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Abstract—An essential step for mounting cache attacks is
finding eviction sets, collections of memory locations that
contend on cache space. On Intel processors, one of the main
challenges for identifying contending addresses is the sliced
cache design, where the processor hashes the physical address
to determine where in the cache a memory location is stored.
While past works have demonstrated that the hash function
can be reversed, they also showed that it depends on physical
address bits that the adversary does not know.

In this work, we make three main contributions to the art of
finding eviction sets. We first exploit microarchitectural races
to compare memory access times and identify the cache slice to
which an address maps. We then use the known hash function
to both reduce the error rate in our slice identification method
and to reduce the work by extrapolating slice mappings to
untested memory addresses. Finally, we show how to propagate
information on eviction sets across different page offsets for
the hitherto unexplored case of non-linear hash functions.

Our contributions allow for entire LLC eviction set gen-
eration in 0.7 seconds on the Intel i7-9850H and 1.6 seconds
on the i9-10900K, both using non-linear functions. This rep-
resents a significant improvement compared to state-of-the-art
techniques taking 9× and 10× longer, respectively.

1. Introduction

In the two decades since their introduction [38, 40, 49,
50], cache attacks have been recognised as a significant se-
curity threat. Multiple attacks have been published, leaking
secret or sensitive information from a wide range of ap-
plications, including cryptography [13, 14, 32, 58, 60], user
interface [13, 36, 46], and others [23, 37, 59, 63]. Moreover,
in recent years, cache attack techniques are being used as
stepping stones for more advanced attacks [12, 30, 31].

A fundamental prerequisite for many contention-based
cache attacks is to find an eviction set, a collection of
memory addresses that contend on cache space with a victim
memory address. In a typical Prime+Probe attack [32, 38],
the eviction set serves two purposes. First, accessing the
eviction set creates contention, forcing eviction of the victim
memory address. Second, by measuring the access time
to memory addresses in the eviction set, the attacker can

determine whether they are cached and from that infer
whether the victim has accessed the victim memory address.

The main challenge for constructing eviction sets is
addressing uncertainty [56], which hides cache addressing
information from the attacker. Standard threat models in-
volve attackers executing unprivileged user-level code under
virtual memory addressing. Conversely, caches typically use
the physical memory address for determining the cache
location in which memory is stored. The virtual-to-physical
address mapping hides the physical address from the at-
tacker, hampering direct determination of cache location
from virtual addresses.

Early works overcome addressing uncertainty by either
targeting the L1 cache [38, 40], where the address bits that
determine the cache location are preserved by the virtual to
physical address translation or by using huge pages to ensure
that more address bits are preserved [21]. However, the
sliced design of the Intel last-level cache (LLC) exacerbates
addressing uncertainty and precludes such techniques from
working for this cache on more recent processors. The Intel
sliced cache is partitioned into multiple slices, each serving
a different part of the physical address space. To determine
the slice that serves a memory address, the processor com-
putes an undisclosed hash function based on the physical
address bits. Past efforts for reverse engineering the slice
function have demonstrated that it uses all of the address
bits [15, 22, 33, 34, 61]. Consequently, without knowing
the full physical address, the adversary cannot determine
the slice to which a memory location maps.

Liu et al. [32] propose to exploit cache misses due to
contention in order to construct eviction sets. This approach
has been improved through a series of algorithmic [28, 47,
52, 57] and technical [42, 48, 64] improvements. Due to
their importance for cache attacks, the difficulty of con-
structing eviction sets is considered a measure for the secu-
rity of defences against side-channel attacks [9, 45, 55]. In
response, some designs that are capable of finding eviction
sets in the presence of side-channel countermeasures have
been proposed [26, 41, 43].

Most proposed approaches for eviction-set creation ex-
ploit the observation that when the number of slices is a
power of two, eviction sets at different page offsets are
equivalent [32, 61]. Thus, on such machines, the attacker
only needs to find eviction sets for a single page offset
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and can directly propagate that information to all other
page offsets in the page. This approach does not work for
machines where the number of slices is not a power of two
and the slice function is not linear [61]. Nonetheless, Yarom
et al. [61] demonstrate that for a six-core machine, it may
be possible to propagate information from some page offsets
to the rest of the page.

1.1. Our Contribution

In this work, we present further improvements to the art
of eviction set construction. For that we build on two main
advancements. First, we show how to use timing variations
to determine the slice a memory address maps to. This infor-
mation allows us to further partition the initial candidate set
memory, achieving additional speedup. Secondly, we show
how to use properties of the known hash function to carry
over information across page offsets, allowing us to recover
eviction sets for the whole address space while only probing
a fraction of the cache lines. We now describe our algorithm
in further detail.

As a first step for our algorithm, we develop a technique
to identify the cache slice that a memory location maps to by
exploiting differences in latency that each slice exhibits due
to the processor’s physical layout. The main challenge is that
due to system load and changes in processor frequency, the
latency of slice accesses vary and overlap with one another,
making it difficult to narrow down the slice that a memory
location maps to. To overcome this challenge, we build
on microarchitectural weird machines [7, 14, 24, 26, 54],
constructing a gadget which uses a memory access race
condition to determine that with the lower access time. We
refer to this as the comparator gate, and observe that because
system load impacts memory accesses similarly, comparing
these helps lessen the effects of noise. Using our comparator
gate, we determine the slice that a memory location maps to
with an average accuracy of 97% from any processor core.

Then, we propose an approach to improve the speed
of our algorithm by extrapolating slice mappings from a
few recovered memory addresses to other addresses in the
same page. Specifically, we exploit the observation that the
processor’s hash function generates only a few possible
mappings from virtual page offsets to slices. Consequently,
by recovering a few locations in a virtual page, we can
determine its overall slice mapping and propagate this to
the rest of the locations in the page, greatly speeding up
an eviction set construction. Moreover, this technique also
allows for error detection, because in the case of error, there
is a high probability that the recovered slice numbers do not
match any of the possible patterns.

To construct eviction sets, we generate a set of candidate
addresses, all of which reside in the same page offset. We
partition this set, first based on the L2 cache set [64] and
secondly based on the LLC slice as determined by our
comparator gate and slice mapping propagation method. We
then use a conflict-based eviction-set construction algorithm
on each partition separately.

As a final contribution, we show how to exploit the
knowledge about the hash function used for mapping mem-
ory into slices to propagate eviction set information on
non-linear slice functions. Specifically, we demonstrate that
by constructing eviction sets in 4 KB page offsets, we can
identify working eviction sets in other offsets, requiring only
15–22% of the total eviction sets to be built conventionally,
depending on the function. This achieves a total execution
time improvement of 8× to 10× over prior work. For
machines with linear slice functions, our algorithm is 1.1×
to 1.5× faster than state-of-the-art techniques.

In summary, the contributions of this work are:
• We demonstrate a new weird gate construction that can

identify the LLC slice that a memory location maps
to (Section 4).

• We show how to use the known hash function to detect
and correct errors in slice mapping as well as to propagate
slice information across pages (Section 5).

• We demonstrate how to propagate eviction-set information
across page offsets when the processor uses a non-linear
hash function (Section 6).

Following the practices of open science, we make our
source code and research artifacts publicly available at
https://github.com/0xADE1A1DE/Slice-Slice-Baby.

2. Background and Related Work

In this section, we introduce the necessary background
on Intel caches, their LLC slice function and past recovery
efforts, eviction sets and microarchitectural weird gates.

2.1. Intel Cache Hierarchy

Processor caches store sections of main memory to
reduce access time. A cache miss occurs when the requested
data is absent in the cache, whereas a hit occurs when
the data is found. Modern caches are typically n-way set-
associative, split into m-sets with specific indexing from
memory address bits. Each Intel CPU core has its own
L1 data and instruction caches, and also an L2 cache. The
last-level cache (LLC) is the largest, shared across cores
and located in the uncore section of the processor die [17],
containing all non-CPU core logic. Accessing memory loads
a 64-byte chunk into the L1 cache as a cache line, with
evictions occurring in accordance with replacement policies
from L1 to L2 and beyond. Older Intel CPUs feature an
inclusive LLC, holding copies of L1 and L2 data. Modern
processors use non-inclusive caches [18], where data held
in the private caches may or may not appear in the LLC.
Here, a coherency directory (CD) or snoop filter (SF) is used
to maintain cache coherency without storing duplicate data
from lower-level caches [17, 20]. These mechanisms track
the state and location of cached data across cores and have
a similar set-associative structure as the caches [58, 64].
For our work, we focus on several Intel processors with
inclusive and non-inclusive LLCs. Table 1 shows the cache
parameters for such processors.
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TABLE 1: Intel cache parameters with m-sets and n-ways.

L1 Data L1 Instr. L2 LLC / Slice

Processor m n m n m n m n

i7-6700K, i7-8700
i7-9850H, i9-10900K 64 8 64 8 1024 4 1024 16

i7-11700K 64 12 64 8 1024 8 1024 16
i7-12900KF (P-Core)
i7-13700H (P-Core) 64 12 64 8 2048 10 4096 12

i9-14900K (P-Core) 64 12 64 8 2048 16 4096 12

LLC Slice 0 LLC Slice 1

LLC Slice 3 LLC Slice 2

Core 3 Core 2

Core 0 Core 1

Uncore Ring Interconnect

LLC Slice 0 LLC Slice 1

LLC Slice 2LLC Slice 3

Figure 1: Logical structure of the ring interconnect on Intel
Core CPUs. It allows for the bi-directional data transfer [4,
39] between cores, slices/sub-slices and other structures.

2.2. Sliced Caches

Intel’s design of the LLC splits it into several distinct
slices, separately connected to the processor’s interconnect
in the uncore region of the processor [4, 19, 20, 39]. Memory
maps to certain slices based on the physical address ac-
cording to a proprietary hash function undisclosed by Intel.
Based on prior reverse engineering efforts [15, 16, 22, 33,
34, 61], each of the slices are attached to hardware structures
known as a C-Box or CBo, one per CPU core [19]. From
experimentation with eviction sets [52] on Intel processors
with inclusive LLCs, the set mappings of the eviction ad-
dresses imply the existence of double the number of slices
than reported by the processor.1 This can be characterised
as each slice being split into two sub-slices per CBo, as the
dashed lines in Figure 1 illustrate.
Linear Functions. When the number of LLC slices is a
power of two, the processor calculates the slice index bits
using a straightforward linear XOR operation on the physi-
cal address bits. This technique employs a set of processor
model-specific permutation masks to select appropriate ad-
dress bits and determine the slice index [33, 34].
Non-Linear Functions. When the number of LLC slices
is not a power of two, the employed function is not linear.
Instead, it consists of two phases, a linear XOR permutation
selection similar to the linear functions, piped into a sec-
ondary stage which outputs slice values in the appropriate
range. Yarom et al. [61] describe this secondary step, which
can either be represented as a logic circuit or a lookup of
mappings for the slice values termed a base sequence by

1. As reported by reading Model Specific Register 0x396.

McCalpin [34]. The base sequence is a sequence of slice
values which are indexed by the output of the linear XOR
operation. In this work we treat the secondary function as
such a sequence.

2.3. LLC Contention-Based Cache Attacks

The last-level cache (LLC) has become a compelling
target for contention-based attacks as it is shared across
all CPU cores. It permits information leakage between
cores of the same physical processor, with several prior
attacks exploring this possibility [5, 32, 42, 58, 62, 64]. In
these cross-core attacks, an attacker first primes the shared
cache with their own memory using eviction sets to move
the victim’s data into RAM. The attacker then waits for
the victim to run and displace the eviction set memory.
Through, e.g. observation of the access times to their own
data, an attacker can infer the victim’s memory accesses,
allowing for the recovery of sensitive information such as
cryptographic secret keys [8, 21, 32, 62] and user interface
interactions [36, 46].

2.3.1. Attack Workflow. The main goal of the attacker is
to leak and recover secret data from other CPU cores. To
do this, the attacker needs to build many minimal eviction
sets [47, 52], i.e. the smallest set of congruent addresses
which evict a target address into the next cache level or
to RAM. Two addresses are described as congruent when
they both map to the same cache set as each other. Given
an n-way set associative cache, a minimal eviction set
contains exactly n addresses. After this, the attacker needs
to narrow down which eviction sets correspond with the
victim’s memory to observe their behaviour [1, 11, 32, 64].

For an inclusive LLC, the attacker can evict the victim’s
memory out of the LLC (and hence the private caches) to
observe memory access patterns [32, 52]. However, for non-
inclusive LLCs, the coherency directory (CD) or snoop filter
(SF), as determined by the processor family or configuration
settings [17, 20, 53], provides an accessible structure to
cause private cache evictions [58, 64]. These hardware struc-
tures are a finite resource tracking the locations of cached
data in the LLC. Thus, a congruent set of addresses which
map to the same CD or SF set can likewise cause evictions
into RAM.

2.3.2. Finding Eviction Sets. One of the main challenges
in cache attacks is finding minimal eviction sets in a vir-
tual memory environment. With virtually addressed 4 KB
memory pages, the attacker does not know the higher order
bits of the physical address which decide the cache set
index for the L2 and LLC. Moreover, these bits are also
required for the computation of the slice index with the
hash function. Therefore, the attacker cannot directly create
eviction sets for these caches. To find a minimal eviction set,
the attacker instead needs to find an eviction set by testing
for contention. The attacker initialises a large candidate
address pool which evicts the target address from the desired
cache and then reduces this pool into a minimal eviction



set with a chosen pruning algorithm [28, 42, 47, 52, 64].
These algorithms require test functions to determine whether
a candidate set can actually evict a target address, with dif-
fering techniques for inclusive caches [32] and non-inclusive
caches [58].
Group Testing. Vila et al. [52] describe the group testing
method for finding minimal eviction sets for the LLC. Here,
the attacker splits the candidate set into n+1 groups (with n
being the associativity of the cache) and tests the first n
groups together for eviction of the target address. If the
first n groups successfully evict the address, then the last
group can be pruned away, with the process repeated on
now the smaller candidate set. If the target address is not
evicted, then the attacker splits away a different group and
tries again.
Prime+Scope. The Prime+Scope eviction set construction
method for the LLC [42] works by first accessing the tar-
get address, then repeatedly guessing and accessing further
addresses which may be congruent. After each guess, the
attacker checks if the target address had a fast access or
not. If it was fast, then the guessed address is appended to
the eviction set. This entire process repeats until a minimal
eviction set of size n is built.
Binary Search. In binary search pruning [64], the attacker
incrementally expands a growing window of addresses to
test, checking them in sequence. The window is expanded
until it contains enough congruent addresses to evict the
target. Once an eviction is confirmed, the last address in the
window is moved to the front, and the attacker continues
searching. When the first n addresses are confirmed to be
congruent, a minimal eviction set has been identified.
Prune+PlumTree. The Prune+PlumTree algorithm aims
to find many independent eviction sets simultaneously from
an initial candidate set [28]. An initial pruning step identi-
fies cached memory by accessing the entire candidate set,
discarding memory which experiences a cache miss. In the
second stage, called PlumTree, the pruned candidates are
recursively organised into minimal eviction sets by imposing
a tree structure on the candidates. This partitioning allows
the algorithm to identify possible minimal eviction sets at
the leaf nodes, discarding those at leaves which cannot evict
other memory.

2.3.3. Optimisation Techniques. More advanced tech-
niques can improve the efficiency of eviction set generation,
one such example being conflict set reduction [32, 52]. This
conflict set is the union of all minimal eviction sets for the
LLC, and is then split into individual eviction sets. It acts to
filter the initially large candidate set by reducing the number
of addresses to test, speeding up the overall process.

Another improvement is the concept of L2 candidate set
filtering [64]. This technique works by reducing the number
of addresses to test by filtering out those which do not
correspond to the same L2 set as the target address using an
L2 eviction set. In the same work, the authors also propose
using a parallel access method to reduce the time taken to
test the eviction sets, reducing false positives when testing
for eviction.

Previous works [32, 61] exploit a characteristic of linear
slice functions to propagate eviction sets from one offset
to all offsets within a page. On machines with this type of
hash function, adjusting the offset bits of each address in a
single eviction set consistently maps them to the same LLC
slice and set across all page offsets.

2.4. Weird Gates

To reduce stalls and delays, modern processors may
execute instructions out of order. For that, the processor
tracks the data dependencies of instructions and aims to
execute instructions as soon as their dependencies are satis-
fied, even if preceding older instructions have not completed
execution. To increase the benefit of out-of-order execution,
processors try to predict the outcome of control-flow in-
structions, such as branches, and execute instructions along
the predicted path even before the processor determines the
outcome of the branch. In the case of correct prediction,
this allows the processor to progress execution beyond the
branch. Conversely, if the process eventually determines
that the prediction was incorrect, the processor squashes the
mispredicted execution path and resumes execution from the
correct branch outcome.

Squashing speculative execution does not undo the ef-
fects that the squashed instructions have on the microar-
chitectural state of the processor. Weird gates [24, 26]
exploit this observation to compute various functions on
microarchitectural state. Specifically, a typical weird gate
consists of two or more instruction chains [14], possibly
non-consecutive sequences of instructions, such that each
instruction in the chain has a data dependency on earlier in-
structions in the chain. The last instruction in a control chain
is a mispredicted control-flow instruction, whose outcome
depends on executing all of the instructions in the chain.
Examples of such mispredicted control-flow instruction in-
clude conditional branches [26] and return instructions [24].

Another type of chain is a signal chain. Such a chain
contains one or more “signal” instructions along the mis-
predicted path, whose execution leaves observable traces in
the microarchitectural state of the processors. A common
example of such signal instructions is memory accesses that,
when executed, result in bringing the accessed memory to
the cache.

This design of weird gates creates an observable race
between the signal and the control chains. Specifically,
when the execution reaches the end of the signal chain, the
processor determines that a misprediction has occurred and
terminates the speculative execution of the signal chain. If
the speculative execution reaches a signal instruction before
it is squashed, the instruction will leave its trace in the
microarchitecture. Conversely, if the speculative execution
is squashed before executing the signal instruction, the
instruction will not be executed, leaving no trace.
Weird NOT Gate. As a concrete example, we now describe
a weird NOT gate [24, 26]. The gate is implemented as
a function that takes two memory addresses, input and
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Figure 2: Operation of the weird NOT gate, which inverts
the cached state of input to output. (Adapted from:
Horowitz et al. [14].)

output. We assume that on invocation the output ad-
dress is not cached, but make no assumption on the caching
state of the input address. The aim of the gate is that after
its execution, output will be in the cache if and only if
originally input was not in the cache.

Figure 2 illustrates the operation of the gate in the
case that input is in the cached (left) and when it is not
(right). The signal chain consists of a delay, generated by a
sequence of arithmetic instructions, followed by an access to
output. The control chain consists of an access to input,
followed by updating the return address so that executing the
return instruction skips the execution of the signal chain.

When input is in the cache (Figure 2 left), retrieving
its value is fast and the control chain completes before
the control chain accesses output. Hence, in this case,
output remains uncached. Conversely, if input is not in
the cache, accessing it will be longer, delaying the detection
that the return is mispredicted. This would allow the signal
chain to access output, bringing its contents to the cache.

3. Overview

The primary goal of our work is to increase the fea-
sibility of contention-based cache attacks by speeding up
LLC eviction set generation, the initial step in contention-
based cross-core cache attacks. The main challenge we
overcome is the uncertainty posed by the LLC slice function.
We achieve that through our slice prediction technique in
Section 4, where we group memory by slice based on
observed microarchitectural effects using a weird gate for
memory access time comparison.

We further enhance our slice-mapping approach in Sec-
tion 5 by propagating fewer slice guesses across entire 4 KB
memory pages using knowledge of the processor’s slice
function, accelerating the memory classification speed while
additionally reducing errors. This allows us to infer nearby
address slices without needing to measure them directly by
finding the closest matching whole-page slice permutation.

Finally, we bring these efforts together to improve LLC
eviction set generation with slice-aware optimisations in
Section 6. We combine our approach with state-of-the-art
L2 candidate set filtering by Zhao et al. [64], comparing to
their work as well as the Prune+PlumTree algorithm [28].
Threat Model. Our work follows the standard cross-core
attack threat model where the adversary can only execute
unprivileged code on the same physical processor as the
victim, but not on the same physical core. We assume a
sliced last-level cache, as used in modern Intel processors,
with a known slice function (having recovered it offline, a
one-time reverse engineering effort). We do not require the
use of huge pages, relying solely on standard 4 KB memory
pages (i.e. we do not have visibility of the higher-order bits
for the addresses of memory we use). Moreover, we do not
disable any of the hardware prefetchers.

4. Determining Slice Mappings for Memory

In this section, we demonstrate our methodology for
determining LLC slice indices for memory without requiring
root access. Our eviction set generation routine leverages
the ability to group memory addresses based on their slice
mappings to gain several speed improvements by exploiting
observable differences in access latency to the LLC. We
experiment with several options to predict slice mappings
for memory, exploring the use of the RDTSCP instruction
as well as a variant of a weird NOT gate to measure LLC
access times. However, we find that under high system noise
both approaches fail to accurately predict the LLC slice of
memory addresses.

We then introduce the comparator gate, a new type of
weird gate that compares access timing of two memory
addresses, instead of using a fixed delay, as in prior weird
gates designs. We find that this comparison approach is less
sensitive to noise than the other methods and that it consis-
tently maintains high classification accuracy, regardless of
which core we measure from.
L2 Eviction Sets. Throughout this section, we require
the use of L2 eviction sets to place memory addresses
in the LLC to then measure access times using several
techniques. An L2 eviction set consists of a set of mem-
ory addresses that, when accessed, evict a target address
from the private caches into the shared LLC, enabling our
experiments. Generating L2 eviction set only takes tens of
milliseconds (depending on the processor) due to the small
size in comparison to the LLC and the lack of slice function.
We use group testing [52] for L2 eviction set creation and
use small 4 KB memory pages when creating to mimic the
scenario of a real-world system.

4.1. Predicting Slices with Access Time

The sliced LLC implemented by Intel exhibits different
access times depending on the slice a memory address
belongs to [6]. This has been explored in previous works
as a method to reverse-engineer the slice function [61], as
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for the four slice i7-6700K, measured from core zero.

well as to create covert communication side-channels and
mount cross-core attacks [4, 39]. As visualised in Figure 1,
cores with memory residing in distant slices must wait for
their traffic to travel further than if the memory resides in a
closer slice.

4.1.1. LLC Slice Access Time Variance. To start our
investigation, we first validate that LLC slices indeed exhibit
different access times. We execute the experiment on an
Intel i7-6700K processor, which has four physical cores and
four slices. We first create L2 eviction sets, which allow us
to evict the tested memory lines from the L2 cache. We
then set the process affinity to core 0 and use the RDTSC
instruction to measure access latency from that core to the
memory lines.

To determine the slice each memory line maps to, we
use the /proc/<pid>/pagemap interface. We then use
the published LLC slice function for the i7-6700K [33]
to determine ground-truth slice mappings and check the
accuracy of our predictions. In Section 5.1 we show how to
determine the slice in an unprivileged scenario, i.e. without
access to /proc/<pid>/pagemap.

We average 10,000 accesses to each slice over 100
independent executions to establish their access time dis-
tributions. We take 100 overall samples for this experiment
as we observed slice timings to differ between runs due to
frequency changes in the core and uncore. This gives an
indication of the global access time distribution for each
slice. We repeat individual address measurement when the
reported cycles are greater than 100, indicating a RAM
access due to spurious microarchitectural noise (e.g. cache
eviction due to system interrupts).

Figure 3 shows the distribution of access times to each
slice. We note that the access times distributions differ
between slices, although they overlap. This implies that
information from access times can be used to predict the
slice index of a memory address.

4.1.2. RDTSCP Predictions. We now reverse the scenario.
Instead of trying to find the time to access a slice, we
attempt to determine the slice by measuring the access time.
To calibrate our experiment, we first compute the average
access time to each slice, averaging over 1,000 measurement
for each slice. We then measure the access time to 10,000
memory addresses, and compare the access time to the
calibrated measurements to predict the slice each memory
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Figure 4: RDTSCP and fixed-delay chain slice classification
accuracy in a low-noise system, measured from core zero.

address maps to. Due to the overlap observed in Figure 3, a
single timing measurement is likely to be a bad predictor. To
reduce the noise, we average the result of 10 measurements
and use the average to predict the slice. As before, we ignore
outliers with a value above 100 cycles.

The confusion matrix in the left side of Figure 4 shows
the slice prediction accuracy and the standard deviations. We
achieve an average prediction true positive accuracy of 83%
by normalising the confusion matrix to percentages. While
averaging timing samples enhances accuracy, there is still
room for improvement, as it is not optimal for all slices.
Notably, this method cannot easily differentiate between
slices two and three due to their overlapping access times.
Although the attacker could use more advanced timing
analysis techniques to improve accuracy [3, 25, 51], these
require in-depth analysis of the noise distribution.

4.1.3. Weird Gates for Access Timing. We now propose
a different access time measurement technique using re-
cent weird gate concepts. Recall that such gates use mi-
croarchitectural races to enact certain behaviour such as
logical operations, re-purposing the memory hierarchy to
perform computation. We seek to exploit this behaviour to
instead measure slice access times with higher resolution
than RDTSCP.

Our core idea is that the NOT gate of Kaplan [24],
illustrated in Figure 2, already compares the execution time
of a memory access to that of a fixed delay. To that aim, we
place input in the LLC, but evict it from the L1 and the
L2 caches. Our aim is to rely on the difference in access
time to various slices in order to determine in which LLC
slice input is cached. For that, we try to set the length of
the delay in the gate such that the access to output loses
the race if input is cached in a closer LLC slice, but wins
it if input is in a further slice.

We construct the delay from a chain of dependent add
instruction, which we assume take one cycle each. Increas-
ing the number of add instructions increases the delay
before the access to output. We then test the gate with
different input addresses, each residing in a different LLC
slice. Figure 5 shows the probabilities of the delay chain
winning as functions of the length of the chain. We observe
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Figure 6: RDTSCP and fixed-delay chain slice classification
accuracy in a busy system, measured from core zero.

a clear distinction in tipping points for each slice, indicating
that the gate can distinguish each of the four slices. As a
result, we can now try to use the delay chain length as a
unit of measurement for the memory’s LLC access time.

4.1.4. Fixed-Delay Chain Predictions. Having found that
different slices show tipping points at different delay lengths,
we now design an experiment to assess the possibility of
using modified NOT gates to predict the slice a memory
location maps to. The core idea is to measure the tipping
point for a memory location and compare it to the known
tipping points for each slice. In more details, we first cali-
brate the experiment, determining the tipping point for each
slice. For that, we select a memory location for which we
know the slice, and search for the delay length at which the
win probability of the gate changes. We repeat the process
for each slice, finding the tipping point for each.

We then attempt to predict the slices of 10,000 memory
addresses. For each address, we search for the tipping point.
Once found, we compare to the tipping points obtained dur-
ing the calibration and select the closest one as a prediction
for the slice. Figure 4 (right) shows the prediction success.
Although this method can distinguish between slices two
and three better than RDTSCP, its average true positive
accuracy is not as high as overall at 73%. In particular,
it appears that this method fails to accurately distinguish
between slices one and two.
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Figure 7: Operation of the comparator weird gate. Left when
input’s latency is less than compare, right when it is not.
Shaded instructions never execute.

4.2. Slice Prediction Under Noise

The experiments in Section 4.1 were undertaken under
relatively quite system conditions, with no significant system
activity. To evaluate slice prediction in more realistic sce-
narios, we now repeat the experiments in the presence of
activity. We employ stress-ng [29] to generate uncore traffic
with a cache stress preset running on all non-measuring
cores. All elements of either experiment remain the same,
except for the increase in system activity.

Figure 6 summarises the results. For RDTSCP, the pre-
diction accuracy now drops from the average of 83% in the
quiet scenario to 67% in the noisy scenario. The granularity
of this timer is too coarse, with overlapping predictions for
slices 0–1 and 2–3. The variance in access times likewise
increases, causing prediction errors. The prediction accuracy
of the weird gate method drops even further, i.e. from 73%
in the quiet scenario to only 32% in the noisy scenario,
as shown in the right side of Figure 6, indicating that this
measurement technique is overly sensitive to the processor’s
frequency and noise. In conclusion, although the techniques
we investigate in Section 4.1 have an acceptable accuracy
when the system is idle, their accuracy drops significantly
when the system is busy.

4.3. The Comparator Weird Gate

We now present the comparator gate, a new weird gate
design that allows predicting the LLC slice of a memory
address even in the presence of system noise. We observe
the underlying cause of the noise is that the access latency
to slices is not fixed but depends on environmental factors,
such as fluctuating core frequencies and varying uncore load.
In contrast, both approaches presented in Section 4.1 do
not account well to these factors. The RDTSCP approach
measures latency against the wall clock, which has a fixed
frequency, whereas the weird gate measures latency against
the core clock, which is independent of the uncore clock
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and load. Because variations due to environmental factors
are bigger than the differences between access latencies to
different LLC slices, measurements that do not account for
environmental factors are doomed to fail.

To overcome this challenge, we propose to avoid inde-
pendent clocks and instead compare the access time to a
memory address against the instantaneous access latency to
the LLC slices. For that purpose, we design the comparator
weird gate, demonstrated in Figure 7. Unlike prior weird
gates [24, 26, 54], which compare a memory access to a
fixed-delay chain, our comparator gate races two indepen-
dent memory accesses. Specifically, our comparator gate
creates a microarchitectural race between the access times
to two memory addresses: an input address, which we
wish to determine the slice it maps to, and a compare
address, which is in a known slice. We use a signal
to indicate whether the access to compare takes longer
than the access to input. To compensate for the time
required for setting up the return address, we need to add
a small delay after accessing compare. We experimentally
determine the length of this delay to balance the lengths of
the chains when accessing addresses in the same slice. We
provide the implementation of the gate in Appendix A.

To determine whether the comparator gate can distin-
guish between different slices, we test all combinations of
input and compare slices. For the experiment, we use
10,000 addresses, taking 10 measurements for each address
from each core. Figure 8 shows the average signal value. As
the figure demonstrates, the patterns of the signal values for
each input slice depend on the core the experiment runs
on. However, on each core different input slices show
different signal patterns. Thus, we can use signal patterns
as predictor for the slice.

4.4. Comparator Gate Evaluation

We now evaluate whether the comparator gate is suitable
for slice predictions. For that, we use a set of compare
addresses, one for each slice. In this section, we rely on
known ground-truth for generating this set. Section 5.1
shows how to generate the compare set without elevated
privileges.

As Figure 8 shows, an input address does not always
win or always lose the race against a given compare address.
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Figure 9: Comparator gate slice classification accuracy, mea-
sured from core zero.

Instead, there is a win probability that depends on the slices
of both the input and the compare addresses. Consequently,
to determine the slice an input address maps to, we need to
execute the comparator gate multiple times for each pair of
addresses to determine the win probability.

Our method for determining the slice a memory address
maps to consists of two main steps. In the profiling step,
we measure the win probability for inputs of known slices
against the memory addresses in the compare set. The profile
consists of a set of vectors, one for each input slice. The vec-
tor includes one coordinate for each compare slice, whose
value is the win probability for an input of the given input
slice against the compare address in the compare slice. To
ensure the accuracy of the profile, we use 1,000 invocations
of the comparator gate to determine each vector coordinate.
Figure 8 can be viewed as visualising four such profiles,
one for each core. Each vector in the profile is visualised as
a horizontal line matching the input slice.

Once the profile is created, we move to the second step
of predicting the slice of a memory address. For that, we
use the comparator gate to test the input memory address
against each of the addresses in the compare set. We repeat
the measurement 10 times for each compare slice, creating
a probability vector that indicates how likely is the input
slice to win against each of the elements in the compare
set. We then compute the Euclidean distance between this
vector and each of the vectors in the profile and use the
input slice of the closest vector as the predicted slice index.

Figure 9 displays the resulting slice prediction confusion
matrix. It shows that our method does not suffer from
the same noise-related accuracy loss as RDTSCP and the
fixed-delay chain gate. This gate demonstrates 96% and
93% overall prediction accuracy in the quiet and the busy
scenarios respectively.
Multi-core. As Figure 8 shows, the profile depends on
the core on which we execute the experiment. To evalu-
ate our slice prediction method with the different profiles,
we repeat the experiment running on each processor core.
Table 2 summarises the results, showing the true positive
classification rates for each slice. Our method maintains a
97% true positive rate when averaged across all cores and



TABLE 2: True positive comparator gate classification per-
centage rates for each slice and core on a quiet system.

Core Slice 0 Slice 1 Slice 2 Slice 3 Average

0 96 ±4 96 ±3 99 ±2 93 ±5 96 ±4
1 99 ±1 95 ±5 95 ±2 99 ±5 97 ±3
2 98 ±6 95 ±3 94 ±6 99 ±1 97 ±4
3 93 ±7 98 ±4 95 ±8 96 ±8 96 ±7

slices, showing that it can adapt to any processor affinity.
Profile Stability. The attacker is unlikely to have an a-
priory knowledge of the core they execute on. Moreover,
we find that the profile may vary between executions, even
on the same core. To allow executing the attack without
knowledge of the core and to overcome profile variations, we
compute the profile before each execution of our eviction-set
construction algorithm.

5. Intra-Page Slice Mappings Propagation

In Section 4, we discuss our method for classifying
memory by slice. This requires measuring every address
in a page, which is time-consuming while having a non-
zero error rate. In this section, we leverage knowledge of
the slice function’s structure to assist in two key areas. We
first introduce our technique for determining our compare
set addresses for the comparator gate to run our profiling
step. Then, we describe how we can propagate slice clas-
sifications within a memory page to reduce the number of
measurements required.

We observe that for each virtual memory page, the
function implies a finite number of mappings between page
offsets and LLC slices, which we refer to as a page-slice
mapping. These mappings result from the dependency of
the slice function on both the known lower physical address
bits (the offset in the page) and the unknown upper address
bits. Our goal is to determine the correct page-slice mapping
for a given page. Our first method, closest match, involves
using our comparator gate to map all offsets in a page to
their corresponding slices and selecting the mapping which
matches the most measured slice indices. The next, Bayesian
inference, determines the most likely page mapping based
on a dynamic probability model measuring only a subset
of offsets. The final method, decision tree, consists of a
guided search based on maximising information gain to find
the page-slice mapping with the fewest measurements. We
evaluate these methods on several Intel processors, deter-
mining the overall execution speed and resulting accuracy
in comparison to the default comparator gate method.
Structure of the Slice Function. Recall that the LLC slice
function is a proprietary function used by Intel processors to
determine the slice index for a given physical address. The
main property we want to exploit is that the slice function
generates mappings of physical memory cache line offsets
to slice indices.

Several prior works detail the observed structure of the
proprietary function which uses either a linear or non-linear

approach to calculate the slice index depending on the num-
ber of slices and the processor [10, 15, 16, 22, 33, 34, 61].
For linear functions, the slice index is calculated by an XOR
operation on the physical address bits using several permu-
tation selection masks. This equally distributes cache lines
across the slices. In contrast, non-linear functions have a
two-phase approach, starting with a linear XOR permutation
selection, piped into a secondary stage which outputs the
slice index in a range based on the XOR result.

We observe the number of unique page-slice mappings is
equal to the number of slices for linear functions. For a CPU
with n slices, this results in mapping consecutive cache line
offsets in a page to the n different slices. This is due to the
equal distribution design, through interactions between the
XOR operation involving both known lower address bits and
unknown upper bits. For example, an i7-6700K generates the
following four mappings (where mappings B, C, and D, are
simply A XORed with 0x1, 0x2, and 0x3 respectively):

Mapping. A: 0123 0123 ... 2301 2301

Mapping. B: 1032 1032 ... 3210 3210

Mapping. C: 2301 2301 ... 0123 0123

Mapping. D: 3210 3210 ... 1032 1032

For non-linear functions, the number of unique page-slice
mappings is greater than the number of slices and depends
on the processor. Processors with six and ten LLC slices
have 128 unique page-slice mappings.

We detail our method for reverse-engineering the slice
function in Appendix B, and provide this as an auxiliary
tool in our open-source repository.2

5.1. Determining the Compare Set

Our unprivileged threat model restricts us to 4 KB mem-
ory pages with access to only the lower 12 bits of the physi-
cal address. Consequently, we do not know the ground-truth
slice mappings. To run the profiling step for the comparator
gate, we must first determine the compare set of addresses,
one in each slice, despite not knowing the ground truth.
Therefore, we need to determine the slice mappings for a
single virtual page of memory to find our compare set and
also addresses with known slices for calibration purposes.

Processors with linear slice functions with n slices gen-
erate n unique page-slice mappings, where we can choose n
pre-determined offsets for any page which are guaranteed to
map to n different slices. The rest of the offsets are used as
calibration targets to initialise the comparator gate vectors.
We note that we only know that the addresses in the compare
set are in different slices, but we do not know the exact
mapping (i.e. which address maps to which).

We cannot use this approach for processors with
non-linear functions because we cannot assume that pre-
determined n offsets in a page will map to n different slices.
In order to find the compare set, we try to identify the slice
mapping for the page we are targeting. Once we identify

2. https://github.com/0xADE1A1DE/Slice-Slice-Baby

https://github.com/0xADE1A1DE/Slice-Slice-Baby


this, we can select n offsets that map to the n slices. We
use our comparator gate to run pairwise comparisons for all
offsets in the page. This creates a comparison pattern based
on closer versus further away slices. We then count how
many times the measurement pattern from the gate matches
each of the page-slice mappings. We select the mapping with
the highest number of matches. It is important to note that
this approach does not fully identify the slices, as several
equivalent mappings can appear from our measurements.
However, this does not prevent the technique from working,
and the profile we generate can successfully distinguish
different slices and partition the memory without knowing
the ground truth. For simplicity, the rest of the discussion
assumes that the determined function is correct, rather than
an equivalent function.

5.2. Closest Match

The first approach we explore as a means to increase
the classification speed while maintaining accuracy for the
slice mappings predictions is the closest match. This method
involves comparing all addresses in a page to the compare
set using the comparator gate, then selecting the mapping
which matches the majority of predicted slice indices. The
method works for both linear and non-linear slice functions.
It results in much higher accuracy than the default compara-
tor gate method, as it uses knowledge of the slice function
to make predictions. However, as it still requires comparing
each address to the comparison set, so it does not improve
the classification speed.

5.3. Bayesian Inference

Our next approach involves the use of statistical
Bayesian inference to guess the page-slice mapping. The
aim here is to maintain probabilities for each page-slice
mapping, and update such probabilities based on iteratively
measured slice indices to determine the most likely mapping.
At the beginning, each page starts with an equal probability
of occurrence as we have no prior information. We then
predict the slice index for the first offset in the page using
the comparator gate. We update the posterior probabilities
of each unique page mapping given the predicted slice index
and move to the next offset to repeat. When we reach a given
threshold (0.90), we select the mapping with the highest
probability as the page’s slice mapping and can now proceed
to the next page. This results in a fewer number of offsets
measured per page, which we discuss further in Section 5.5.

5.4. Decision Tree

The decision tree method represents a guided search of
slice indices through specific page offsets to determine the
overall page-slice mapping.3 We illustrate this structure in
Figure 10. Its design maximises the information gained at
each decision node, reducing the number of overall slice
predictions.

3. This method is equivalent to the ID3 algorithm by Quinlan [44].
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Figure 10: Example decision tree structure. Nodes represent
page offsets to predict the slice for. Leaves represent the
determined page-slice mapping.

Building the Tree. Generating the decision tree involves a
recursive construction of each decision branch as we narrow
down to each unique page-slice mapping. To construct the
first node, we select the page offset which provides the
highest distinguishing entropy across all possible mappings.
Note that for linear mapping functions, all offsets have the
same distinguishing entropy at the beginning. However, this
is not necessarily the case for non-linear mappings.

Specifically, to calculate the entropy for an offset o, we
count the occurrence of every slice index at the offset for
each of the n mappings P :

∀i ∈ {0, 1 . . . , n− 1}, v = Pi,o

slice countsv + = 1

Then by using Shannon’s formula, the offset’s uncer-
tainty H is calculated by:

H = −
LLC SLICES−1∑

s=0

p(s) log2 p(s)

where p(s) is the probability of the slice index occurring:

p(s) =
slice countss

n

From this, we can select the offset with the highest
entropy. We then use our gate to compare this offset to
our comparison set. Then, we create new child nodes for
each possible slice index, forming the edges of the tree, and
remove the offset from the list of potential measurements.
With each child node, we repeat the above process using
the subset of page-slice mappings which matches the slice
index associated with that node. The recursion continues
until only one mapping remains. At this point, we create
a leaf node to store the unique mapping, which we use to
determine the slice function for that page.

The user can select multiple offsets to measure at each
decision node, which can improve the accuracy of the
method at the detriment of speed. In practice, we find
that the number of offsets to measure per decision node
depends on the processor and the slice function. We provide
configurations for several processors in our codebase.



TABLE 3: Comparison of intra-page propagation methods for slice predictions. True positive classification accuracy listed
as a percentage, speed in MB/s with respective standard deviations. Bold values indicate the best performance.

Comparator Gate Closest Match Bayesian Inference Decision Tree

Processor Linear Accuracy MB/s Accuracy MB/s Accuracy MB/s Accuracy MB/s

i7-6700K ✓ 84 ±4 70 ±1 100 ±1 70 ±1 94 ±4 568 ±46 90 ±7 538 ±38
i7-11700KF ✓ 77 ±11 27 ±0 97 ±4 27 ±0 79 ±10 323 ±20 71 ±11 352 ±23
i7-13700H ✓ 58 ±9 21 ±1 96 ±3 21 ±0 74 ±10 175 ±31 52 ±9 198 ±54
i7-8700 ✗ 79 ±11 45 ±6 98 ±7 48 ±1 98 ±7 70 ±4 91 ±9 119 ±32
i7-9850H ✗ 79 ±9 51 ±1 68 ±10 50 ±0 99 ±6 72 ±4 95 ±5 187 ±31
i9-10900K ✗ 74 ±9 32 ±6 99 ±4 34 ±0 99 ±5 60 ±3 96 ±3 96 ±21
i9-12900KF ✗ 53 ±9 25 ±0 95 ±4 25 ±0 93 ±4 41 ±2 74 ±6 19 ±4
i9-14900K ✗ 52 ±12 15 ±0 96 ±6 15 ±0 95 ±7 19 ±1 82 ±8 6 ±2

Usage. Starting from the root node, we compare the
indicated offset to the comparison set and predict the slice.
We then traverse to the child node corresponding to the
predicted slice and repeat until we reach a leaf node with a
page-slice mapping. If a child for the predicted slice does
not exist, this constitutes a slice prediction error. In this
case, we traverse up to the parent node and retry. However,
this may still cause the wrong mapping to be selected if an
uncaught error occurs higher up in the tree. We leave this
for future improvement.

5.5. Evaluation of Propagation Methods

Using the same methodology as in Section 4, we evalu-
ate the propagation methods for their accuracy and clas-
sification speed. We first place our desired memory into
the LLC using L2 eviction sets, and use the propagation
methods to determine the slice mappings for each page.
For each method, we measure 10,000 cache lines across the
LLC, and average the results over 100 runs to get a global
view of their performance. As the decision tree can be built
statically, we do not record the time taken to generate the
tree in these measurements.

We compare the classification speed and accuracy of
each method across several Intel processors, summarising
the results in Table 3. The best improvement in accuracy
comes from the closest match method, which is to be
expected considering that the method combines the most
measurements with the knowledge of the slice function.

For linear slice functions, the dynamic Bayesian infer-
ence method is the fastest and most accurate due to the
nature of the hash function. On our i7-6700K processor,
we find this method requires measuring between two and
three addresses per page on average to determine the page
mapping with confidence. For the i7-11700K and i7-13700H
processors, this increases to five offsets per page on average.

The decision tree method significantly improves the
classification speed for most processors while maintaining
a good level of accuracy, working especially well for non-
linear functions. We reach above 90% accuracy for these
processors. On the i9-12900KF and i9-14900K, the deci-
sion tree method performs relatively poorly due to poor
baseline comparator gate performance. For such processors,
we choose the Bayesian inference method, which achieves

higher speed and accuracy because it dynamically adjusts
the number of measurements required when trying to deter-
mine the page-slice mapping.

6. Slice-Aware Eviction Set Generation

To successfully undertake a contention-based cross-core
attack, the attacker must first generate eviction sets for every
LLC set. In this section, we introduce three optimisations
for this procedure, leveraging our foreknowledge of memory
slice mappings.

The first, candidate set slice filtering, reduces initial
eviction candidate sets to only contain memory with the
same slice as the target address. The second, non-linear
eviction set propagation unlocks the ability to mirror evic-
tion sets to other page offsets on processors with non-linear
slice functions. The third, test eviction filtering accelerates
the search for a target address for which we need to build a
new eviction set. We demonstrate a significant improvement
in execution time for processors with both linear and non-
linear slice functions, building on state-of-the-art eviction set
generation techniques e.g. L2 candidate set filtering and par-
allel probing [64] and outperforming Prune+PlumTree [28].

6.1. Implementation Details

Before describing our optimisations, we first detail some
techniques and configurations that we use in the implemen-
tation of our eviction set creation methodology.
Test Eviction Function. Current eviction set creation
methods use a test eviction function to determine whether
the given set of addresses can evict a target address from
the LLC. Similar to Zhao et al. [64], we place all evic-
tion set addresses in an array. This lowers the execution
time by exploiting memory-level parallelism, making this
method more efficient and noise-resilient in comparison to
a linked list approach [42, 52]. We access the elements in
the array with a user-configurable traversal pattern to suit
the processor’s replacement policy. We also access another
virtual address in the same page prior to measurement to
ensure caching of the TLB entry, reducing false-positives
for eviction [8].
Choice of Pruning Algorithm. We use the optimised group
testing pruning algorithm from Zhao et al. [64]. We find



this version of the pruning algorithm to be more efficient
than the original using early termination [52]. The original
group testing algorithm uses an early termination approach,
identifying and pruning removable groups as soon as they
are found, without needing to search through all remaining
groups. We also find that the optimised version performs
better than the binary search algorithm [64].
L2 Candidate Set Filtering. We integrate the L2 candidate
set filtering technique [64] into our eviction set generation
process. The approach builds on the observation that if two
addresses map to the same LLC set, they also map to the
same L2 set. Consequently, filtering by L2 set reduces the
number of addresses for the pruning algorithm to check for
congruency with the target address.

6.2. Our Optimisations

Building on our insights from Section 4 and Section 5,
we implement three specific optimisations to speed up the
generation of eviction sets for the entire LLC.
Candidate Set Slice Filtering. We carry out slice filtering
for our candidate set addresses to minimise the execution
time of the pruning algorithm, similar to L2 candidate set
filtering. We use our knowledge of predicted slice mappings
to filter the initial candidate set to consist of addresses that
map to the same slice as the target address. This increases
the likelihood of finding congruent addresses, dividing the
total size of the candidate set by the number of LLC slices.
The speedup depends on the algorithmic complexity of the
chosen pruning method and the number of slices.
Eviction Set Propagation for Non-Linear Slice Functions.
Linear slice functions enable straightforward propagation
from a single page offset to the rest of the page [32]. For
example, constructing a single eviction set starting at page
offset 0x0 consists of addresses which are congruent with
one another, mapping to the same LLC sub-slice and set.
If we add a fixed page offset to each of the addresses, the
new mirrored eviction set addresses will all map to the same
LLC sub-slice. This technique can be applied to any offset,
meaning we only need to find eviction sets for a single page
offset with linear functions.

Propagating eviction sets for non-linear slice functions
in the same manner results in a faulty eviction set with
addresses mapping several slices [61], being unable to cause
cache contention. To solve this problem, we first generate a
single eviction set, and then generate mirrors for the rest of
the page offsets. We can use our previously obtained slice
mappings (Section 5) to determine which addresses map to
the same slice and check whether the mirrored eviction set
maps entirely to a single slice. This does not require further
contention tests. With this approach, we experimentally find
we only need to generate on average 15% of all LLC
eviction sets for processors with ten slices, and 22% for
those with six slices using the conventional method.
Test Eviction Filtering. When generating multiple eviction
sets across an entire system, we need to determine if any
previously found eviction sets can evict the target address to

TABLE 4: Comparison of different LLC cross-core attack
frameworks and their prerequisites.

Cross-Core Attack 4 KB
Pages Userspace Slice

Aware
No Shared
Memory

Irazoqui et al. [21] ✗ ✗ ✗ ✗
Gruss et al. [11] ✓ ✓ ✗ ✗
Liu et al. [32] ✗ ✓ ✗ ✓
Yarom et al. [61] ✗ ✗ ✓ ✓
Vila et al. [52] ✓ ✓ ✗ ✓
Purnal et al. [42] ✓ ✓ ✗ ✓
Didier and Maurice [4] ✓ ✓ ✗ ✗
P+PT [28] ✓ ✓ ✗ ✓
L2CS [64] ✓ ✓ ✗ ✓
Ours ✓ ✓ ✓ ✓

avoid duplicates. For the i7-6700K, each single page offset
has 128 potential LLC eviction sets. This number increases
to 320 for the i9-10900K due to its larger LLC.

Past methods tend to test every previously-generated
eviction set with the potential target addresses [47, 52]. We
optimise this process by testing the subset of eviction sets
that correspond to the same slice and L2 set as the target.
This reduces the time between finding a target address and
generating a new eviction set.

We can reduce the number of LLC eviction sets to
test from 128 and 320 to just two in the aforementioned
processors. They each have 16 L2 eviction sets per page
offset, derived from 1024 L2 sets across 64 L1 sets. For the
i7-6700K with four slices, we narrow the testing to just two
eviction sets, given 128

16×4 = 2. For the i9-10900K with ten
slices, the same property holds with 320

16×10 = 2.

6.3. Evaluation and Discussion

We now evaluate our approach to generating eviction
sets across a variety of Intel Core processors. Table 4
compares our approach to other recent works in the field
of cross-core attacks. Using our slice-aware optimisations,
we greatly reduce the execution time for the eviction set
initialisation phase.

We perform eviction set generation across several Intel
processors. We do not significantly alter the operating state
of the processors, aside from differing capacity and speeds
of memory. In each case, we initialise a candidate set buffer
3× the size of the LLC to ensure an even comparison across
each methodology. All hardware prefetchers are enabled. We
include the time taken to generate L2 eviction sets.

We evaluate two test scenarios, the first Page Offset
where we generate all possible LLC eviction sets only for
a single page offset and the second Full LLC, where we
generate eviction sets for the entire LLC. The Page Offset
scenario allows for comparing between processors regard-
less of slice function, representing the performance of our
method without propagation to any remaining page offsets.
On the other hand, Full LLC demonstrates the increased
feasibility our optimisations provide for the execution time
of the entire LLC eviction set generation.

We compare our approach to two recent works, one
using L2 candidate set filtering (L2CS) [64], and the other



TABLE 5: Comparison of prior eviction set generation methods, L2 candidate set filtering (L2CS) [64] and Prime+PruneTree
(P+PT) [28] on several Intel processors, averaged over 1,000 independent runs. Bold values indicate the best performance.

Page Offset (ms) Full LLC (ms)

Processor Cores L2CS P+PT Slice+Slice Baby L2CS P+PT Slice+Slice Baby

i7-6700K 4 113 ±9 83 ±25 77 ±7 115 ±7 83 ±25 79 ±9
i7-11700KF 8 447 ±95 475 ±42 301 ±85 466 ±121 475 ±42 320 ±102
i7-8700 6 190 ±17 173 ±71 323 ±55 6683 ±443 11506 ±935 812 ±230
i7-9850H 6 183 ±21 145 ±60 255 ±62 6302 ±599 9616 ±734 729 ±280
i9-10900K 10 544 ±109 300 ±106 759 ±170 15485 ±846 19864 ±1073 1569 ±354

using the Prune+PlumTree (P+PT) algorithm [28]. To ensure
a fair comparison for processors with linear slice functions,
we always carry out eviction set propagation as this is a
previously understood optimisation [28, 61].

We reimplement L2CS to cater for Intel Core processors
as well as incorporate our slice prediction methodology. The
public implementation of the P-PT technique [27] cannot
work across multiple page offset. To counteract this, we in-
stead build each offset individually, recording the execution
time for just this portion of the program, summing them
afterwards to permit comparison.
Results. Table 5 presents the execution times for the
various eviction set generation techniques across multiple
Intel processors.

The main benefits of using our slice-aware optimisa-
tions become clear when considering the Full LLC scenario
for non-linear sliced processors. Here, we achieve a 10×
speedup for the ten-slice i9-10900K, reducing the full LLC
eviction set generation time from 15 and 20 seconds, with
L2CS and P+PT, respectively, to 1.6 seconds on average.
Likewise, we achieve 8× and 9× speedups for the i7-8700
and i7-9850H both with six slices. Our approach does not
outperform the other methods for Page Offset due to the
overhead of the slice classification routine. However, for
such processors with non-linear slice functions, we must
find eviction sets at all page offsets, nullifying the disad-
vantage [61].

Considering linear slice function processors, there is
little difference between Page Offset and Full LLC for all
works, as eviction set propagation takes a negligible amount
of time, mostly hidden by noise. For the i7-6700K, our
algorithm provides an improvement of 1.1× over P+PT and
1.5× over L2CS. For the i7-11700K, we achieve a 1.5×
speedup over L2CS and P+PT.
Quality of Eviction Sets. To evaluate the quality of the
eviction sets, we record the number of found eviction sets,
occurrence of duplicates, and those which were missing. A
duplicate maps to the same set and slice as another eviction
set. A missing eviction set occurs when there were LLC sets
which could not be evicted by any of the generated eviction
sets.

In all runs, both our method and L2CS find at least
99% of the total eviction set count for the LLC. There was
a negligible rate of duplicate and missing eviction sets, with
ours marginally higher due to duplication of errors during
eviction set propagation.

We also augment P+PT to monitor these metrics. We
find that on some processors the algorithm can experience a
higher rate of missing and duplicate eviction sets. At best,
the algorithm missed 1% of the total eviction sets for the
i7-6700K, also experiencing the highest rate of duplicates at
5%. At worst, 14% of the total eviction sets were missing
for the i7-1100K. It may be possible that further tuning of
the P+PT algorithm to the processors we use would improve
the results. We leave testing this to future work.

7. Conclusion

We detail several enhancements to contention-based
side-channel attacks by accelerating the initial generation of
LLC eviction sets. Our work removes the uncertainty posed
by the proprietary LLC slice function implemented in all
major Intel processor families, which otherwise prolongs the
running time of the eviction set generation procedure.

We design a technique for memory slice classifica-
tion that uses weird gates, allowing us to determine slice
mappings in unprivileged scenarios. Using knowledge of
the reverse-engineered slice functions, we evaluate various
methods for intra-page propagation of slice mappings, sig-
nificantly reducing the time required to classify memory
with our weird gate.

Finally, we present three optimisations for generating
eviction sets for the entire LLC, leveraging knowledge of
slice mappings to achieve a significant speedup in execution
time over state-of-the-art.
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[48] J. P. Thoma and T. Güneysu, “Write me and I’ll tell
you secrets - write-after-write effects on Intel CPUs,”
in RAID, 2022.

[49] Y. Tsunoo, E. Tsujihara, K. Minematsu, and
H. Miyauchi, “Cryptanalysis of block ciphers imple-
mented on computers with cache,” in ISITA, 2002.

[50] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and
H. Miyauchi, “Cryptanalysis of DES implemented on
computers with cache,” in CHES, 2003.

[51] M. Vanhoef and E. Ronen, “Dragonblood: Analyzing
the Dragonfly handshake of WPA3 and EAP-pwd,” in
IEEE SP, 2020.
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Appendix A.
Comparator Gate Code

Listing 1 shows the assembly code for the comparator
gate, which is used to compare memory latencies for two
cache lines (input and compare) in the LLC. The code
is just-in-time compiled using AssemblyLine [2] for ease of
use. This is the main building block of our userspace slice
index prediction algorithm.
Running a Single Measurement. To carry out a single
measurement using the comparator gate:

• Setup: Place the input, compare and signal
cache lines into the LLC using L2 eviction sets.

• Lines 1–11: Halt speculation with memory fences,
place signal in R10 for later use as RDTSCP will
overwrite RDX.

• Lines 19–22: Set up a speculative window with return-
based gadget [24], squashing the transient branch when
the request for input in RDI completes.

• Lines 13–15: Access compare in RSI, followed by
a hand-tuned fixed-length delay chain of instructions
as in [26], to prevent the processor from accessing
signal before the compare cache line arrives.

• Lines 16–17: Access signal in R10 after the chain
and halt speculation with a load fence.

• Lines 24–35: Determine whether signal is cached
in the L1 or not using the RDTSCP timer instruction.

Appendix B.
Generic Slice Function Retrieval

To build the decision tree and improve our slice predic-
tions, we need to first recover the slice function in a generic
and time-efficient manner for any modern Intel processor. In
our threat model, the attacker obtains the targeted processor
and recovers the function offline. This only needs to be
completed once per processor.
Slice Function Recovery Methods. Table 6 details prior
methods for reverse engineering the slice function, com-
paring the method of slice recovery for an address, the

Listing 1: Comparator Gate Assembly Code
1 xor rdi, 0x800
2 mov rax, [rdi] ; Cache *input's page in TLB
3 xor rdi, 0x800
4 xor rsi, 0x800
5 mov rax, [rsi] ; Cache *compare's page in TLB
6 xor rsi, 0x800
7 mov r10, rdx
8 mfence
9 lfence

10 ; DC_LEN sets the delay chain length
11 call long 0x9 + (DC_LEN * 0x3) ; Call L19
12

13 mov rsi, [rsi] ; Access *compare
14 add r10, rsi
15 ... ; Hand-tuned delay chain
16 mov r10, [r10] ; Access *signal
17 lfence ; Halt speculation
18

19 mov rax, 0x16 + (DC_LEN * 0x3) ; Offset to L24
20 add rax, [rdi] ; Access *input
21 add [rsp], rax ; Set return address to L24
22 ret ; Mispredict to L13
23

24 lfence ; Halt speculation
25 xor r10, 0x800
26 mov rax, [r10] ; Cache *signal's page in TLB
27 xor r10, 0x800
28 mfence
29 lfence
30 rdtscp
31 mov r9, rax
32 add r10, [r10] ; Measure access to *signal
33 rdtscp
34 sub rax, r9
35 ret ; Return access time

TABLE 6: Recovery methods for the Intel LLC function.

Retrieval Time

Work Slice
Recovery

Function
Recovery Linear Non-

Linear
Hund et al. [15] Cache Conflict Manual Manual –
Irazoqui et al. [22] Cache Conflict Linear Eq. Manual –
Yarom et al. [61] Access Timing Manual – Manual
Inci et al. [16] Cache Conflict Manual – Manual
McCalpin [34] Perf. Counter Manual Manual Manual

Maurice et al. [33] Perf. Counter Automated
Grey-box Minutes –

Gerlach et al. [10] Perf. Counter,
Access Timing

Automated
Black-box Minutes Weeks

Ours Perf. Counter Direct physical
address access ∼25 ms <1000 ms

entire function recovery, and time taken. The majority of
prior techniques are manual, and none beside work by
Gerlach et al. [10] can automatically recover the function
in linear and non-linear cases. We aim to improve on this
by providing an efficient and automated method for both
linear and non-linear functions. Our codebase details the
specifics of the implementation, but we provide a high-level
overview here.
Determining Memory Slice Index Using Performance
Counters. To retrieve any information regarding the slice
function, the first step is to identify which slice a memory
address maps to.

https://eprint.iacr.org/2015/905
https://eprint.iacr.org/2015/905
https://www.usenix.org/conference/usenixsecurity22/presentation/yuan-yuanyuan
https://www.usenix.org/conference/usenixsecurity22/presentation/yuan-yuanyuan


TABLE 7: Recovery times for slice functions. Non-linear
take longer due to the sequence-centric recovery approach.

Processor Slices Linear Time (ms)

i7-6700K 4 ✓ 25
i7-11700KF 8 ✓ 19
i7-13700H 8 ✓ 24
i7-8700 6 ✗ 291
i7-9850H 6 ✗ 225
i7-10710U 6 ✗ 190
i9-12900KF 10 ✗ 522
i9-13900KF 12 ✗ 740
i9-14900K 12 ✗ 930

The known reverse engineering process requires finding
two memory addresses differing by a single physical bit to
recover slice information [33, 34]. This approach requires
searching for pairs of addresses in large buffers of memory
and is limited to the currently installed system RAM.

We implement a custom kernel module which bypasses
memory controller checks, enabling read requests for any
physical address of our choosing without the need for a
large buffer of memory. By directly accessing any physical
memory address, we can reconstruct the slice function up
to the memory limit of the processor.

We likewise use the CLFLUSH instruction to generate
read requests and observe slice lookups [33, 34]. To interface
with the uncore performance counters [17, 19], we employ
a custom library [35] and monitor read lookups4 on each
available slice. By repeatedly issuing CLFLUSH commands
on an address, we can identify the slice to which an address
maps by observing the performance counter with the highest
number of read requests.

TABLE 8: Recovered slice functions for various Intel Core
processor generations with a power of two slice count. The
XOR permutation masks m are used to determine each slice
index bit.

Year Generation Slices Permutation Masks

2017 7 2 m0 = 0x5b5f575440

2013, 2015,
2017 4–7 4 m0 = 0x5b5f575440

m1 = 0x6eb5faa880

2021, 2023 11, 13 8
m0 = 0x5b5f575440
m1 = 0x71aeeb1200
m2 = 0x06d87f2c00

B.1. Linear Functions.

Linear slice functions use a basic XOR operation with
permutation masks to select address bits for calculating the
slice index. To recover the slice function, we analyse the
slices for physical addresses 0x0, 0x40, 0x80, and so
forth, up to the maximum physical address supported by
the processor. We start with 0x40 instead of 0x0 because

4. Using UNC_CBO_CACHE_LOOKUP.ANY_MESI perf counter.

TABLE 9: Recovered slice functions for various Intel Core
processor generations with a non-power of two slice count.
The XOR permutation masks m calculate each index bit for
a lookup into the base sequences shown in Table 10.

Year Generation Slices Permutation Masks

2018, 2019,
2020, 2021 8, 9, 10, 12 6, 10

m0 = 0x21ae7be000
m1 = 0x435cf7c000
m2 = 0x2717946000
m3 = 0x4e2f28c000
m4 = 0x1c5e518000
m5 = 0x38bca30000
m6 = 0x50d73de000

2022 13 12

m0 = 0x52c6a78000
m1 = 0x30342b8000
m2 = 0x547f480000
m3 = 0x3d47f48000
m4 = 0x1c5e518000
m5 = 0x38bca30000
m6 = 0x23bfe18000
m7 = 0x0000000000
m8 = 0x7368dc0000

2023 14 12

m0 = 0x2f52c6a78000
m1 = 0x0cb0342b8000
m2 = 0x35d47f480000
m3 = 0x39bd47f48000
m4 = 0x109c5e518000
m5 = 0x2038bca30000
m6 = 0x0e23bfe18000
m7 = 0x000000000000
m8 = 0x31f368dc0000

TABLE 10: Intel Core processor generations with non-
power-of-two slices and their corresponding base sequences.

Year Generation Slices Base Sequence

2018, 2019 8, 9 6

0123 1434 1032 0525 1032 0525 0525 1434
0123 5052 5052 4143 1032 4143 4143 5052
2301 5250 3210 4341 3210 4341 4341 5250
2301 3414 3414 2505 3210 2505 2505 3414

2020, 2021 10, 12 10

0505 3636 1414 2727 1414 2727 0589 3698
4141 7272 5098 6389 5050 6363 4189 7298
4141 7272 5050 6363 5050 6363 8941 9872
0505 3636 9814 8927 1414 2727 8905 9836

2022, 2023 13, 14 12

0145 1858 3276 2b6b 1054 0949 2b6b 3a7a
2367 b2b6 9094 8185 3276 a3a7 8185 9094
6723 b6b2 5410 8581 7632 a7a3 8581 9490
4501 5818 7a3a 6b2b 5410 4909 6b2b 7a3a
6b2b 7632 5818 4501 7a3a 6723 4909 5818
8581 5410 b6b2 a7a3 9490 4501 a7a3 b6b2
8185 1054 b2b6 2367 9094 0145 a3a7 b2b6
2b6b 3276 1858 0949 3a7a 2367 0949 1858
3a7a 2367 0949 1054 2b6b 3a7a 1858 0145
9094 8185 a3a7 3276 8185 9094 b2b6 2367
9490 4501 a7a3 7632 8581 9490 b6b2 6723
7a3a 6b2b 4909 5410 6b2b 7a3a 5818 4501
5410 4909 6723 7a3a 4909 5818 7632 6b2b
b6b2 a7a3 4501 9490 a7a3 b6b2 5410 8581
3276 a3a7 0145 9094 a3a7 b2b6 1054 8185
1858 0949 2367 3a7a 0949 1858 3276 2b6b

the lower bits (cache line offset bits) are not involved in
the slice function. For instance, let H denote the unknown
slice function and the recovered slice index as s, we have
s = H(0x0)

⊕
H(0x40). We then decompose s bit-

wise and map it across the permutation masks array m
at index log2(0x40) = 6. By recording the slice index
for each tested physical address and mapping the bits of



s to the permutation masks array m, we can reconstruct the
permutation masks bit by bit. Repeating this process for each
significant bit allows us to fully recover the slice function
used by the processor.

B.2. Non-Linear Functions.

In contrast, recovering non-linear functions is inherently
more complex. To address this, we develop a method to
simultaneously recover both the permutation masks and the
base sequence. Initially, we do not know the length of the se-
quence, so we start with an initial guess of length 1. We mea-
sure slice mappings from address 0x0 to establish the initial
base sequence B, again using performance counters and the
kernel module. We then generate a temporary sequence T
of slice mappings for the next address bit, comparing these
mappings to our guessed base sequence by searching for the
XOR permutation used. Specifically, we search for the XOR
permutation x where T

⊕
x = B. If we find a matching

x, then we split this bit-wise into the permutation masks
array m and continue to the next significant address bit, the
same method as the linear function. If we do not find any
matching XOR permutations, we double the sequence length
and repeat the process. For the new length, we measure slice
mappings from 0 . . . 2n−1, where n is the current guessed
sequence length. By iterating through this process—starting
with a small sequence length and progressively increasing
it until the correct length is found, we can reconstruct the
permutation masks and the base sequence.

Table 7 displays the time taken to extract the slice
function on several generations of processors. As can be
seen, our automated recovery approach can retrieve this in
under 30ms for linear and under a second for non-linear.

B.3. Recovered Slice Functions

Tables 8 and 9 detail the recovered slice functions for
various Intel Core processor generations. Table 10 shows
the base sequences for non-power-of-two slice counts.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper provides a number of techniques that jointly
significantly improve the performance of generating last-
level cache eviction sets. The paper first proposes a way
to identify the slice that an address maps to by using a
“weird gate” that performs a timing comparison. The paper
also proposes methods for intra-page propagation of slice
mappings. Based on these new proposals, the paper in the
end succeeds in speeding up the eviction set generation for
the full last-level-cache.

C.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Establishes a New Research Direction

C.3. Reasons for Acceptance

1) This paper creates a new tool to generate certain evic-
tion sets. This helps to assess the security of CPU
microarchitecture designs.

2) This paper addresses a long-known issue, in that iden-
tification of eviction sets is a common prerequisite for
cache-based attacks.

3) This paper provides a valuable step forward by sig-
nificantly increasing the efficiency with which eviction
sets can be identified.

4) This paper establishes a new research direction as the
PC found some of the slice+slice technique to be novel.

C.4. Noteworthy Concerns

1) The PC found this paper to be focused very deeply on
a single aspect of a single vendor’s CPU design. While
the paper does a nice job building an effective eviction
set identification tool out of access latency variations,
it is ultimately a reactive piece of work focused on
specific CPU makes and models.
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