomly selected: 500
containing digits and 500 without digits, ensuring a balanced
variety of sentence structures and types.

Dataset name / Noise Factor (η) Low Medium High

Phone 0.012 0.024 0.06
Zoom 0.1 0.5 1.0

Table 2: Different noise intensity levels across Phone and
Zoom datasets.

We utilized the same datasets as in [25]. The data were
collected from two sources: Phone and Zoom [28], which
contain recordings of 36 distinct keystrokes (letters a–z and
digits 0–9), with each keystroke recorded 25 times using ei-
ther setup. In the Phone setup, the sound of a victim’s laptop
keystrokes was recorded using an iPhone (representing the
attacker). In the Zoom setup, the victim’s laptop keystroke
sounds were captured via Zoom’s built-in recording function,
with the audio obtained from the victim’s microphone. We
selected this dataset over other available options for several
reasons: (1) It is a recent dataset (2023) specifically designed
for acoustic side-channel attacks; (2) it employs recordings
from a widely available, modern laptop, the MacBook Pro
16-inch (2021), whose keyboard design remains prevalent in
current (2025) MacBook models; and (3) the Zoom record-
ing setup offers a particularly realistic scenario, given the
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widespread use of Zoom today.
However, a significant limitation of this dataset is that all

recordings were made in a noise-free environment. Conse-
quently, it does not fully reflect real-world scenarios, and a
standalone classification model is likely to struggle when con-
fronted with even minimal background noise, a challenge we
address using an LLM-based correction mechanism. Addi-
tionally, the dataset does not include space, backspace, and
enter keystrokes, which are essential components of typical
keyboard usage. We discuss these issues in more detail in
Section 6.

Since each keystroke was recorded 25 times consecutively,
every audio file was segmented into 25 individual .wav files.
To achieve this, we first applied a Fast Fourier Transform
(FFT) to each recording and summed the frequency coeffi-
cients to compute the energy. This energy measure allowed us
to identify 25 distinct peaks per keystroke, thereby dividing
the audio into 25 separate files per key, resulting in a total
of 900 samples. We followed the step shown in Fig. 3 to
generate mel-spectrogram images.

The input image dimensions vary between models: CoAt-
Net utilizes 64×64 images, while VT models require
224×224 images. We employed the Adam [30] optimizer for
CoAtNet and AdamW [34] for VT models. Table 3 provides
detailed hyperparameters used throughout our experiments,
from image generation to testing. To compare the perfor-
mance of CoAtNet and VT models, we applied two distinct
data transformation methods to the VT inputs. These method-
ologies enable a comprehensive evaluation under different
preprocessing conditions:

(1) Resizing Transformation: Input images initially sized
at 64×64 were resized using bilinear interpolation to
224×224 to meet the VT models’ requirements.

(2) Direct Transformation: By modifying the hyperparam-
eters of the mel-spectrogram generation process, in-
put images were directly produced at a resolution of
224×224, thereby eliminating the need for resizing.

5.2 Metrics

The corrected sentences were evaluated using multiple metrics
to quantify performance:

• BLEU: Measures n-gram overlap between the corrected
sentence and the ground truth.

• ROUGE: Evaluates recall-based overlap of substrings.

• METEOR: Considers synonymy and stemming in eval-
uating similarity.

Phone Value Zoom Value

Epochs 1100 1100
Batch Size 16 16
Loss Type Cross Entropy Cross Entropy
Optimizer Adam∗ / AdamW† Adam∗ / AdamW†

Max Learning Rate 5e-4∗ / 5e-5† 5e-4∗ / 5e-5†

Annealing Schedule Linear Linear
Timeshift Percentage 0.3 0.4
Max Mask Percentage 0.1 ∗ / 0.03† 0.1 ∗ / 0.03†

Number of Masks Per Axis 2 2
Mel Bands 64∗ / 224† 64∗ / 224†

FFT Window Size 1024 1024
Hop Length 300∗ / 85† 226∗ / 64†

Data Split Stratified Stratified

Table 3: Hyperparameters for keystroke classification experi-
ments using Phone and Zoom recordings. ∗ indicates values
used in our CoAtNet implementation, while † indicates values
used in the selected VT models

5.3 Research Questions (RQs)
1. How do the different Visual Transformer (VT) architec-

tures perform in acoustic keystroke classification com-
pared to the state-of-the-art baseline CoAtNet under
ideal (noise-free) conditions?

2. Can Large Language Models (LLMs), such as GPT-4o
and Llama models, effectively correct errors in keystroke
predictions resulting from realistic acoustic noise?

3. How does fine-tuning smaller LLMs using Low-Rank
Adaptation (LoRA) affect their performance in error cor-
rection compared to larger LLMs like GPT-4o in acoustic
side-channel attacks?

5.4 RQ1: CoAtNets vs VTs
Using the details outlined in the methodology section, we
compared B-CoAtNet with our CoAtNet (we will now refer to
it as O-CoAtNet for our CoAtNet) using a noise-free dataset.
As shown in Table 4, O-CoAtNet achieves higher accuracy
than B-CoAtNet in terms of both mean and standard deviation,
as well as maximum accuracy. For the Phone dataset, we
observe a 1.5% increase in mean accuracy, while for the Zoom
dataset, the improvement is 3.5%. Given that the original
work reported only the best accuracy without providing a
mean or standard deviation, the gap between the best accuracy
of B-CoAtNet and O-CoAtNet is even more significant. We
show a 5.0% increase in the Phone dataset, while for the Zoom
dataset, the improvement is 5.9%. Given that we utilized the
lightweight CoAtNet model, we anticipate that even higher
accuracy could be achieved with a heavyweight CoAtNet
model, as previous work [12] reports better performance for
heavyweight CoAtNet configurations under ImageNet [15]
and JFT-300M [41] datasets.
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B-CoAtNet (Unknown) O-CoAtNet (∼24M)

Phone: Mean and stdev - 96.45 ± 3.5%
Phone: Max 95% 100%

Zoom: Mean and stdev - 96.67 ± 2.1%
Zoom: Max 93% 98.9%

Table 4: Summary statistics for B-CoAtNet vs O-CoAtNet on
the noise-free Phone and Zoom datasets. For our CoAtNet, the
mean and standard deviation were calculated based on results
from five different seeds. Note that B-CoAtNet only reports
the best accuracy without providing standard deviations or
parameter sizes, the latter of which is marked as ‘unknown’
in the table.

We also compared B-CoAtNet with selected VTs, includ-
ing a reference to the number of parameters for each model.
By examining the results in Tables 5, we observe that VTs
demonstrate comparable or, in some cases, superior accuracy
to B-CoAtNet. When comparing the best accuracy between
B-CoAtNet and selected VTs, the direct transformation using
Swin exhibits the largest gap, with a 5.0% difference on the
Phone dataset and a 5.9% difference on the Zoom dataset.
Considering other models, they also demonstrate accuracy
comparable to B-CoAtNet. However, the CLIP model ex-
hibits significantly lower performance. We suspect this is
due to CLIP being originally designed for multimodal tasks,
while we utilized only its vision component. Here we want to
note that, we did not fine-tune hyperparameters of VTs such
as the learning rate, batch size, or scheduler, which likely
contributed to the weaker performance. We strongly believe
that performance could be improved through hyperparameter
optimization.

When evaluating the number of parameters, VTs do not
appear to offer a clear performance advantage over CoAtNet,
as they have a much larger parameter count. This is likely
due to the limited size of the dataset, which contains only
25 samples per syllable or digit. We presume that collecting
a larger dataset or employing additional data augmentation
techniques could improve accuracy in VTs. Overall, our
results show that VTs can perform on par with or even exceed
CoAtNet.

Importantly, our goal was not merely to achieve better
performance using VTs, but to assess their potential as alter-
native models for acoustic SCA keystroke classification. We
are primarily focused on enhancing the performance of the
ASCA keystroke classification task, especially under realis-
tic conditions where environmental noise is inevitable. To
address this challenge, we introduce a LLM to complement
the classification process. Recognizing that relying solely
on refined datasets can be impractical in noisy environments,
our approach aims to improve robustness and accuracy. In
the following subsection, we demonstrate how LLMs can be
effectively leveraged to mitigate noise-related issues, thereby

addressing more realistic operational conditions.

5.5 RQ2: Mitigating errors with LLMs

We present the experimental results demonstrating the perfor-
mance of various LLM models in correcting noisy text pre-
dictions across multiple noise levels. The evaluation utilized
multiple metrics, including BLEU, METEOR, and ROUGE
scores, providing a comprehensive analysis of the effective-
ness of LLMs in improving the robustness of ASCAs. We
evaluated the error mitigation capabilities of LLM models,
specifically the Llama family and GPT-4o, by varying error
rates and performance metrics.

From Table 6 and 7, it is evident that B-CoAtNet performs
poorly in the presence of noise. Without error mitigation
techniques, relying solely on a classification model is in-
adequate. This outcome aligns with our expectations and
underscores the need for LLMs to effectively mitigate errors.
Here, we show that incorporating LLMs for error detection
and correction significantly improves performance. Within
the Llama family, performance improves with larger model
sizes. Among all tested LLMs, GPT-4o achieves the best
results, particularly excelling under high noise conditions.

The results indicate that LLMs are highly effective in de-
tecting and correcting errors caused by noise in ASCA appli-
cations. GPT-4o, in particular, emerged as the most robust
model, maintaining high performance across all metrics and
noise levels. These findings underscore the potential of LLMs
to enhance real-world applications where environmental noise
poses a significant challenge.

Although GPT-4o achieves the best performance across
all metrics, its major drawback is the high number of param-
eters and the long inference time it requires. GPT-4o has
200×, 67×, 25× more parameters compared to Llama-3.2-
1B, Llama-3.2-3B, and Llama-3.2-8B, respectively. In the
next section, we demonstrate that comparable accuracy to
GPT-4o can be achieved by fine-tuning a lightweight Llama
model.

5.6 RQ3: Mitigating errors with Fine-tuned
LLMs

Utilizing the same datasets as in the previous subsection, we
fine-tuned the weights of Llama-3.2-3B and compared its
performance with GPT-4o. Similar to the previous analysis,
we evaluated the performance using multiple metrics. See
the rightmost column in Table 6 and 7. Additionally, the
results are visualized in Fig. 5. Both tables and graphs clearly
demonstrate the fine-tuned model’s strong ability to correct
mistakes compared to other models. For the Phone dataset, the
fine-tuned Llama outperforms GPT-4o when noise levels are
moderate (Low and Mid). In contrast, for the Zoom dataset,
GPT-4o consistently delivers superior performance under all
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Resizing Transformation ViT (86M) Swin (28M) DeiT (86M) CLIP (87M) BEiT (86M)

Phone: Mean and stdev 94.8% ± 1.0% 90.0% ± 7.6% 89.3% ± 3.3% 76.9% ± 3.8% 95.6% ± 1.4%
Phone: Max 95.6% 98.9% 92.2% 81.1% 97.8%

Zoom: Mean and stdev 90.4% ± 3.0%* 85.1% ± 3.4% 85.3% ± 2.0% 66.2% ± 8.9% 87.1% ± 4.1%
Zoom: Max 94.4% 88.9% 87.8% 78.9% 92.2%

Direct Transformation ViT (86M) Swin (28M) DeiT (86M) CLIP (87M) BEiT (86M)

Phone: Mean and stdev 94.0% ± 2.3% 96.7% ± 2.5% 94.4% ± 1.4% 84.9% ± 6.7% 97.6% ± 1.6%*
Phone: Max 97.8% 100.0%* 95.6% 90.0% 100.0%*

Zoom: Mean and stdev 56.4% ± 48.8% 54.7% ± 48.4% 22.2% ± 40.4% 2.7% ± 0.6% 57.3% ± 45.9%
Zoom: Max 95.6% 98.9%* 94.4% 3.3% 96.7%

Table 5: Summary statistics for different transformer models on the Phone and Zoom dataset using resizing transformation and
direct transformation. The mean and standard deviation (stdev) were calculated using results from five different seeds. Bolded
numbers indicate the best performance in each row, while an asterisk (*) denotes the best for each dataset.

Metric (Noise Factor) B-CoAtNet Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B GPT-4o
(∼200B)

Llama-3.2-3B
(Fine-tuned)

BLEU (Low) 0.383 ± 0.249 0.684 ± 0.294 0.863 ± 0.183 0.910 ± 0.159 0.975 ± 0.075* 0.977 ± 0.073
BLEU (Mid) 0.078 ± 0.091 0.273 ± 0.268 0.542 ± 0.282 0.681 ± 0.258 0.916 ± 0.120 0.908 ± 0.156*
BLEU (High) 0.021 ± 0.023 0.041 ± 0.083 0.118 ± 0.151 0.189 ± 0.196 0.638 ± 0.287 0.623 ± 0.302*

Meteor (Low) 0.640 ± 0.190 0.830 ± 0.213 0.941 ± 0.084 0.964 ± 0.070 0.988 ± 0.032* 0.990 ± 0.032
Meteor (Mid) 0.286 ± 0.162 0.504 ± 0.273 0.751 ± 0.184 0.846 ± 0.143 0.958 ± 0.057* 0.960 ± 0.073
Meteor (High) 0.082 ± 0.085 0.137 ± 0.159 0.344 ± 0.211 0.454 ± 0.219 0.804 ± 0.189* 0.807 ± 0.191

Rouge-1 (Low) 0.690 ± 0.157 0.844 ± 0.194 0.944 ± 0.080 0.964 ± 0.071 0.989 ± 0.032* 0.990 ± 0.034
Rouge-1 (Mid) 0.374 ± 0.148 0.552 ± 0.249 0.777 ± 0.159 0.856 ± 0.129 0.960 ± 0.055 0.960 ± 0.071
Rouge-1 (High) 0.141 ± 0.113 0.196 ± 0.173 0.406 ± 0.196 0.503 ± 0.200 0.817 ± 0.171 0.815 ± 0.176*

Rouge-2 (Low) 0.497 ± 0.226 0.754 ± 0.251 0.899 ± 0.137 0.932 ± 0.121 0.979 ± 0.061* 0.982 ± 0.060
Rouge-2 (Mid) 0.131 ± 0.136 0.361 ± 0.276 0.629 ± 0.240 0.748 ± 0.209 0.925 ± 0.103* 0.927 ± 0.123
Rouge-2 (High) 0.017 ± 0.050 0.059 ± 0.122 0.191 ± 0.190 0.285 ± 0.214 0.703 ± 0.244 0.701 ± 0.254*

Rouge-L (Low) 0.690 ± 0.157 0.844 ± 0.194 0.943 ± 0.080 0.963 ± 0.073 0.989 ± 0.032* 0.990 ± 0.034
Rouge-L (Mid) 0.374 ± 0.148 0.550 ± 0.249 0.776 ± 0.160 0.856 ± 0.130 0.960 ± 0.055 0.960 ± 0.071
Rouge-L (High) 0.141 ± 0.113 0.194 ± 0.172 0.400 ± 0.196 0.497 ± 0.202 0.816 ± 0.172 0.814 ± 0.179*

Table 6: Performance using metrics – BLEU, METEOR, ROUGE-1, ROUGE-2, and ROUGE-L – for different models at varying
noise factors on the Phone dataset. Bolded numbers indicate the best performance (mean) in each row, while an asterisk (*)
shows the second-best performance (mean) within the same metric.
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Metric (Noise Factor) B-CoAtNet Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B GPT-4o
(∼200B)

Llama-3.2-3B
(Fine-tuned)

BLEU (Low) 0.285 ± 0.218 0.657 ± 0.297 0.827 ± 0.211 0.891 ± 0.167 0.976 ± 0.070 0.955 ± 0.099*
BLEU (Mid) 0.050 ± 0.057 0.193 ± 0.225 0.385 ± 0.273 0.520 ± 0.288 0.896 ± 0.152 0.866 ± 0.184*
BLEU (High) 0.018 ± 0.022 0.025 ± 0.055 0.081 ± 0.126 0.107 ± 0.151 0.542 ± 0.303 0.489 ± 0.303*

Meteor (Low) 0.551 ± 0.191 0.811 ± 0.211 0.923 ± 0.101 0.952 ± 0.076 0.988 ± 0.031 0.979 ± 0.043*
Meteor (Mid) 0.210 ± 0.143 0.412 ± 0.261 0.646 ± 0.216 0.751 ± 0.186 0.950 ± 0.073 0.938 ± 0.088*
Meteor (High) 0.065 ± 0.076 0.085 ± 0.117 0.268 ± 0.191 0.319 ± 0.200 0.735 ± 0.218 0.710 ± 0.226*

Rouge-1 (Low) 0.608 ± 0.161 0.826 ± 0.190 0.927 ± 0.092 0.954 ± 0.070 0.989 ± 0.031 0.979 ± 0.042*
Rouge-1 (Mid) 0.291 ± 0.144 0.461 ± 0.241 0.676 ± 0.195 0.769 ± 0.168 0.952 ± 0.070 0.940 ± 0.085*
Rouge-1 (High) 0.111 ± 0.102 0.131 ± 0.137 0.329 ± 0.184 0.373 ± 0.188 0.750 ± 0.199 0.722 ± 0.208*

Rouge-2 (Low) 0.392 ± 0.212 0.726 ± 0.254 0.868 ± 0.159 0.915 ± 0.129 0.979 ± 0.060 0.962 ± 0.079*
Rouge-2 (Mid) 0.083 ± 0.103 0.276 ± 0.248 0.493 ± 0.252 0.622 ± 0.242 0.914 ± 0.121 0.891 ± 0.143*
Rouge-2 (High) 0.014 ± 0.044 0.031 ± 0.084 0.132 ± 0.162 0.172 ± 0.183 0.615 ± 0.268 0.572 ± 0.272*

Rouge-L (Low) 0.608 ± 0.161 0.826 ± 0.190 0.927 ± 0.092 0.953 ± 0.072 0.989 ± 0.031 0.979 ± 0.042*
Rouge-L (Mid) 0.291 ± 0.144 0.458 ± 0.241 0.673 ± 0.197 0.765 ± 0.172 0.952 ± 0.070 0.939 ± 0.085*
Rouge-L (High) 0.111 ± 0.102 0.130 ± 0.135 0.313 ± 0.186 0.364 ± 0.190 0.749 ± 0.200 0.720 ± 0.210*

Table 7: Performance using metrics – BLEU, METEOR, ROUGE-1, ROUGE-2, and ROUGE-L – for different models at varying
noise factors on the Zoom dataset. Bolded numbers indicate the best performance (mean) in each row, while an asterisk (*)
shows the second-best performance (mean) within the same metric.

conditions. Nonetheless, the fine-tuned model consistently
ranks as the second-best performer.

The fine-tuned model exhibits consistent performance im-
provements across all evaluation metrics. In comparison to
the original Llama model without fine-tuning, the fine-tuned
3B model outperforms it by a significant margin. For instance,
when performance gain is measured as the average percentage
increase in BLEU accuracy across various noise levels, the
fine-tuned 3B model shows nearly a 170% improvement over
the original 3B model for the Phone dataset. Moreover, it
outperforms the larger 8B model by 90%. A similar trend is
observed on the Zoom dataset, with an 215% improvement
over the original 3B model and a 145% increase compared
to the 8B model. These results clearly demonstrate the sub-
stantial benefits of fine-tuning, enabling a smaller model to
outperform even larger variants.

The fine-tuning is especially effective at higher noise lev-
els. For example, with the noise intensity set to High, the
fine-tuning increased the BLEU accuracy by 430% and 500%
on the phone and Zoom datasets, respectively, compared to
the original 3B model Its effect is not as evident at Low noise
intensity as they are already close to 1. Similar levels of im-
provement are observed in other metrics as well. For instance,
in Fig. 5, the fine-tuned 3B model (in brown) performs con-
siderably better than all the other Llama models (1B, 3B, 8B
in orange, green, and red, respectively) under all evaluation
metrics at higher noise settings.

Despite having only about 1.5% of the parameter count
of the much larger GPT-4o, the fine-tuned model delivers
comparable performance, achieving at least 90% of GPT-4o’s

scores across all evaluation metrics. Our fine-tuning aligns the
small Llama model with the large GPT-4o model in terms of
noise tolerance. This indicates that a lightweight model like
Llama-3.2-3B is sufficient to complete the error correction
task. In conclusion, we showed that the fine-tuning approach
has proven to be highly effective, transforming the pipeline’s
output from partially correct sentences to highly accurate
predictions of the ground truth sentences.

6 Discussion

Our Contributions. Our results highlight a major weak-
ness in prior ASCA approaches—their vulnerability to noise.
While previous methods achieved high accuracy in noise-free
conditions, their performance deteriorates in real-world set-
tings. We address this gap by leveraging transformer-based
architectures (VTs and LLMs) for robust classification and
noise correction. Our findings underscore the need for ASCA
research to prioritize noise resilience and adopt transformer-
driven methodologies.

Implications of Findings. Our findings challenge the as-
sumption that passphrases provide both security and usability
against LLM-assisted ASCA attacks. While prior research
shows passphrases are easier to remember and more secure
than simple passwords [29], LLMs can reconstruct them
using linguistic patterns. However, they struggle with en-
tirely random inputs, which are impractical for users. As
transformer-based ASCAs grow more effective, both pass-
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Figure 5: Performance using metrics – BLEU, METEOR, ROUGE-1, ROUGE-2, and ROUGE-L – for different models including
the fine-tuned Llama-3.2-3B model at varying noise factors on the Phone and Zoom datasets. For clarity, only the mean is
displayed in this graph; the standard deviation is omitted.

words and passphrases become unreliable. This reinforces
the need to shift towards alternative authentication methods
like hardware-based security, Multi-Factor Authentication
(MFA), or behavioral biometrics, which are more resistant to
side-channel inference.

This Work’s Limitations. Our study has limitations, partic-
ularly in dataset size and scope. It includes only 25 samples
per keystroke, limited to alphanumeric inputs, excluding es-
sential keys like space, backspace, and enter. Recordings
were restricted to a MacBook Pro keyboard, limiting gen-
eralizability across devices and typing styles. Additionally,
we used synthetic Gaussian noise, whereas real-world envi-
ronments involve more complex noise sources. While we
mitigated these factors by varying noise levels and using stan-
dard keyboards, our key contribution lies in demonstrating the
feasibility of transformer-based contextual error correction,
paving the way for future noise-resilient ASCA research.

This Fields’s Limitations. ASCA research lacks large, di-
verse, and public datasets, limiting progress and reproducibil-
ity. Unlike speech recognition or NLP, it relies on small,
non-standardized datasets, making benchmarking difficult.
The absence of varied keystroke-acoustic data hinders robust
model development. To advance the field, community-driven
dataset collection is crucial. Without standardized, large-scale
datasets, progress will remain fragmented, and security risks
harder to assess. We urge collaborative efforts to establish
open ASCA benchmarks, similar to those in speech and image
recognition, to drive systematic advancements.

Our Future Work. Given these limitations, future research
has significant potential. Expanded datasets should include
additional keyboard keys (function, space, backspace, arrows,
special characters), diverse device models (desktop and soft
keyboards on smartphones/tablets), and varied typing habits
to improve generalization. Critically, experiments should
incorporate authentic ambient noise (e.g., coffee shop chatter,
street noise, music, office sounds) instead of synthetic models
alone. While our study introduced realism by adjusting noise
levels, future work should explicitly simulate diverse acoustic
scenarios and thoroughly evaluate performance. Additionally,
exploring real-time error correction with lightweight, fine-
tuned LLMs can enhance robust side-channel methods on
constrained edge devices, requiring efficient inference, low
latency, and improved usability. We encourage prioritizing
these directions to advance practical ASCA solutions.

Field’s Future Work. Future ASCA research will extend
transformer-based methods beyond acoustics into visual side-
channels (screen reflections, typing videos) and electromag-
netic emanations. As LLMs can reconstruct passphrases de-
spite noise, password-based authentication may become less
viable, prompting shifts toward multi-factor authentication,
behavioral biometrics, or continuous authentication. Address-
ing the lack of large, standardized public datasets covering
diverse keyboards, typing styles, and real-world noise will
be critical for reproducibility. Finally, efficient transformer
optimizations (LoRA, QLoRA, distillation) could enable real-
time, on-device ASCA attacks, increasing security risks and
driving demand for new cybersecurity countermeasures.
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7 Related Works

Acoustic Side-Channel Attacks (ASCAs) exploit sound em-
anations from electronic devices, particularly keyboards, to
infer sensitive information like passwords and PINs. With
the ubiquity of microphones, these attacks have evolved over
decades, addressing prior limitations while presenting new
challenges and research opportunities. This section reviews
their progression, key challenges, and areas for improvement.

Traditional statistical ASCA approaches relied on sig-
nal processing and acoustic feature analysis, using meth-
ods like cosine similarity and cross-correlation. Cosine
similarity effectively modeled inter-keystroke timings to in-
fer numeric inputs such as PIN codes [32], while cross-
correlation highlighted acoustic signal consistency across sim-
ilar keystrokes [37]. Techniques such as Time Difference of
Arrival (TDoA) improved accuracy by leveraging geometric
keyboard positions [14,49]. Hidden Markov Models (HMMs),
enhanced by timing and language-based post-processing (e.g.,
n-grams and spelling correction), further reconstructed text
from keystroke acoustics [21, 50]. Nevertheless, these meth-
ods lacked robustness, performed well primarily on limited
numeric or predictable text, and struggled significantly with
full alphanumeric recovery under realistic noise and typing
variations [42].

Machine learning methods enhanced ASCA robustness
by using advanced models like clustering, Support Vector
Machines (SVMs), and Hidden Markov Models (HMMs).
K-means clustering combined with Mel-Frequency Cepstrum
Coefficients (MFCCs) effectively grouped keystrokes into
distinct acoustic classes [47]. Systematic use of HMMs [50],
SVMs [46], logistic regression, and random forests [3] fur-
ther improved accuracy in controlled environments. Despite
these advances, machine learning methods remained highly
sensitive to typing styles, keyboard variations, and acous-
tic noise, with accuracy dropping by 30–50% under realistic
conditions [20, 23, 31].

Recent deep learning (DL) architectures significantly
outperformed traditional methods by extracting hierarchical
features from acoustic spectrograms. CNNs, ConvMixer mod-
els, and CNN-RNN hybrids achieved over 90% keystroke clas-
sification accuracy under clean conditions [2, 22, 25, 43]; for
instance, Harrison et al. reached above 93% accuracy using
CoAtNet models [25]. However, these DL methods remain
constrained by their need for extensive labeled data, high com-
putational costs, and notably poor performance (often below
40%) in realistic noisy environments [22]. This fundamen-
tal lack of robustness arises from purely local classification
approaches, failing to leverage global contextual semantics,
thus limiting their practical effectiveness in real-world ASCA
scenarios.

Transformer architectures recently emerged as power-
ful methods capable of modeling global relationships and
handling long-range dependencies, significantly improving

noise robustness. Although transformers have demonstrated
strong results in computer vision (Vision Transformers, VTs)
and natural language processing (Large Language Models,
LLMs), their application to acoustic side-channel attacks re-
mains unexplored. VTs, through self-attention mechanisms,
can identify global acoustic patterns, potentially addressing
local noise challenges, while LLMs’ proven contextual rea-
soning abilities [9,18] could correct misclassifications in noisy
keystroke scenarios. Nevertheless, transformer implementa-
tion in ASCA faces practical challenges, primarily compu-
tational costs, though recent lightweight fine-tuning meth-
ods like LoRA and QLoRA significantly alleviate these con-
cerns [17, 26]. Yet, the effectiveness of these lightweight
methods specifically for acoustic keystroke error correction
has not been validated.

In summary, current ASCA methods are limited by their
reliance on local acoustic classification, greatly reducing ac-
curacy in noisy environments. Transformers, capable of mod-
eling global dependencies and context, represent a promis-
ing yet unexplored solution to these limitations. Recent
lightweight fine-tuning advancements (LoRA, QLoRA) fur-
ther suggest practical feasibility. Here, we explicitly evalu-
ate the hypothesis that integrating vision transformers and
LLM-based contextual correction addresses noise robustness
without sacrificing computational efficiency, conclusively de-
termining their value in practical ASCA scenarios.

8 Conclusion

In this paper, we investigated the limitations of existing Acous-
tic Side-Channel Attack (ASCA) methods in controlled noisy
noisy scenarios and demonstrated the potential of transformer
architectures to address these challenges. By fine-tuning a
CoAtNet model and introducing Vision Transformers (VTs),
we established a new state-of-the-art benchmark in keystroke
classification accuracy, surpassing traditional CNNs in clean
acoustic conditions. Crucially, we showed that Large Lan-
guage Models (LLMs) significantly mitigate errors caused by
realistic noise, improving the reliability and practicality of
ASCAs. Furthermore, we found that lightweight LLMs fine-
tuned with efficient techniques such as LoRA and QLoRA can
achieve correction performance comparable to larger mod-
els, making them suitable even for resource-constrained at-
tacks. Our results underline the importance of rigorously
evaluating noise robustness in future ASCA research, high-
lighting transformer-based context-aware methods as essen-
tial for effective acoustic side-channel text recovery. Finally,
to enhance transparency and reproducibility, we will release
our trained models, fine-tuning configurations, experimen-
tal pipeline code, and augmented acoustic-keyboard datasets
with realistic noise scenarios as open-source resources. This
aims to facilitate future research, encouraging the security
community and practitioners to build on these findings toward
comprehensive, noise-resilient ASCA solutions.
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