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Abstract

Vision-language models (VLMs), such as CLIP, have gained
significant popularity as foundation models, with numerous
fine-tuning methods developed to enhance performance on
downstream tasks. However, due to their inherent vulner-
ability and the common practice of selecting from a lim-
ited set of open-source models, VLMs suffer from a higher
risk of adversarial attacks than traditional vision mod-
els. Existing defense techniques typically rely on adver-
sarial fine-tuning during training, which requires labeled
data and lacks of flexibility for downstream tasks. To ad-
dress these limitations, we propose robust test-time prompt
tuning (R-TPT), which mitigates the impact of adversar-
ial attacks during the inference stage. We first reformulate
the classic marginal entropy objective by eliminating the
term that introduces conflicts under adversarial conditions,
retaining only the pointwise entropy minimization. Fur-
thermore, we introduce a plug-and-play reliability-based
weighted ensembling strategy, which aggregates useful in-
formation from reliable augmented views to strengthen the
defense. R-TPT enhances defense against adversarial at-
tacks without requiring labeled training data while offering
high flexibility for inference tasks. Extensive experiments
on widely used benchmarks with various attacks demon-
strate the effectiveness of R-TPT. The code is available in
https://github.com/TomSheng21/R-TPT.

1. Introduction
Vision-language models (VLMs) [5, 32, 57] are multimodal
models pretrained on large-scale paired image-text data.
Their powerful zero-shot inference capability and broad ap-
plicability across a range of downstream tasks have made
them a foundational tool in the research community. CLIP
[32], a milestone work, aligns features from the text and
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Figure 1. Comparison between training-time and test-time defense
for CLIP. Our test-time defense paradigm provides robust predic-
tion as the conventional training-time methods and requires no an-
notated dataset or adversarial training.

visual modalities using two specialized feature extractors
trained with a contrastive loss function. Due to its con-
cise architecture and impressive performance, CLIP has be-
come the most widely used VLM across diverse research
topics. For classification tasks, CLIP extracts features from
both images and category descriptions, then chooses the
category whose features exhibit the highest similarity to
the image’s feature representation. Beyond classification
[48, 49, 61, 62], CLIP has been successfully applied to var-
ious vision tasks, such as semantic segmentation [37, 60],
object detection [56, 59], and image clustering [3, 22].

The impressive performance on downstream tasks and
the broad range of applications of CLIP not only highlight
its powerful capabilities but also expose it to potential vul-
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nerabilities, particularly under adversarial attacks [19, 26].
While adversarial attacks and defenses [13, 24, 55] have
been widely explored for conventional visual models, the
situation for CLIP is more complex. The pre-training of
CLIP requires the collection of vast amounts of image-text
pairs and substantial computational resources that most de-
ployers cannot afford. As a result, many deployers choose
to adopt open-source versions of CLIP from a small range
of candidates. This fact introduces a relatively high risk of
adversarial attacks targeting CLIP-based applications.

Recent works [21, 26] explore adversarial prompt tun-
ing using annotated data to enhance the robustness of CLIP.
However, their reliance on labeled data and limited flexibil-
ity across tasks pose challenges for real-world deployment.
To address this, we choose to defend adversarial attacks in
the inference stage, which is applicable across various sce-
narios and requires no labeled dataset or prior knowledge of
the downstream task, as shown in Figure 1. Existing test-
time adaptation methods [38, 54] primarily focus on im-
proving accuracy for clean test samples, while overlooking
the potential risks posed by adversarial attacks. Moreover,
deploying defense at test time necessitates short inference
time and avoiding using additional resources, such as large
language models or diffusion models, to ensure versatility.

To address the above challenges and achieve successful
defense against potential attacks, we propose robust test-
time prompt tuning (R-TPT). First, we revisit and refine
the widely used optimization objective for instance adapta-
tion. Many previous works [38, 42], following MEMO [58],
augment the test instance and aim to minimize marginal
entropy, which is defined as the entropy of the mean pre-
diction. We decompose marginal entropy into two compo-
nents: a pointwise entropy term and the Kullback–Leibler
(KL) divergence, which measures the divergence between
predictions from each augmented view and the mean pre-
diction. We observe that when adapting to adversarial ex-
amples with high-confidence inaccurate predictions, the KL
divergence term tends to pull the augmented views toward
the misleading mean prediction, which does not exist in
the clean scenario. This meaningless operation introduces
conflicts into the optimization process. To mitigate the in-
fluence of adversarial samples and preserve simplicity, we
discard the KL divergence term, retaining only the point-
wise entropy minimization for tuning textual prompts. This
straightforward modification not only defends against ad-
versarial attacks but also maintains clean performance.

In order to effectively leverage knowledge from aug-
mented views, we propose a reliability-based weighted en-
sembling strategy. To assign a larger weight to reliable aug-
mented views during ensembling, we introduce a similarity-
based metric to assess the reliability of samples. We hy-
pothesize that samples with higher similarity to their neigh-
bors are farther away from outliers and contain more reli-

able information. Thus, we calculate the average similarity
of each sample with its neighbors to estimate its reliabil-
ity. Using this metric, outliers such as adversarial examples
and noisy augmented views are assigned lower reliability
scores, which means less participation in the ensembling.
Finally, we obtain the final prediction by ensembling the
individual model predictions, weighted according to their
reliability. Extensive experiments on fine-grained classifi-
cation benchmarks and distribution shift benchmarks vali-
date the effectiveness of our method in both adaptation and
defense against adversarial attacks. Our contributions are
summarized as follows:
• We propose R-TPT, which is the first to explore test-time

paradigms for defending against potential adversarial at-
tacks in CLIP.

• We discard the KL divergence term from the marginal
entropy objective to eliminate optimization conflicts and
propose a reliability-based weighted ensembling strategy
to integrate knowledge from reliable augmented views.

• Extensive experiments demonstrate the effectiveness of
our method in both adaptation and adversarial defense.

2. Related Work

2.1. Adversarial Attack and Defense

A lot of research [13, 24, 43] has been devoted to study-
ing neural network’s vulnerability to adversarial noise. A
pioneering work [43] introduces the concept of adversar-
ial examples and finds small-amplitude noise that humans
cannot recognize leads to misclassifications. Since then,
a series of attack methods to generate adversarial samples
[4, 8, 13, 24] have been proposed. FGSM [13] proposes to
utilize the gradient sign to generate an adversarial example.
Researchers [24] generate the adversarial noise by projected
gradient descent (PGD) operation, which becomes the stan-
dard measurement of model robustness. Moreover, a variety
of works explore adversarial attacks in many restricted con-
ditions, ranging from one-pixel attack [41], universal per-
turbation [28] to more realistic black-box setting [2, 18].

In parallel, numerous defense strategies [24, 36, 50, 55]
have been proposed to mitigate adversarial attacks. Adver-
sarial training [13, 24] improves the robustness of the model
by incorporating the adversarial samples into the training
set. TRADES [55] provides a theoretical analysis of adver-
sarial error to trade adversarial robustness against accuracy.
AWP [50] perturbs the model’s weights with small adver-
sarial noise during training to enhance robustness. Recon-
struction [29, 34] with generative models [12, 39] is also a
commonly used technique in test-time defense methods.

As for the vison-language models, TeCoA [26] and APT
[21] employ adversarial training to pretrained CLIP [32] to
improve the adversarial robustness. However, their training-
time solution requires an annotated dataset and lacks flexi-
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Figure 2. The pipeline of R-TPT framework. Given an instance-level task, we deploy augmentation on the test image and build a classifier
with CLIP’s text branch. After selecting a low-entropy batch, R-TPT discards the KL divergence minimization term which potentially
introduces conflicts in the marginal entropy [58] and optimizes textual prompts with pointwise entropy minimization. To effectively utilize
the knowledge of the augmented views, R-TPT applies a reliability-based weighted ensembling mechanism in the final inference process.

bility across tasks. In this work, we choose to deploy adver-
sarial defense in the test time that is more effective and flex-
ible and can collaborate with their training-time defense.

2.2. Test-Time Adaptation for VLMs
Test-time adaptation [23, 38, 52] aims to adapt pre-trained
models to the test data at inference time to improve the
performance further. According to the test data form, test-
time adaptation is divided into streaming data adaptation
[44, 46, 53] and single instance adaptation [38, 58], and our
work focuses on the latter. Recent research [38, 42, 54] has
been devoted to exploring the instance adaptation methods
for VLMs [32, 47, 57]. TPT [38] employs the marginal
entropy minimization to augmentation views of the test in-
stance to correct the prediction. DiffTPT [11] utilizes the
diffusion technique to obtain diverse views which is help-
ful for the adaptation. PromptAlign [1] aligns the statistics
of the test instance and collected natural images to make the
model’s parameters adapt to test samples. To take advantage
of more prompt templates [32], TPS [42] chooses to opti-
mize feature shift and utilizes prompt ensembling for ini-
tialization. Moreover, researchers [54] propose a training-
free adaptation method by ensembling the augmented views
with the MeanShift algorithm [7].

Besides accuracy, researchers [51] also focus on improv-
ing calibration performance through higher text feature dis-
persion. In this work, we first utilize the test-time paradigm
to defend against adversarial attacks for CLIP due to its se-

vere vulnerability to adversarial examples.

3. Methodology

In this paper, we improve CLIP’s adversarial robustness
through a test-time paradigm, motivated by its inherent vul-
nerabilities and the high resource demands of train-time de-
fense methods. Our proposed robust test-time prompt tun-
ing (R-TPT), as illustrated in Figure 2, requires no anno-
tated data and is equipped with greater flexibility. In Sec.
3.1, we begin with reviewing the foundational concepts of
CLIP and the test-time prompt tuning approach. We then
introduce the two key components of R-TPT: pointwise en-
tropy minimization in Sec. 3.2, and the reliability-based
weighted ensembling strategy in Sec. 3.3.

3.1. Preliminary
Contrastive language-image pre-training. CLIP is a pop-
ular language-vision model with a double-tower architec-
ture, consisting of an image encoder F (·) and a text en-
coder G(·). It is pretrained by the contrastive learning ob-
jective with a large amount of image-text pairs. Benefiting
from rich pretraining knowledge, CLIP has a strong zero-
shot generalization ability. Take a C-way classification task
with class names {tc}Cc=1 as an example, CLIP obtains tex-
tual features gc by the text encoder G(·) with a prompt tem-
plate (e.g., “a photo of a []”) and the class name tc as the
input. Also, each test image xi queries the image encoder



to calculate the image feature fi = F (xi). The probabil-
ity that xi belongs to category c is calculated by a softmax
operation with the cosine similarity of those features:

pc(xi) =
exp(cos(fi, gc)/τ)∑C
j=1 exp(cos(fi, gj)/τ)

, (1)

where cos(·) represents the cosine similarity operation and
τ refers to the temperature default set to 0.01.

Test-time prompt tuning. Although CLIP exhibits
strong classification performance, it is sensitive to distri-
bution shifts. To address this issue, test-time prompt tun-
ing (TPT) [38] improves the model’s performance on indi-
vidual test instances, without requiring additional training
data for adaptation. During the test time, TPT deploys aug-
mentation operations on the test instance x0 to obtain aug-
mented views {xi}Ni=1 and tunes the textual prompts with
low-entropy views. The core objective of TPT is to mini-
mize marginal entropy, which is formulated as:

Lmarginal = H(p̄) = H(
1

| B |
∑
x∈B

p(x)), (2)

where H(·) is the Shannon entropy and B represents the
sample set selected from all views {xi}Ni=0 based on the
low entropy. When augmentation provides valuable infor-
mation, the classification boundary adapts according to the
new prompt, leading to more accurate predictions.

3.2. Refining Marginal Entropy Minimization
In the optimization of a single test sample, marginal entropy
is the default choice for both visual models [58] and multi-
modal models [38]. Minimizing marginal entropy H(p̄) en-
courages the model to produce a consistent output across a
set of selected low-entropy augmented views B. However,
when the test sample is adversarially perturbed, it can easily
be selected into the set B. While random augmentations can
weaken the adversarial noise, enforcing consistency across
all augmented outputs may mislead the optimization. Since
our goal is to utilize test time adaptation to strengthen the
model’s defense ability to adversarial examples, we propose
refining the marginal entropy objective.

We decompose the marginal entropy objective into two
items as follows:

H(p̄) = −
C∑

c=1

p̄c logp̄c = − 1

|B|

|B|∑
b=1

C∑
c=1

pbc logp̄c

=
1

|B|

|B|∑
b=1

(
−

C∑
c=1

pbc logp
b
c +

C∑
c=1

pbc log
pbc
p̄c

)

=
1

|B|

|B|∑
b=1

(
H(pb) +KL(pb∥p̄)

)
,

(3)

where H(·) denotes the Shannon entropy, KL(·∥·) refers
to Kullback–Leibler (KL) divergence. Eq. 3 shows that
marginal entropy is a combination of a pointwise entropy
term and a KL divergence term. Minimizing pointwise en-
tropy helps move the classification boundary away from
low-entropy points, which is the main composition of the
marginal entropy. The KL divergence term, on the other
hand, encourages consistent predictions across the aug-
mented views. In the case of clean test samples, the differ-
ences between low-entropy augmented views are small, and
the KL divergence term has a minimal effect. However, in
adversarial scenarios, the mean prediction is distorted by the
original perturbed sample, which differs significantly from
the augmented views. As a result, enforcing consistency
across the augmented views leads to conflicts and neglects
the valuable information in these views.

To improve performance under both clean and adversar-
ial conditions, we discard the KL divergence term and focus
solely on minimizing pointwise entropy, as follows:

minimize Lpoint =
1

|B|

|B|∑
b=1

H(pb). (4)

For clean test instances, minimizing pointwise entropy
functions similarly to the original marginal entropy objec-
tive. Also, for adversarial examples, this approach focuses
more on augmented views, which have relatively high en-
tropy and information, and ignores the original adversar-
ial inputs. Therefore, our objective can handle both natural
conditions and adversarial attacks well.

3.3. Reliability-based Weighted Ensembling
Unsupervised prompt tuning typically makes no change to
image features and a small adjustment to the classification
boundary. For adversarial examples, it is challenging to cor-
rect incorrect predictions since their feature representations
are far from the correct decision boundary. Fortunately,
augmentation at the pixel level can help mitigate the adver-
sarial noise, as it weakens the effect of perturbations. Thus,
we can leverage diverse augmented views of the test image,
which provide valuable knowledge. To integrate informa-
tion from augmented views effectively and protect the en-
sembling from the noise of lower-quality views, we propose
a reliability-based weighted ensembling mechanism.

Since augmentation inherently involves randomness
(e.g., background areas left after cropping), we introduce
a reliability metric to represent the quality of each aug-
mented view. Reliability is defined as the similarity be-
tween the sample and its nearest neighbors. High reliability
indicates that the sample is densely clustered in the feature
space, containing useful information. Conversely, low reli-
ability suggests that the sample is an outlier, likely contain-
ing augmentation or adversarial noise, and should be down-
weighted or ignored during ensembling.
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Figure 3. Visualization of assigned reliability-based weight value under (a) clean, (b) distribution shift, and (c) adversarial attack scenarios.
The red and blue bars denote the weight value of the original test instance and its augmented views, respectively. The weight assigned to
the clean instance is higher than under the distribution shift. The weight of the adversarial test sample is close to 0.

Given an augmented batch, which includes the test im-
age and its N augmented views, we calculate the similarity
matrix {Si,j}Ni,j=0 of the visual features {fi}Ni=0 :

Si,j = cos(fi, fj), i, j = 0, 1, ..., N , (5)

where con(·, ·) denotes the cosine similarity operation. The
i-th row of the matrix S represents the similarity between xi

and all samples in the batch. We then select the K closest
neighbor of xi (excluding xi itself) to form the neighboring
set Ni. The reliability of xi is calculated as the average
similarity within the neighboring set Ni:

ri =
1

K

∑
k∈Ni

cos(fi, fk), i = 0, 1, ..., N . (6)

The reliability score reflects the degree to which xi is sur-
rounded by similar samples in the feature space.

To obtain the final prediction, we ensemble the predic-
tions from all augmented views, weighted by their respec-
tive reliability scores. The weight assigned to each view is
calculated by applying a softmax operation on the reliabili-
ties {ri}Ni=0. This weight assignment mechanism is flexible
and adapts well to various scenarios. We present the weight
values for clean samples (ImageNet), samples with distri-
bution shift (ImageNet-A), and adversarial samples (Ima-
geNet) in Figure 3. As shown, clean samples are assigned
higher weights, and the ensembling mechanism focuses on
augmented views when the test instance shows significant
distribution shifts from natural images. For adversarial sam-
ples, the weight assigned to the poisoned instance is close
to zero, which indicates that our mechanism protects the en-
sembling process from being misled by adversarial noise.
This approach not only improves the robustness of predic-
tions on adversarial samples but also maintains strong per-
formance on clean samples, thus enhancing the overall reli-
ability of the inference process.

4. Experiment

4.1. Setup

Datasets. To evaluate our proposed test-time defense
method for VLMs, we conduct experiments on eight fine-
grained classification datasets. These databases cover gen-
eral objects (Caltech101 [10]), animals (Pets [31]), plants
(Flower102 [30]), vehicles (Cars [20], Aircraft [25]), tex-
tures (DTD [6]), satellite images (EuroSAT [14]), and ac-
tions from videos (UCF101 [40]). Moreover, we evalu-
ate on ImageNet [9] and four ImageNet-out-of-distribution
(OOD) benchmarks with distribution shift. ImageNet-A
[17] contains 200 classes and 7,500 natural adversarial ex-
amples which are collected with adversarial filtration tech-
nique. ImageNet-V2 [33] consists of 10,000 natural im-
ages across 1,000 categories from a different source than
ImageNet. ImageNet-R [16] is a dataset containing 30,000
images with various renditions, leading to different textures
and local statistics from ImageNet. ImageNet-S [45] con-
sists of 50,889 sketch-style images and shares the same cat-
egory space with ImageNet. Since our method is to defend
against potential adversarial attacks during the test time, we
do not need access to the training set of the above datasets.

Evaluation metrics. Since our task focuses on instance-
level test-time adaptation, the model update and prediction
of each test sample can not utilize the information of other
samples. Following the previous works [38, 54], we report
the average classification accuracy (Acc.) to measure the
method’s adaptation ability on clean samples. To evaluate
the adversarial defense performance, we provide the aver-
age accuracy (Rob.) on adversarial examples generated by
the PGD algorithm [24] with various noise radii. It is worth
noting that the adversarial examples are calculated on CLIP
before adaptation, which is more suitable for real-world ap-
plications since attackers rely on open-source models and
have no idea about the victim model’s algorithm.



Method Caltech101 Pets Cars Flower102 Aircraft DTD EuroSAT UCF101 Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

CLIP [32] 85.9 2.6 83.5 0.0 55.7 0.0 61.7 0.0 15.7 15.7 40.4 0.8 23.7 0.0 58.9 0.0 53.2 2.4
Ensemble 83.5 74.8 82.3 69.9 57.1 36.2 58.0 46.6 16.4 16.4 37.1 29.5 16.7 13.7 53.9 43.0 50.6 41.3
TPT [38] 87.9 7.0 84.7 0.1 58.4 0.0 62.1 0.0 17.3 17.3 42.4 4.3 28.4 0.0 60.6 0.3 55.2 3.6
C-TPT [51] 87.7 3.7 83.6 0.0 56.6 0.0 64.8 0.0 16.7 16.7 41.5 1.3 27.0 0.0 60.1 0.1 54.8 2.7
MTA [54] 87.3 65.9 84.8 59.8 58.7 17.8 61.0 31.5 18.1 18.1 40.3 18.8 22.5 1.6 60.6 31.3 54.1 30.6
R-TPT 86.7 79.8 84.6 74.2 58.1 42.9 60.6 51.9 17.5 17.5 41.3 33.5 21.2 15.9 59.7 50.9 53.7 45.8

Table 1. Results (%) of clean accuracy (Acc.) and adversarial accuracy (Rob.) of various adaptation methods on fine-grained classification
datasets with pre-trained CLIP-ResNet50 (ϵ = 1.0). Best clean accuracies are (bold), best adversarial accuracies are (bold red).

Method Caltech101 Pets Cars Flower102 Aircraft DTD EuroSAT UCF101 Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

CLIP [32] 94.0 0.0 88.3 0.0 65.5 0.0 67.4 0.0 23.9 23.9 44.4 0.0 42.2 0.0 65.2 0.0 61.4 3.0
Ensemble 91.9 74.7 86.2 51.2 65.7 26.0 65.9 36.3 23.4 23.4 43.2 25.1 28.2 2.2 63.0 30.6 58.4 33.7
TPT [38] 94.1 0.0 87.4 0.0 66.5 0.0 69.1 0.0 23.4 23.4 46.9 0.0 42.6 0.0 67.9 0.0 62.2 2.9
C-TPT [51] 93.9 0.0 88.2 0.0 65.8 0.0 69.6 0.0 23.9 23.9 45.9 0.0 42.3 0.0 65.5 0.0 61.9 3.0
MTA [54] 94.3 72.1 88.0 51.8 67.7 18.5 67.4 27.9 25.0 25.0 46.5 16.2 42.5 1.2 67.5 27.5 62.3 30.0
R-TPT 93.7 82.0 87.2 60.2 67.0 34.7 68.7 44.6 23.9 23.9 46.4 32.8 34.7 8.5 67.2 43.2 61.1 41.2

Table 2. Results (%) of various adaptation methods on fine-grained classification datasets with pre-trained CLIP-ViT-B/16 (ϵ = 4.0).

Baselines. We compare R-TPT on the above bench-
marks with existing test-time adaptation methods for CLIP,
including TPT [38], C-TPT [51], and MTA [54], as well
as zero-shot prediction from CLIP [32]. Also, we regard
Ensemble as an additional baseline method, which employs
simple average operation on predictions of all augmented
views. Note that both our method and the compared base-
line methods rely only on CLIP and AugMix [15] aug-
mentation, without any additional foundation models (e.g.,
LLM, diffusion models) or knowledge. All results of base-
lines are reproduced with the official code.

Implementation details. For all experiments, we uti-
lize official pre-trained CLIP-ResNet50 and CLIP-ViT-
B/16 [32] as our base model. As for adversarial example
generation, we utilize the PGD algorithm [24] with ϵ = 1.0
and 7 steps for ResNet, while ϵ = 4.0 and 100 steps for ViT.
In the defense stage at test time, the parameter optimized in
all experiments is a textual prompt with a context length of
4 and is initiated with “a photo of a”. We adopt the Adam
optimizer with weight decay and a single step. Following
previous work [38], the learning rate is set to 0.005 and the
augmented batch size is 64. All experiments use the Py-
Torch framework and run on RTX3090 GPUs.

4.2. Experimental Results
Results on fine-grained datasets. We evaluate the adap-
tation and adversarial defense ability of R-TPT on eight
fine-grained benchmarks and report the results in Table 1.
It is shown that CLIP with strong zero-shot generalization
ability is suffering from the adversarial attack with a small
radius. TPT can steadily improve the accuracy of clean im-

ages but has weak defense capability. We observe that meth-
ods with an ensembling strategy (e.g., Ensemble, MTA, R-
TPT) achieve significantly better adversarial accuracy. In
particular, R-TPT achieves a 45.8% of adversarial accuracy
which outperforms all baseline methods. Besides the attrac-
tive defense performance, R-TPT also improves the clean
accuracy of CLIP from 53.2% to 53.7%. In contrast, al-
though Ensemble has strong defense capabilities, it suffers
from negative transfer in the clean scenario.

Results on ImageNet and ImageNet-OOD datasets.
We provide the experiential results on ImageNet and four
ImageNet-OOD datasets in Table 3. CLIP can overcome
distribution shifts, but fails to defend against adversarial at-
tacks. R-TPT performs the best in adversarial defense un-
der both ImageNet and its related out-of-distribution bench-
marks. Especially, R-TPT achieves an adversarial accuracy
of 47.7% on ImageNet, 7.6% higher than the second-best
method Ensemble, while CLIP’s adversarial accuracy on
this benchmark is 0.1%. Moreover, our method obtains a
similar clean accuracy with TPT, indicating that R-TPT is
also effective for distribution shifts.

Results of CLIP-ViT backbone. We evaluate our
method on CLIP-ViT-B/16 [32] model and provide the re-
sults in Table 2. We observe that R-TPT outperforms
all baseline methods regarding adversarial defense perfor-
mance. However, the performance gain of all adaptation
methods for clean samples is small, and R-TPT and the re-
maining two ensembling-based methods make weak nega-
tive transfers. This illustrates that the space for improve-
ment of clean accuracy for strong pre-training models is
small, and R-TPT can greatly enhance its weak robustness.



Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

CLIP [32] 58.2 0.1 21.8 0.0 51.5 0.1 56.1 0.8 33.3 0.5 44.2 0.3
Ensemble 58.0 40.1 22.6 10.1 52.0 37.2 51.3 39.3 29.5 20.7 42.7 29.5
TPT [38] 60.7 0.3 26.5 0.0 54.8 0.3 58.9 1.8 35.0 1.4 47.2 0.7
C-TPT [51] 60.4 0.1 24.1 0.0 54.3 0.1 57.7 1.0 34.7 0.9 46.2 0.4
MTA [54] 60.4 30.0 27.5 5.6 54.2 24.6 58.4 29.8 35.2 11.3 47.1 20.3
R-TPT 60.9 47.7 28.4 14.4 54.9 41.6 57.6 46.9 34.0 26.2 47.1 35.4

Table 3. Results (%) of various adaptation methods on ImageNet and ImageNet-OOD benchmarks with pre-trained CLIP-ResNet50.
OOD Avg. refers to the average results among four ImageNet-OOD benchmarks (ϵ = 1.0).

Method Caltech101 Pets Cars Flower102 Aircraft DTD EuroSAT UCF101 Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

CLIP-TeCoA [26] 79.3 44.3 66.9 15.8 10.2 1.0 30.8 9.0 6.6 6.6 24.5 10.7 14.5 10.8 34.6 6.7 33.4 13.1
Ensemble 72.7 55.1 59.9 38.9 5.6 2.7 26.6 16.0 4.2 4.2 23.5 16.2 12.5 11.0 26.4 14.0 28.9 19.8
TPT [38] 79.3 52.7 65.2 27.4 9.6 2.0 27.9 12.3 6.7 6.7 25.5 14.6 12.2 11.2 34.9 10.2 32.7 17.1
C-TPT [51] 79.8 47.3 66.1 19.5 10.6 1.3 29.4 10.7 6.4 6.4 26.2 12.4 13.0 11.1 36.4 8.1 33.5 14.6
MTA [54] 79.7 55.7 66.2 31.2 9.0 2.5 29.1 14.0 6.5 6.5 24.4 13.5 13.3 11.2 34.6 12.5 32.9 18.4
R-TPT 76.1 60.5 63.2 40.1 7.7 3.5 26.6 16.5 6.1 6.1 25.2 17.7 11.5 11.3 31.1 17.4 30.9 21.7

Table 4. Results (%) of adaptation methods on fine-grained classification datasets with TeCoA pre-trained CLIP-ViT-B/32 (ϵ = 4.0).

4.3. More Analysis
Results under robust-pretrained models. we report the
results of deploying adaptation methods on CLIP-ViT-B/32
with TeCoA [26] robust pretrained models in Table 4. It
is shown that TeCoA significantly improves the robustness
of CLIP, and the defense effect against adversarial attacks
can benefit from our method during the testing stage, which
increases adversarial accuracy form 13.1% to 21.7%. At the
same time, we also find that R-TPT’s defense effect on the
TeCoA pretrained model is weaker than the vanilla CLIP.
The reason is that introducing adversarial learning during
the training time decreases the clean accuracy, which is the
upper bound of defense. Robust pre-trained models also
generate more difficult adversarial examples.

Analysis under various attacks. To demonstrate the
versatility, we investigate the defense performance of R-
TPT and baseline methods under various attack methods.
We employ CW [4], DeepFool [27], and FGSM [13] as
new attacks and report the adversarial accuracy on three
benchmarks in Table 5. It is shown that our method im-
proves CLIP’s defense capability under each attack, which
is consistent with the trend of PGD. In particular, R-TPT
has reached 51.8% adversarial accuracy on Flowers. The
excellent defense performance among various attack meth-
ods proves the versatility of R-TPT.

Analysis of inference efficiency. We study the inference
efficiency of R-TPT. Experiments of training-time defense
method APT and R-TPT on UCF101 are provided in Ta-
ble 6. It is shown that R-TPT spends a certain amount of
time on each test sample, which is different from training-
time defense which spends a lot of resources at one time

Method Flowers DTD
CW DF FGSM Avg. CW DF FGSM Avg.

CLIP [32] 0.8 0.4 4.8 2.0 2.3 7.6 13.4 7.8
Ensemble 50.1 52.2 46.6 49.7 31.1 32.9 29.7 31.2
TPT [38] 13.8 10.8 14.2 12.9 21.3 24.4 22.2 22.6
C-TPT [51] 6.6 5.5 6.2 6.1 11.9 15.8 17.5 15.1
MTA [54] 34.5 35.4 36.6 35.5 23.6 23.5 23.9 23.7
R-TPT 51.6 54.7 49.2 51.8 34.2 35.9 32.5 34.2

Table 5. Adversarial accuracies (%) of adaptation methods against
different attacks on two fine-grained datasets (DF = DeepFool).

Method Stage Running time Rob.

APT+TeCoA (4shots) Training time 208s/50epochs 39.4
R-TPT (64 views) Test time 0.58s/image 41.0
R-TPT (32 views) Test time 0.28s/image 40.8
R-TPT (16 views) Test time 0.20s/image 40.0

Table 6. Running time and adversarial accuracies (%) of adapta-
tion methods against adversarial attack on UCF101 dataset.

during training. Moreover, we find that inference can be
accelerated by appropriately reducing the number of aug-
mented views to obtain better real-time performance. When
we choose to reduce the number of views from 64 to 16, the
time required for each test sample is reduced to less than
half of the original.

Analysis under different prompt templates. Since
in the realistic scenario, the attacker can not access the
prompts of the model textual branch, we evaluate the de-
fense performance of the adversarial examples generated by
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Figure 4. Results of different prompt templates in adversarial examples generation, different neighbor numbers, and different choices of
optimization parameters in DTD dataset (CLIP-ResNet50, ϵ = 1.0).

different prompt templates. The result of DTD benchmark
with six textual templates is provided in Figure 4(a) (P0=‘a
photo of a []’, P1=‘a bad photo of the []’, P2=‘a origami
[]’, P3=‘a photo of the large []’, P4=‘a toy []’, P5=‘art of
the []’). It is shown that CLIP is suffering from adversar-
ial samples even if attackers use different prompt templates.
Also, R-TPT outperforms all baseline methods under each
template.

Analysis of sensitivity of hyperparameters and opti-
mization parameters. We study the impact of the neighbor
number in calculating reliability and the optimization pa-
rameter to further demonstrate the effectiveness of R-TPT.
We provide the results of R-TPT with different neighbor
numbers (10, 15, 20, 25, 30) in Figure 4(b). The results
demonstrate that R-TPT performs stable across different
neighbor numbers in terms of both clean and adversarial
accuracy. Please note that if the neighbor number equals
to augmented batch size, it will assign all samples with
equal weights and the reliability-based ensembling mech-
anism will degenerate into the vanilla ensembling. Besides,
we report the results with different optimization parameters
in Figure 4(c). Compared to other choices of the parameter
space, optimizing textual prompts owns better defense and
adaptation effects and fewer parameters, which make it al-
ways a popular solution for parameter-efficient fine-tuning.

4.4. Ablation Study

To study the contribution of terms in our method, we in-
vestigate the effectiveness of ensembling, reliability-based
weighted mechanism, and pointwise entropy objective in
R-TPT. The results of the ablation study are reported in
Table 7. From the table, we find that entropy minimiza-
tion focuses on enhancing the accuracy of adaptation on
the clean samples and Slightly improves the defense perfor-
mance on CLIP. However, When cooperating with weighted
ensembling, the improvement of entropy minimization on
both metrics is significant. The ensembling strategy greatly

Ensemble Weighted EntMin Fine-grained ImageNet-X
Acc. Rob. Acc. Rob.

% % % 53.2 2.4 44.2 0.3
% % " 55.2 3.6 47.2 0.7
" % % 50.6 41.3 42.7 29.5
" % " 53.3 44.3 46.7 34.2
" " % 51.6 44.3 44.8 33.4
" " " 53.7 45.8 47.1 35.4

Table 7. Ablation study. Clean and adversarial accuracies (%) on
fine-grained datasets and ImageNet dataset (CLIP-ResNet50).

strengthens the defense capabilities of the model, but it also
reduces the adaptation performance on clean samples. The
weighted mechanism gives reliable samples more important
roles during prediction, further improving the defense capa-
bilities and mitigating the clean performance drop.

5. Conclusion
In this paper, we for the first time explore the adversarial
defense for CLIP with a test-time paradigm and propose
robust test-time prompt tuning (R-TPT). We first review
the classic test time adaptation method and decompose its
marginal entropy objective into a pointwise entropy term
and a KL divergence term. We find that minimizing KL di-
vergence will introduce conflicts when meeting the adver-
sarial test instance, thus we discard KL divergence terms
and only optimize the textual prompt with the pointwise en-
tropy. We also introduce a reliability-based weighted en-
sembling strategy to utilize knowledge of the augmented
views, which contain more knowledge than the risky origi-
nal input under adversarial attacks. Extensive results show
that R-TPT achieves the best defense against various ad-
versarial attacks among all baseline methods and maintains
a clean adaptation performance. We believe that our work
will provide a new perspective on the defense and shed light
on the safety issues of VLMs.
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6. Algorithm
Here, we provide the pseudocode algorithm of R-TPT to
show the process of our proposed defense method clearly.

Algorithm 1 Pseudocode of R-TPT.
Require: Test sample xt, CLIP model.
▷ Augment xt via AugMix to obtain views {xi}Ni=0 and select
low-entropy views B.
▷ Update textual prompts via minimizing pointwise entropy of
selected views B via Eq.4.
▷ Obtain the reliability {ri}Ni=0 of all views via Eq.6.
▷ Obtain the robust prediction by ensembling the predictions
{pi}Ni=0 of all views weighted by the reliability {ri}Ni=0.

7. Datasets
We provide the content, number of categories and number
of images of all datasets involved in the experimental sec-
tion in Table 8.

Dataset Description # Classes # Test

Caltech101 Object images 100 2,465
Pets Pet images 37 3,669
Cars Car images 196 8,041
Flower102 Flower images 102 2,463
Aircraft Aircraft images 100 3,333
DTD Describable textures dataset 47 1,692
EuroSAT Sentinel-2 satellite images 10 8,100
UCF101 Human action images 101 3,783

ImageNet Object and scene images 1,000 50,000
ImageNet-A Adversarially filtered images 200 7,500
ImageNet-V2 New test images 1,000 10,000
ImageNet-R Rendered images 200 30,000
ImageNet-S Sketch-style images 1,000 50,889

Table 8. Introduction of all datasets involved in experiments.

8. Experimental Results
8.1. Results of Larger Backbone.
We evaluate our method using the CLIP-ViTL/14 model
[32] and present the results in Table 9. Our experiments
demonstrate that R-TPT outperforms all baseline methods
in terms of defense performance, highlighting its robust-
ness even when applied to large-scale backbone architec-
tures. Also, we observe that, in terms of clean adaptation

performance, only TPT and C-TPT exhibit positive gains,
whereas the remaining methods suffer from negative trans-
fer.

8.2. Results Compared with Training-time defense
Methods.

Training-time defense methods [21, 26, 35] typically rely on
labeled data and robust pre-trained checkpoints to achieve
their performance. To ensure a fair comparison, we have
focused our main text on test-time baselines that utilize the
same resources as our proposed method. Here, we provide a
comprehensive evaluation of training-time methods on fine-
grained datasets in Tables 10, 11 to highlight the competi-
tive performance of R-TPT, even in the absence of external
data and pre-trained robust checkpoints. It is shown that R-
TPT not only remains competitive with training-time meth-
ods but also achieves significantly better performance on
clean samples. More importantly, R-TPT can further im-
prove the robustness of training-time methods.



Method Caltech101 Pets Cars Flower102 Aircraft DTD EuroSAT UCF101 Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

CLIP [32] 95.2 0.1 93.1 0.0 76.8 0.0 76.2 0.0 30.0 30.0 52.4 0.0 55.1 0.0 73.7 0.0 69.1 3.8
Ensemble 94.9 83.6 93.4 63.5 76.3 40.5 75.0 48.6 31.7 31.7 51.3 31.3 38.7 11.1 71.7 48.3 66.6 44.8
TPT [38] 95.9 0.2 93.8 0.0 78.0 0.0 76.9 0.0 31.6 31.6 55.1 0.0 51.8 0.0 74.7 0.0 69.7 4.0
C-TPT [51] 95.6 0.1 94.3 0.0 77.4 0.0 76.3 0.0 30.4 30.4 55.4 0.0 54.0 0.0 75.1 0.0 69.8 3.8
MTA [54] 95.8 83.1 93.7 64.9 78.4 36.6 76.1 44.2 32.7 32.7 53.4 27.2 47.8 7.5 74.7 47.5 69.1 43.0
R-TPT 95.7 88.2 93.7 72.9 77.2 49.1 76.2 55.6 31.7 31.7 54.0 38.0 44.3 20.4 74.3 55.6 68.4 51.4

Table 9. Results (%) of various adaptation methods on fine-grained classification datasets with pre-trained CLIP-ViT-L/14 (ϵ = 4.0).

Method Caltech101 Pets Cars Flower102 Aircraft DTD EuroSAT UCF101 Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

CLIP [32] 85.9 2.6 83.6 0.0 55.7 0.0 61.7 0.0 15.7 15.7 40.4 0.8 23.7 0.0 59.0 0.0 53.2 2.4
TeCoA1 [26] 78.3 78.3 76.0 75.8 22.4 22.3 33.5 33.4 5.8 5.8 26.2 26.0 16.5 16.6 38.4 38.1 37.1 37.0
APT1[21] 2.9 1.7 31.9 3.8 8.5 0.6 2.6 1.1 0.9 0.9 16.6 7.9 17.0 4.0 11.2 0.9 11.4 2.6
APT1+TeCoA1 [21] 82.8 82.8 79.3 79.0 33.9 33.6 42.7 42.6 9.9 9.9 39.2 39.0 32.9 32.9 51.5 51.4 46.5 46.4
R-TPT 86.7 79.8 84.6 74.2 58.1 42.9 60.6 51.9 17.5 17.5 41.3 33.5 21.2 15.9 59.7 50.9 53.7 45.8

Table 10. Results (%) of training-time defense methods on fine-grained classification datasets with pre-trained ResNet50 (ϵ = 1.0).

Method Caltech101 Pets Cars Flower102 Aircraft DTD EuroSAT UCF101 Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

CLIP [32] 91.4 0.2 85.1 0.0 60.1 0.0 64.0 0.0 18.1 18.1 43.0 0.0 35.8 0.0 61.6 0.0 57.4 2.3
TeCoA4 [26] 79.3 78.0 66.9 63.7 10.2 9.1 30.8 28.9 6.6 6.6 24.5 24.0 14.5 14.3 34.6 33.4 33.4 32.2
FARE4 [35] 86.3 85.4 76.7 73.8 39.2 34.4 37.0 34.0 9.5 9.5 28.3 27.3 16.6 16.3 44.2 41.9 42.2 40.3
APT4 [21] 10.7 0.4 10.0 0.2 1.5 0.1 0.9 0.2 2.6 2.6 9.0 0.1 7.8 6.7 3.7 0.2 5.8 1.3
APT4+TeCoA4 [21] 81.4 80.2 66.7 63.9 20.8 18.9 42.5 40.4 5.2 5.2 35.2 33.7 29.3 29.2 40.2 39.4 40.2 38.9
R-TPT 90.6 76.4 84.5 55.8 63.1 28.4 62.6 37.6 19.1 19.1 42.1 29.1 32.0 5.1 62.8 41.0 57.1 36.6

Table 11. Results (%) of training-time defense methods on fine-grained classification datasets with pre-trained ViT-B/32 (ϵ = 4.0).
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