
KubeFence: Security Hardening of the
Kubernetes Attack Surface

Carmine Cesarano, Roberto Natella
Università degli Studi di Napoli Federico II, Italy
{carmine.cesarano2, roberto.natella}@unina.it

Abstract—Kubernetes (K8s) is widely used to orchestrate
containerized applications, including critical services in domains
such as finance, healthcare, and government. However, its extensive
and feature-rich API interface exposes a broad attack surface,
making K8s vulnerable to exploits of software vulnerabilities and
misconfigurations. Even if K8s adopts role-based access control
(RBAC) to manage access to K8s APIs, this approach lacks the
granularity needed to protect specification attributes within API
requests. This paper proposes a novel solution, KubeFence, which
implements finer-grain API filtering tailored to specific client
workloads. KubeFence analyzes Kubernetes Operators from trusted
repositories and leverages their configuration files to restrict
unnecessary features of the K8s API, to mitigate misconfigurations
and vulnerabilities exploitable through the K8s API. The
experimental results show that KubeFence can significantly reduce
the attack surface and prevent attacks compared to RBAC.

Index Terms—K8s, Attack Surface, API Filtering

I. INTRODUCTION

Kubernetes (K8s) [1] has become the mainstream platform
for orchestrating containerized applications, enabling scalable
deployment and management across distributed environments.
Its adoption spans various critical domains, including finance,
healthcare, and government services [2], [3], where security
is crucial. As K8s becomes integral to these sensitive areas,
ensuring the security of its components, particularly the K8s
API, is of the highest importance.

K8s is a project with a huge codebase and a large, complex
interface toward clients [4]. This interface provides convenience
of use and feature-richness, but it also represents an “attack
surface” that exposes the system to security attacks [5]. If these
features are provided by vulnerable code, they can be exploited
by malicious users to pursue attacks. In the case of K8s, attackers
leverage vulnerabilities to run unauthorized workloads, such as
cryptojacking and botnets [6]; moreover, attackers can violate
the isolation between tenants in the infrastructures, such as
disrupting applications and stealing or damaging their data [7].

To avoid such security risks, regulatory frameworks and
security agencies are recommending the adoption of secure
design practices [8]–[10]. In particular, software systems should
adopt the “principle of least privilege”, by minimizing the
attack surface to only provide access to the strict minimum
of features and resources [11], [12]. In the case that a user
behaves maliciously, they should be prevented from accessing
unnecessary features that could be exploitable [7].

In practice, this approach is quite challenging to apply in
complex systems such as K8s. K8s provides a REST API to
manage resources, such as Pods, Services, Deployments, and
several others. It adopts role-based access control (RBAC) [13]
to manage API calls that access these resources. However, K8s

builds more complex abstractions on top of the REST API. When
a resource is configured through the REST API, the API takes in
input complex data structures (as YAML payload of a request) to
describe the “desired state” of the resource (specification). These
data structures can contain attributes to use advanced features,
such as access to resources on the host machine and other special
permissions. These features represent a risky attack surface that
can be exploited in the case of software vulnerabilities in K8s.

We argue that RBAC does not suffice to secure K8s, since
it only provides access control on resources as a whole, but
lacks control over specific features in the specification of these
resources. For example, while RBAC can allow users to manage
Pod resources and disable access to Deployment resources, it
cannot restrict the values of fields within the specification of
a Pod. These features can be triggered by a malicious client
in order to exploit vulnerabilities in K8s.

In this paper, we analyze the extent of the K8s attack surface
and how to harden it. We initially present an analysis of CVE
vulnerability records [14] for the K8s project, in which we found
that CVEs are only exploitable through specific features of the
K8s API interface. Then, we present a solution (KubeFence) to
provide finer-grain control of the K8s attack surface to harden
K8s against exploits and misconfigurations. Our solution analyzes
applications that use K8s from trusted repositories (Kubernetes
Operators [15]), and generates security policies that restrict API
access to only the resources explicitly required by the application.

In our evaluation, we defined a catalog of malicious K8s
specifications for testing KubeFence, based on known CVEs
and common misconfigurations. We applied KubeFence on
several popular applications. Our solution was able to mitigate
all tested CVE exploits and misconfigurations. Moreover, we
found that KubeFence achieved an average of 35% reduction
in the attack surface compared to RBAC, while introducing
an acceptable performance impact for non-realtime workloads.
In particular, we measured an average overhead of 50 ms
for cluster management operations (∼21%). Since KubeFence
only applies to cluster management, once containers have been
deployed, it does not affect container execution.

The main contributions of this work are:

• We analyze K8s CVEs and found that vulnerable code is
only exercised when specific fields are used in API requests.

• We design KubeFence to generate and enforce security
policies for the K8s API interface. 1

• We present a catalog of attacks against the K8s API interface,
based on CVEs and on common misconfigurations.

1Available as open-source at: https://github.com/dessertlab/kubefence/.

ar
X

iv
:2

50
4.

11
12

6v
1

 [
cs

.C
R

]
 1

5
A

pr
 2

02
5

https://github.com/dessertlab/kubefence/

Fig. 1. An example of YAML Manifest to configure a Kubernetes Object.

• We evaluate the effectiveness of KubeFence at reducing the
attack surface, at mitigating CVEs and misconfigurations, and
at achieving efficiency with minimal runtime overhead.

II. BACKGROUND

A. Kubernetes

Kubernetes (K8s) is an open-source platform for automating
the deployment, scaling, and management of containerized
applications. At its core, Kubernetes abstracts underlying physical
resources into logical entities called Kubernetes resources, such as
Pods (for workloads), Services (networking), Volumes (storage),
ConfigMaps (configuration), and Secrets (security). These re-
sources are managed within a cluster, consisting of worker nodes
orchestrated by a control plane. The K8s API Server is the central
management component, responsible for handling operations
within the cluster. It exposes a RESTful API that allows users
to interact with the cluster by sending HTTP requests to create,
modify, and delete resources. The API Server supports HTTP
verbs like get, post, put, and delete to manipulate Kubernetes
resources. Each resource is represented as a Kubernetes Object,
typically defined using a declarative manifest file in YAML
or JSON format. The manifest specifies the desired state of a
resource, which the K8s control plane works to reconcile with the
current state. Kubernetes Objects generally contain two primary
nested properties, which are spec and status, to describe the
desired and current state, respectively. This structure is typical for
objects like Pods, Deployments, and Volumes, as shown in Figure
1. An example of a desired state is to bring up a given number
of container replicas. Objects like Secrets and ConfigMaps, omit
these fields, focusing on storing sensitive data or configuration
in the data field. The K8s API exposes a set of endpoints for
each resource. When a user defines a resource in a manifest,
specifies all configurable fields, and applies this configuration
to the cluster, an HTTP request is triggered to the relevant API
endpoint, including all the resource configurations in the payload.
This workflow allows users to configure resources declaratively
by specifying their intent, while the API server translates these
configurations into actual cluster state changes. However, these
exposed API endpoints and configurable fields contribute to a
significant attack surface, as discussed in Section III.

Kubernetes
Cluster

Chart
developer

Templates

values
Manifest
to deploy

Helm Chart

User values
(user provided)

define

define

K8s Objects

define

API
server

Fig. 2. Helm Template Processing.

B. Kubernetes RBAC

To mitigate security risks, K8s provides an RBAC access
control mechanism [13]. RBAC defines which users, groups,
and service accounts can perform specific actions on resources,
such as viewing, creating, modifying, and deleting them. RBAC
policies are defined using YAML manifests through four kinds
of Kubernetes Objects: Role, ClusterRole, RoleBinding, and
ClusterRoleBinding. A Role or ClusterRole object contains rules
that specify a set of permissions, while RoleBinding and Clus-
terRoleBinding objects grant the permissions defined in a role to
a user or set of users. This is particularly relevant in multi-user
K8s clusters, where developers should be restricted to working
with designated objects, preventing them from accessing others.

While RBAC provides a structured approach to access control,
it has limitations in terms of granularity. RBAC policies do
not inspect the contents of K8s resource specifications in input
to the API. This means that even if the user is restricted to
only access specific K8s resources, they can still abuse or
exploit all of the features available for that resource. Therefore,
a more granular enforcement mechanism capable of inspecting
and filtering API requests at a deeper level to block potential
misconfigurations and exploits, as discussed in Section III.

C. K8s Operators and Helm templates

Kubernetes relies on controllers to continuously monitor and
reconcile the desired and current states of cluster resources. Built-
in controllers are preconfigured to handle standard Kubernetes
resources and provide basic features, such as autoscaling and
self-healing. However, for more complex operations that extend
beyond the capabilities of built-in controllers, users must
adopt custom controllers. These ad-hoc controllers, known as
Kubernetes Operators [15], are K8s API clients that automate
advanced lifecycle management tasks for stateful and specialized
applications. Operators continuously monitor and adjust the ap-
plication state in a control loop. For instance, if the user specifies
that an application should maintain three replicas, the Operator
constantly checks the cluster state. If it detects that one replica
has failed, it automatically triggers a new deployment to restore
the desired count. This capability allows operators to handle both
Day-1 (installation, configuration) and Day-2 (updates, scaling,
monitoring) operations, reducing manual intervention.

Operators can be implemented in various ways, using the Go
language, Ansible, and Helm [16]. Among these, Helm-based

operators are by far the most common. The widespread adoption
of Helm is evident in catalogs such as Artifact Hub [17] and
OperatorHub [18], which lists hundreds of Helm-based Operators
already distributed for production use, spanning applications
such as databases, monitoring tools, and CI/CD pipelines.

Helm is the de facto package management solution for K8s
[19], to simplify the process of handling complex K8s resources
to package, configure, and deploy applications. Helm packages,
known as charts, provide templates files, that are created
by chart developers. These templates provide definitions of K8s
resources to run an application. These templates consist of fixed
parts and of placeholders for configurable values, as shown
in Figure 2. Defaults for the configurable values are typically
included in a separate values file, in order to provide an initial
configuration for the K8s resources. Users of the K8s operator can
customize and override to meet specific workload requirements.
This flexibility allows users to deploy the same application across
different environments with minimal changes [20].

When deploying an application, Helm processes the template
by combining them with values to generate complete K8s man-
ifests. Beyond simple value assignment, Helm templates support
advanced conditional logic through directives such as if-else
or range. These directives enhance template flexibility, enabling
developers to include or exclude fields, iterate over collections, or
conditionally populate fields based on the provided values (e.g.,
enabling optional configurations, as shown in Figure 3). These
manifests are then submitted to the K8s API Server to create or
update resources. In practice, Helm templates constrain the inputs
that are sent to the K8s API Server, since the user does not change
the fixed parts of the templates. We leverage this insight to harden
the attack surface of the K8s API Server, as discussed in Sec. V.

III. MOTIVATION

The flexibility and extensibility of K8s, while providing
significant advantages for deployment and scaling, also introduce
substantial risks. The attack surface exposed by the K8s APIs
is particularly concerning, as malicious API requests can
abuse features and exploit vulnerabilities of K8s. This section
discusses these security threats and motivates the need for
finer-grain security controls to mitigate them.

apiVersion: v1
kind: Secret
metadata:
name: {{ template "mlflow.fullname" . }}-env-secret
labels:
dict: Dict
app: {{ template "mlflow.name" . }}
chart: {{ template "mlflow.chart" . }}
release: {{ .Release.Name }}
heritage: {{ .Release.Service }}

type: Opaque
data:
dict: Dict

{{- if .Values.backendStore.postgres.Enabled }}
PGUSER: {{ .Values.backendStore.postgres.user }}
PGPASSWORD: {{ .Values.backendStore.postgres.password }}

{{- end }}

Fig. 3. Helm Template for a Secret resource.

apiVersion: v1
kind: Pod
spec:
initContainers:
- name: busybox
image: "busybox"
command: ["ln", "-s", "/", "/mnt/data/symlink-door"]
volumeMounts:
- name: test-vol

mountPath: /test
containers:
- name: my-container
image: "ngingx"
volumeMounts:

- mountPath: /test
name: my-volume
subPath: symlink-door

volumes:
- name: my-volume
emptyDir: {}

Fig. 4. Malicious K8s API request triggering CVE-2017-1002101.

A. Misconfigurations of a K8s cluster
K8s is not inherently secure by default. Proper configuration is

crucial to maintaining a secure environment, but the complexity
of this task often leads administrators to prioritize ease of
deployment over rigorous security practices. This can result
in security misconfigurations that inadvertently weaken the
security of the cluster [21]. For example, running containers
with elevated privileges or misapplying resource limits can
expose critical resources and escalate privileges. Empirical
studies [22] have shown that common configuration errors, such
as overly permissive network policies or default access settings,
can leave clusters vulnerable to exploitation.

Malicious users can leverage these misconfigurations to
abuse the cluster. For example, if the cluster runs containers
with high privileges, and the user omits the runAsNonRoot
specification attribute, the user can escalate privileges.
Another example is to leave service accounts enabled (e.g.,
defaultServiceAccount), which provides the user with
permission to access the K8s API in every namespace. Finally,
some functionalities require careful configuration to avoid
introducing weaknesses. For example, inadequate TLS/SSL
settings can expose communication channels to interception.

These issues often do not stem from flaws in K8s itself,
but rather from how the system is configured by system
administrators. When misconfigured, a K8s cluster can quickly
become an attractive target for attackers. It is also important to
note that RBAC does not provide control over potential abuses
of such features.

B. Software Vulnerabilities in the K8s codebase
Beyond misconfigurations, K8s itself is susceptible to

vulnerabilities in its codebase. Numerous CVEs have been found
in the recent past, and more are likely to occur in the future
due to the complexity of the K8s project. Some of these CVEs
can be directly exploited through the K8s API, by injecting
malicious input values in object specifications. These exploits
can cause disruption of cluster operations, privilege escalation,
and unauthorized access to sensitive data.

For example, in K8s clusters prior to version 1.9.4, the vulner-
able subPath feature can be exploited by attackers to access
sensitive directories on the host filesystem (CVE-2017-1002101).

https://nvd.nist.gov/vuln/detail/cve-2017-1002101

Fig. 5. Number of e2e tests in each category that interact with vulnerable files associated with a CVE.

As illustrated in Figure 4, this vulnerability can be exploited by
sending a maliciously crafted API request to deploy a K8s Pod.
Specifically, an init container creates a symbolic link to the root
directory of the host, and the main container then mounts this
symlink as a subPath, granting access to the host filesystem.

These vulnerabilities demonstrate that restricting user permis-
sions at a high level, as does RBAC, is insufficient. Limiting
access to certain resources (e.g., by denying access to other
resources except pods) does not prevent attackers from manipulat-
ing specific configuration parameters of unrestricted resources to
exploit underlying vulnerabilities. The limitations of RBAC are in-
trinsically due to its conceptual model, which is coarsely defined
around “roles” and “resources”, since it is designed for manual
definition and review by administrators. Even if a finer-grained
RBAC existed, it would introduce excessive complexity for this
use case. Thus, an automated and more detailed filtering of param-
eters within API requests is necessary to reduce the attack surface.

C. Attack Surface across Workloads
We have seen that the K8s API is exposed to attacks against

K8 misconfigurations and vulnerabilities. We hypothesize that,
in practice, many of these vulnerabilities and misconfigurations
can be triggered by exploiting specific features of the K8s API
that are not required by many users. If this hypothesis holds,
it would be possible to prevent attacks by blocking unnecessary
features in a workload-specific manner, thus reducing the attack
surface of K8s.

To test this hypothesis, we analyzed past vulnerabilities in K8s,
and which features can trigger them from the API. We first ana-
lyzed the official K8s Vulnerability Database [14], covering all en-
tries from July 2016 to December 2023. This effort yielded a total
of 49 CVEs with CVSS scores ranging from 2.6 (low severity) to
9.8 (high criticality). By examining the source code files modified
by the patches for these CVEs, we were able to map each vul-
nerability to the corresponding affected K8s components. These
components span a wide range of functionalities, including admis-
sions controllers, kubelet, API server, etcd, kubectl, scheduler, net-
working, storage, the legacy cloud provides support and security
features. We provide the full mapping in the project repository.

Then, we adopted a set of workloads to exercise the features
exposed by the K8s API. We chose K8s end-to-end (e2e) tests
for this purpose [23]. e2e tests were selected because they
perform realistic interactions with the K8s API, by deploying
resources and managing configurations, as seen in production

environments. Unlike simple resource operations (e.g., create,
delete), these workloads involve complex API requests that
selectively trigger different K8s features. For example, an e2e
test that manages CustomResourceDefinitions (CRDs) [24] uses
service names, ports, and conversion strategies, which exercise
specific parts of the K8s codebase. This makes e2e tests ideal
as workloads to analyze the relationship between vulnerabilities
and features of the K8s API. If a vulnerability can only be
triggered through a specific feature, we expect to see that only
a small minority of tests cover the vulnerable code.

We selected all available e2e tests across 12 different categories
(e.g., networking, storage, scheduling, autoscaling, etc.), exclud-
ing tests designed for Windows environments because our testbed
is built on Linux, and tests in the disruptive category, as their
focus is on resilience and fault tolerance rather than functional
testing. In total, we selected 6,580 e2e tests. It is important
to note that the distribution of e2e tests is not uniform across
K8s components. This depends on the richness of configuration
parameters available for some components (e.g., storage), where
the higher number of tests reflects a greater variety of associated
workloads. Therefore, we chose not to sample the tests, and to in-
clude the full test suites. We need to consider this imbalance when
interpreting the results. Before execution, we instrumented the
codebase to collect code coverage data, allowing us to track which
lines of source code were accessed by each test [25]. We cross-
reference these data with the vulnerable files identified earlier.

Figure 5 illustrates the total number of e2e tests grouped
by category (columns of the matrix), where each test category
interacts with different parts of the K8s API and requires different
K8s resources. In addition, the figure shows, as a heatmap, the
number of tests that cover vulnerable code linked to 3 CVEs
(rows of the matrix). We found that vulnerable code is covered
only by a very small minority of workloads. For example, in the
case of CVE-2023-2431, only two workloads from the storage
e2e tests cover the vulnerable code. The vulnerable code for the
other 46 CVEs is not covered by any of the tests, and not shown
in the figure for the sake of brevity. In total, only 29 out of 6,580
tests (i.e., less than 0.5%) exercised a vulnerable part of the
codebase. Even if the distribution of e2e test across categories
is skewed towards storage, which accounts for the majority of
tests, the skew does not undermine this conclusion. We find
that, even when excluding the largest category, vulnerable code
is covered by only 21 out of 960 tests (i.e., around 2%).

In conclusion, we investigate the overlap between the
features commonly used by workloads and the ones exploitable
by attacks. Since the overlap is small in practice, disabling
unnecessary features when executing a particular workload can
thwart many attacks. This preliminary analysis shows that by
enforcing API access controls tailored to specific workloads,
we can significantly limit exposure to (potentially vulnerable)
components that are not necessary, thereby reducing the risk
of exploitation. This workload-specific filtering approach can
thus minimize the K8s attack surface, addressing a critical gap
in the existing coarse-grained RBAC model.

D. Threat Model
Our threat model assumes attackers who have gained control

over the cluster and can execute commands against the K8s API.
These attackers include compromised users with stolen creden-
tials, over-privileged users, and other types of insider threats [26].
Such attackers may attempt to escalate privileges to gain full con-
trol over K8s resources (e.g., Pods, Deployments, Services), ac-
cess the underlying hosts in the cluster, and disrupt provided ser-
vices. To achieve these objectives, they can misuse the API to de-
ploy malicious resources or reconfigure existing ones with harm-
ful specifications, in order to leverage cluster misconfigurations
or exploit vulnerabilities in the K8s codebase. An example of
attack based on this threat model was described in Section III-B.

Other security threats, such as physical attacks on infrastructure
(e.g., compromising the physical machine hosting the etcd
database) and supply chain attacks (e.g., targeting container
images or CI/CD pipelines) are considered out of scope for
this work. In addition, we do not consider volumetric denial-of-
service attacks, such as API flooding with high-volume request
patterns. Our threat model still considers “non-volumetric” DoS
that may be caused by malicious API requests from CVE exploits,
which can disrupt workloads and cause service unavailability.

To sum up, we discussed how the existing K8s security
model based on RBAC is insufficient to prevent abuses of
cluster misconfigurations and exploitation of vulnerabilities.
The analysis of K8s vulnerabilities showed that they can
be exploited only through specific features of the K8s API.
Therefore, we design KubeFence for fine-grain filtering of
K8s API requests to reduce the K8s attack surface.

IV. CHALLENGES

Our KubeFence solution is based on the fundamental idea of
leveraging K8s Operators to obtain strict security policies. K8s
operators are becoming more and more popular, and represent
a paradigm shift to manage clusters. With operators, developers
implicitly encode choices on which features they use. However,
the current security model of K8s does not leverage this as
an opportunity to restrict the large attack surface. There are
technical challenges in doing so.

KubeFence generates security policies from Operator configu-
rations, commonly defined using Helm Charts. These charts bring
flexibility through templating, which includes conditionals, loops,
data types, and user-defined overrides (Sec. II-A). The challenge
lies in ensuring that security policies generalize across all valid
configurations that can be derived from charts. To address this,
KubeFence systematically explores the configuration space of an

API Request

Kubernetes Cluster

MitmProxy

Runtime

Offine

Operator
instance

Large Attack Surface

kube-apiserver

Restricted Attack Surface

K8s Operators Catalog

Helm Chart

template

default values

f1: v1
f2: v2

{{}}
{{}}

Security Policy Generation

validator

values
variants manifestsvalues

schema

schema
generation

proxy
configuration

configuration
exploration

f1: <>
f2: <>

manifest
rendering

Fig. 6. KubeFence overview.

Operator, by identifying valid variants of the configuration, while
restricting them to specific attributes and values where possible.

In addition, K8s API requests contain deeply nested
objects with flexible, optional fields, making precise validation
challenging. Traditional RBAC only checks K8s resources and
actions, whereas fine-grained enforcement requires inspecting
the full request structure. A flat-object approach would overlook
dependencies between nested fields, enabling attackers to bypass
restrictions. To address this, KubeFence employs a tree-based
validation mechanism that mirrors the hierarchical structure of
Kubernetes API requests.

Finally, the architecture of KubeFence should fit between
clients and the K8s cluster, by ensuring that API requests
cannot bypass security validation, with minimal resource and
performance overheads.

V. KUBEFENCE DESIGN

KubeFence is a proxy-based enforcement mechanism designed
to automatically generate and enforce fine-grained API security
policies, tailored to specific K8s workloads. A security policy,
in our context, defines allowable resource specifications, which
restricts the attack surface by filtering API requests that include
unnecessary attributes. These policies are represented as valida-
tors, a machine-readable format used by our proxy to check API
requests. The proposed approach is tailored for Helm-based K8s
operators, which are widely used to manage complex Kubernetes
configurations and require careful security analysis [19].

Unlike static security policy checkers that only define allowed
resource specifications, KubeFence enforces these policies dynam-
ically at runtime. By intercepting and validating every API request
during cluster operations, KubeFence ensures that only authorized

configurations are applied, effectively preventing unauthorized
API interactions that could bypass static security measures.

KubeFence seamlessly integrates into the existing Kubernetes
ecosystem with minimal disruption to the workflow of
administrators and developers. Its operation involves three
primary steps, as depicted in Figure 6: (1) analyzing K8s
workloads and their Helm charts to identify required K8s objects
and enumerate their potential configurations; (2) generating
security policies based on this analysis and configuring an API
proxy to enforce them; (3) intercepting incoming API requests,
validating them against the defined policies, and blocking any
that deviate from the allowed configurations. By automating
policy generation and enforcement, KubeFence reduces the
manual effort required to secure Kubernetes deployments while
enhancing fine-grained protection against insider threats.

A. Generation of Security Policies
Writing security policies is a complex and error-prone

process, especially for complex systems such as K8s. Inaccurate
or incomplete policy definitions can leave clusters vulnerable
to overly permissive access control.

To address this challenge, KubeFence automates the generation
of fine-grained security policies by analyzing Helm charts
(default values and templates) as input. The goal of KubeFence is
to produce a consolidated policy in the form of a validator, that is,
a reference schema for the validation of incoming API requests.
KubeFence ensures that the K8s object specification in an API
request, i.e., a manifest (see also Fig. 2), complies with the fields
and values of the schema. The schema defines all allowable
configurations for each K8s resource defined by the Helm chart.
An API request that uses an attribute not included in the schema
can be blocked, since it is unnecessary according to the Helm
chart. Similarly, if the schema assigns a specification attribute
with a fixed value, or a value taken from a small set, API requests
that use any value outside this defined range can be blocked.

However, there are several aspects that need to be handled
for accurate security policies. (1) Conditional logics in Helm
charts dynamically vary the structure of the specification based
on user-defined values (as in Figure 3). This variability means
that many potential configurations generated by these conditions
need to be accounted for in the policy. (2) Moreover, while
Helm charts often provide default values that fix the structure
and content of manifests, users can still override these defaults
with custom values (as illustrated in Figure 2). Thus, policies
should not rely solely on the templates of the Helm charts
but should account for such overrides from the user of the
K8s operator. (3) Finally, the K8s specification includes critical
attributes that are recommended by security best practices (such
as runAsNonRoot) but that may be omitted in the Helm
charts. Policies must ensure these critical attributes are enforced
in API requests, regardless of their presence in the Helm charts.

These aspects make policy generation more nuanced.
KubeFence manages them by exploring the configuration space
represented in the Helm charts, to ensure that policies cover
all legitimate API requests, while guarding against potential
API misuses. The policy generation process is divided into four
phases, detailed below.

Generation of values schema. This phase analyzes values of
K8s resource specifications in the Helm charts, in order to

Default Values File |# Values Schema
image: |image:
registry: docker.io | registry: docker.io
repository: bitnami/mlflow | repository: bitnami/mlflow
pullSecrets: | pullSecrets: [list]

- name: secret-1 |
- name: secret-2 |

tracking: |tracking
enabled: true | enabled: bool
replicaCount: 1 | replicaCount: int
host: "0.0.0.0" | host: IP
containerSecurityContext: | containerSecurityContext:

runAsNonRoot: true | runAsNonRoot: true
postgresql.arch |
standalone‘ or ‘repl |
postgreSQL: |postgreSQL:
arch: standalone | arch: standalone, repl

Fig. 7. Schema generation from the default Values file used in the MLflow.

identify the domain of every field. The value schema will serve
as a basis for exploring the configuration space in the next phase.

KubeFence performs a transformation of the default values
to produce a structured values schema. This transformation
aims to: (1) Replace static values with placeholders representing
data types or valid ranges, such as bool, string, int, IP,
[list], and {dict}, using regex-based substitution. (2)
Replace enumerative fields replaced with lists including all
valid options, extracted from annotations in the values file.
(3) Lock predefined safe constants to fields critical to security,
according to best practices for K8s resource specifications.
For example, securityContext.runAsNonRoot can be
locked to true [27]. Similarly, fields like registry and image
name can be restricted to trusted values to mitigate risks like
typosquatting attacks [28]. Thus, security-sensitive fields are
locked with safe constants rather than placeholders, and any
missing critical field is explicitly added. Figure 7 demonstrates
an example of this process applied to the MLflow Operator.

Exploration of the configuration space. The values schema
produced in the previous phase provides a generalized represen-
tation of possible configurations. However, it is still not ready for
rendering with the Helm template (i.e., processing conditionals,
loops, and placeholders in the template). The rendering process
requires that only one value is indicated from the configuration
space of enumerative fields in the schema. To address this,
KubeFence performs the rendering multiple times, by exploring
different combinations of values in enumerative fields. Each
combination leads to a variant of the schema (values variant).

At each iteration, KubeFence replaces enumerative
placeholders in the schema with one of their valid values,
while preserving placeholders for non-enumerative fields and
constant fields. To avoid combinatorial explosion, KubeFence
only explores a subset of configurations, such that each valid
value for an enumerative field is covered in at least one
generated variant. This process guarantees that the union of
all variants covers all potential valid values from API requests,
which should be allowed in the system by KubeFence. More
specifically, at each iteration i, the process generates a new
values variant by replacing each enumerative field with its i-th
value. If an enumerative list has fewer options than the current
iteration index, its last value is reused. The process iterates up
to the length of the longest enumerative list. In the example of

the schema in Figure 7 (right), this process generates two values
variants, one for each option in the arch enumerative field.

Rendering of manifests. Once the values variants are generated
by the previous phase, they need to be translated into Kubernetes
manifests. These manifests are concrete representations of
resource specifications, by resolving conditionals and loops
and using actual values. These manifests will be the basis for
generating the final security policies.

Each values variant is combined with the Helm template,
using the helm template command. This command
processes the template and values file to render a manifest. By
the end of this phase, KubeFence produces a set of Kubernetes
manifests, capturing all permissible configurations for the
resources required by the K8s operator.

Generation of validators. The final step is to consolidate the
generated manifests into a single validator, a YAML schema that
defines all allowable configurations for K8s resources. This val-
idator supports the enforcement of fine-grained security policies,
by serving as a reference for validating incoming API requests.

Manifests are grouped based on the resource type (kind) (e.g.,
Pod, Service, Deployment) to ensure the resulting validator is
organized and easily navigable. Each group represents the allowed
configurations for a specific Kubernetes resource type. Special
placeholders (e.g., string, int, hostIP) from the manifests
are retained to represent data types, enabling flexibility in config-
uration validation. Enumerative fields from multiple manifests are
consolidated into arrays containing all valid values. Duplicate val-
ues are eliminated, while conflicting values are resolved by includ-
ing all possible options in the array. Fields with constant, security-
critical values (e.g., securityContext.runAsNonRoot:
true) are directly carried over from the manifests without
modification. This ensures that security best practices are
enforced consistently across all configurations. Figure 8 shows
a validator generated merging two manifests.

The proposed approach automates the generation of
fine-grained security policies for specific K8s workloads, by
generating a YAML policy validator that captures all their
allowable configurations, based on the systematic analysis
of their Helm charts.

Manifest sample 1 |
containers: |
- name: nginx |# Generated Validator
image: nginx:latest |containers:
imagePullPolicy: IfNotPresent |- name: string
ports: | image: string
- name: string | imagePullPolicy:
container: IP | - IfNotPresent

Manifest sample2 | - Always
containers: | ports:
- name: nginx | - name: string
image: nginx:latest | container: IP
imagePullPolicy: Always |

Fig. 8. Policy Validator generated from two manifests.

B. Enforcement of Security Policies

To enforce security policies and apply the generated validators,
KubeFence employs Mitmproxy [29]. Mitmproxy is chosen

for its capabilities in intercepting, inspecting, and modifying
HTTP and HTTPS traffic, with support for SSL/TLS certificates.
Mitmproxy is deployed as a Pod on each K8s control-plane
node, positioned between the K8s API server and clients (e.g.,
kubectl, CI/CD pipelines, or Operators). This ensures that all
incoming API requests are intercepted and validated against
the policy validator before reaching the API server.

In order to maintain a secure enforcement mechanism,
the requests to the API server must not bypass the proxy
(according to the Complete Mediation design principle [11],
[12]). To this aim, the API server is restricted to accepting
only certificate-based trusted connections, allowing only the
proxy with a valid certificate to connect. Furthermore, since
client-to-API server connections are encrypted, clients must trust
the CA certificate of the proxy to enable traffic interception and
decryption for inspection. Thus, proper certificate management
is crucial for secure operations.

The core validation mechanism is implemented as a Python-
based Mitmproxy plugin, which loads the YAML policy validator.
When Mitmproxy intercepts an HTTPS request, the plugin parses
the request body to extract the Kubernetes object, including the
resource type (kind) and its specification fields, for validation.
This validation process ensures that only authorized and correctly
configured API requests are forwarded to the API server. The
validation process operates as a hierarchical comparison, akin to a
tree overlap, between the incoming manifest and the policy valida-
tor, interating across the requested K8s resources. The plugin ex-
tracts the kind field from the request to identify the resource type
and verifies its presence in the validator. Then, it ensures that only
fields explicitly defined in the validator are present in the manifest
and validates that each field’s data type matches the expected
type specified in the validator. Enumerative fields and security-
sensitive fields are validated against their strict list of allowed
values in the validator. If the request complies with the validator
rules, it is forwarded to the K8s API server unchanged. Otherwise,
the plugin blocks the request, returning an HTTP error response to
the client. Violations are logged with details of the offending field
and the reason for denial, enabling auditing and forensic analysis.

VI. EXPERIMENTAL ANALYSIS

This section evaluates KubeFence across three dimensions.
First, we quantify the attack surface exposed by the Kubernetes
API and demonstrate how KubeFence can reduce unnecessary
exposure by restricting access to unused endpoints and fields.
Second, using a catalog of misconfiguration-based attacks
and CVE exploits targeting specific API fields, we assess the
effectiveness of KubeFence in mitigating these threats compared
to native Kubernetes RBAC. Finally, we analyze the runtime
overhead introduced by KubeFence for API request validation.

A. Experimental Setup
We set up a K8s test environment replicating real-world

deployment scenarios. The testbed includes a cluster using
Kubernetes version 1.28.6, configured with a control-plane node
and a worker node deployed on two distinct Ubuntu Linux 22.04.4
virtual machines. Both nodes are allocated 8 vCPUs and 16 GB of
RAM, hosted on a machine with an Intel Xeon E5-1620 3.70 GHz
CPU. KubeFence is deployed on the control-plane node, besides
the API Server, using a container with Mitmproxy version 10.2.2.

Dep
loy

men
t

Sta
tef

ulS
et Pod Job

Cron
Job

Se
rvi

ce

Con
fig

Map

Netw
ork

Pol
icy

Ing
res

s

Ing
res

sC
las

s

Se
rvi

ce
Ac

cou
nt

Hori
zon

tal
 Po

dA
uto

sca
ler

Pod
Disr

up
tio

nB
ud

ge
t

Per
sis

ten
t V

olu
meC

laim

Va
lida

tin
g W

eb
ho

ok
Se

cre
t

Ro
le

Ro
leB

ind
ing

Clus
ter

Ro
le

Clus
ter

Ro
le

Bind
ing

Nginx

Mlflow

PostgreSQL

RabbitMQ

SonarQube

10.46% 0% 0% 0% 0% 27.87% 0% 9.52% 0% 0% 11.76% 10.08% 15.56% 0% 0% 0% 0% 0% 0% 0%

4.11% 0% 0% 0% 0% 14.75% 7.69% 0% 22.45% 0% 8.82% 0% 0% 0% 0% 7.69% 0% 0% 0% 0%

0% 10.07% 0% 0% 3.94% 26.23% 15.38% 9.52% 0% 0% 11.76% 0% 0% 0% 0% 15.38% 22.58% 30.30% 0% 0%

0% 12.15% 0% 0% 0% 31.15% 0% 9.52% 24.49% 0% 14.71% 0% 15.56% 0% 0% 15.38% 22.58% 27.27% 0% 0%

1.87% 1.97% 0.46% 1.48% 0% 16.39% 11.54% 9.52% 8.16% 9.38% 11.76% 0% 0% 10.91% 5.66% 11.54% 12.90% 21.21% 8.57% 18.18%

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f A
PI

 u
sa

ge

Fig. 9. Percentage of API usage across workloads and endpoints.

This experimental analysis focuses on K8s Operators as a
use case to demonstrate the feasibility and effectiveness of
fine-grained workload-aware API enforcement. Since Operators
are highly configurable, have extensive interactions with the K8s
API [20], and are typically deployed using Helm charts, they
are a compatible target for validating KubeFence. We select five
Operators available on the Artifact Hub catalog [17], representing
diverse categories of workloads commonly deployed in K8s
clusters, including databases (PostgreSQL [30]), networking
services (Nginx [31]), AI/ML applications (MLflow [32]), data
streaming (RabbitMQ [33]), and security (SonarQube [34]).

B. Quantifying K8s Attack Surface Exposure and Reduction
The K8s API serves as the primary interface to a cluster,

which the endpoints for users to query and modify resources.
As a result, it represents a critical part of the attack surface
for a cluster. We hypothesize that many workloads utilize
only a small subset of this API, leaving a significant portion
unnecessarily exposed and susceptible to exploitation. Reducing
the accessibility of unused or unnecessary API endpoints and
fields is a key objective of KubeFence. In this experiment, we
quantify the attack surface exposed by the Kubernetes API and
evaluate how effectively KubeFence can reduce it by limiting
access to non-essential endpoints and fields.

To quantify the attack surface, we conducted a static analysis
of the K8s API. This process involved counting the total number
of endpoints exposed by the K8s API Server, and cataloging the
configurable fields available for each resource type. Next, we
analyzed the selected Kubernetes Operators to understand how
real workloads interact with the API endpoints. By examining
the validators generated through KubeFence, we identified the
space of endpoints and fields that can potentially be used by
each workload. This analysis provided a detailed understanding
of K8s API utilization across different workloads and highlighted
workload-specific behavior. The results are summarized in
Figure 9, showing the percentage of fields utilized by each
workload for each endpoint, relative to the total available fields.

Our findings revealed significant under-utilization of the K8s
API by Operators, with numerous fields and endpoints remaining
unused in practice. For instance, we observed that certain

resources, such as Pod and Job, are entirely unused (i.e., 0%
usage), by a substantial number of workloads. Other resources,
such as Service and ServiceAccount, are actively used by all
workloads, even if many of their fields are left unused. It is still
worth blocking these unused fields since they contribute to the
attack surface, potentially serving as entry points for exploitation,
despite offering no functional value to the workloads. However,
these resources cannot be completely disabled, due to the frequent
use of some of their fields. This leaves some residual risk of
vulnerabilities in these APIs, as discussed in Section VIII.

To evaluate the attack surface reduction achievable by
KubeFence against RBAC, we analyzed the percentage of fields
restrictable by each approach. RBAC restricts access to fields
only when the entire resource type (API endpoint) is unused in
the heatmap, meaning it lacks the granularity to filter individual
fields within an allowed resource. In contrast, KubeFence
can enforce restrictions on any unused field, even within
partially-used endpoints. This makes KubeFence a strict superset
of RBAC’s enforcement, covering all fields RBAC could restrict
while also providing additional reductions in the attack surface.

For the complete set of considered endpoints, we summed
up the total configurable fields across all resources. For each
workload, we computed the percentage of fields restrictable
by RBAC and KubeFence as a measure of the attack surface
reduction potentially achievable by the two techniques. Table I
summarizes the results of this analysis. KubeFence consistently
achieves a higher reduction in attack surface across all
workloads, with improvements of 20.57%, 19.31%, 36.98%,

TABLE I
ATTACK SURFACE REDUCTION ACHIEVABLE BY KUBEFENCE VS RBAC

Workload Restrictable Fields Attack Surface Reduction

RBAC KubeFence RBAC KubeFence

Nginx 3747 / 4882 4751 / 4882 76.75 % 97.32 %
Mlflow 3883 / 4882 4826 / 4882 79.54 % 98.85 %
PostgreSQL 2906 / 4882 4711 / 4882 59.52 % 96.50 %
RabbitMQ 3676 / 4882 4708 / 4882 75.30 % 96.44 %
SonarQube 1012 / 4882 4772 / 4882 20.73 % 97.75 %

TABLE II
CATALOG OF K8S MALICIOUS SPECIFICATIONS

ID Exploit/Misconfiguration Targeted API Field Ref.
E1 Activation of hostNetwork (CVE-2020-15257) hostNetwork [35]
E2 Abusing LoadBalancer or ExternalIPs (CVE-2020-8554) externalIPs [36]
E3 Command injection via volume (CVE-2023-3676) containers.volumeMounts.subPath [37]

and volumeMounts containers.volumes.subPath
E4 Mount subPath on a file o emptyDir (CVE-2017-1002101) containers.volumeMounts.subPath [38]
E5 Absent Resource Limit (CVE-2019-11253) containers.resources.limits [39]
E6 Symlink exchange allow host filesystem access (CVE-2021-25741) container.command [40]
E7 Bypass of Seccomp Profile (CVE-2023-2431) containers.securityContext.seccompProfile.localhostProfile [41]
E8 Privileged Containers (CVE-2021-21334) containers.securityContext.privileged [42]
M1 Activation of hostIPC hostIPC [21]
M2 Activation of hostPID hostPID [21]
M3 Use Readonly Filesystem containers.securityContext.readOnlyRootFilesystem [21]
M4 Running Containers as Root containers.securityContext.runAsNonRoot [21]

containers.securityContext.runAsRootAllowed
M5 Allow Dangereous Capabilites to Containers containers.securityContext.capabilities.add [21]
M6 Escalated Privileges for Child Container Processes containers.securityContext.allowPrivilegeEscalation [21]
M7 Custom SELinux user or role containers.securityContext.seLinuxOptions.user [21]

containers.securityContext.seLinuxOptions.role

21.14%, and 77.02% across the five workloads, averaging 35%
compared to RBAC. These results highlight that RBAC achieves
lower attack surface reduction for workloads requiring multiple
endpoints, as it cannot blacklist partially-used resources. In
contrast, KubeFence can restrict unused fields within utilized
endpoints, providing finer-grained protection.

C. Catalog of Malicious Specifications

As described in Section III, malicious API requests pose
critical security risks, by exploiting specific fields to achieve
privilege escalation, unauthorized access to critical resources,
and misconfigurations that may led to degradation of cluster
availability or reliability.

To evaluate KubeFence against these threats, we built a catalog
of 15 malicious specifications, comprising 7 misconfigurations
and 8 malicious fields used by CVE exploits. These malicious
specifications inject malicious values in Kubernetes manifests
that can expose vulnerabilities or enable unsafe configurations,
making them a practical subset for testing the effectiveness
of KubeFence in mitigating attacks. Table II summarizes this
catalog, identifying the targeted fields and providing references
to their sources.

This catalog was developed by analyzing prior research
[22], security blogs [43]–[46], CVE disclosure [47], and
Kubernetes security guidelines [21], [27]. Examples include
enabling the hostNetwork field for host network sharing
(CVE-2020-15257), exploiting subPath for host directory
access (CVE-2017-1002101), and bypassing security profiles
(CVE-2023-2431). We focus on CVEs from Section III-C
that are exposed to malicious specifications from the K8s API
interface, as these align with our threat model and the scope of
API-level enforcement. We exclude CVEs that are we are unable
to reproduce due to strict environmental prerequisites, which
fall outside our experimental setup. For instance, Kubernetes
clusters are affected by CVE-2023-5528 only if they use an
in-tree storage plugin for Windows nodes.

D. Kubefence Effectiveness against RBAC

Misconfigurations and CVE exploits pose significant security
risks in K8s (see Section III). The native Kubernetes RBAC

apiVersion: apps/v1
kind: Deployment
spec:
template:
spec:

containers:
- name: nginx
image: testImage
securityContext:

runAsNonRoot: false

Fig. 10. Example of a malicious YAML manifest

mechanism provides access control at the resource- and
verb-level, but lacks the granularity to restrict individual fields
within the resource specification. This experiment measures the
effectiveness of KubeFence compared to RBAC, by evaluating
its ability to mitigate CVEs and misconfigurations. To quantify
this, we generate workload-specific policies for the five selected
operators (listed in Section VI-A), and test whether KubeFence
can block API-based misconfigurations and CVE exploits.

To test the enforcement mechanisms, we generated malicious
API requests using our catalog of malicious specifications (Table
II). We inject the malicious fields in the catalog in resource
types that support that malicious fields. For instance, the
spec.externalIPs field is specific to Service resources.
Other fields apply to relevant K8s resources, such as to Pod
and higher-level abstractions like Deployment, ReplicaSet,
StatefulSet, and DaemonSet.

Legitimate resource configurations were retrieved from
Operator manifests, and malicious fields were injected into this
configuration to create 15 distinct malicious manifests for each
operator. For example, Figure 10 shows how the misconfigured
runAsNonRoot field is injected into a Deployment resource
from the Nginx Operator.

These malicious manifests were then submitted to the K8s API
while the respective workload-specific RBAC or KubeFence pol-
icy was in place. This process simulates realistic attack scenarios
where a malicious client attempts to exploit CVEs or misconfigu-
rations through the K8s API interface. The effectiveness of each
enforcement mechanism was measured by recording whether

each CVE exploit or misconfiguration attempt was mitigated.
Native K8s RBAC setup. We evaluated RBAC by configuring

the K8s cluster with audit logging enabled, to capture API
requests during the execution of an attack-free workload. Audit
logs keep track of accesses to API endpoint, the resource type
(e.g., Pods, Services), verb (e.g., get, create, update, delete), and
the resource specification in API requests. Then, the audit logs
were processed with the audit2rbac tool [48], which infers
the minimum permissions required for a workload. This process
generated five distinct YAML files, representing a tailored
RBAC policy for each operator, based on the observed API
interactions. Malicious manifests were applied to the cluster
with RBAC policies in place. For each attack, we recorded the
success or failure of the API request.

KubeFence setup. Then, we evaluated KubeFence by
generating fine-grained security policies tailored for each
workload, by analyzing the configurations required by the
workloads. These policies were enforced using our proxy placed
between the clients and the K8s API Server.

The same malicious manifests used for testing RBAC were
applied against the KubeFence proxy. Each interaction of the
Operators with the API server was intercepted by the proxy,
which validated the API request against the workload-specific
policy (i.e., the validator). Moreover, our logs report the denied
actions, and the malicious fields that triggered by filtering.

Experimental Results. Table III reports the mitigated CVEs
and misconfigurations by RBAC and KubeFence, respectively.
While RBAC did not block any of the attacks, KubeFence
successfully blocked all of them.

The results highlight that RBAC policies, even when tailored
to workloads using tools like audit2rbac, lack the granularity
to enforce restrictions on individual fields within resource
specifications. Figure 11 illustrates an audit entry recorded during
the deployment of the MLflow Operator, logging the creation of
a Deployment resource. The generated RBAC policy effectively
defined access at the resource level, specifying resource kind,
namespace, API group, and allowed verbs. However, it omitted
critical parameter-level details, such as spec fields “available”
in the audit logs. This omission is not a limitation of audit2rbac,
but rather an inherent limitation of RBAC policies, which do not
allow specification at this level of detail. As a result, RBAC failed
to prevent attacks that exploit features not needed by the oper-
ators, such as enabling hostNetwork or disabling runAsNonRoot.

By contrast, KubeFence successfully enforced fine-grained
controls, blocking all attacks to misconfigurations and CVEs.
For instance, it denied requests abusing the subPath field, as
this parameter was not part of the configuration space defined
in the Helm charts of the Operators. Furthermore, legitimate
workload actions were unaffected, demonstrating the precision
and reliability of KubeFence in blocking unauthorized API
request parameters without disrupting normal operations.

E. KubeFence Overhead

This section evaluates the runtime overhead introduced by
KubeFence compared to the native K8s RBAC. The focus is
on the online phase, where API requests are inspected and
forwarded to the API server, as this directly impact cluster
operations. The offline phase of KubeFence, which involves

TABLE III
MITIGATED CVES AND MISCONFIGURATIONS BY RBAC AND KUBEFENCE.

Workload CVEs Misconfigurations

RBAC KubeFence RBAC KubeFence

PostgreSQL 0 8 0 7
Nginx 0 8 0 7
Mlflow 0 8 0 7
RabbitMQ 0 8 0 7
SonarQube 0 8 0 7

learning security policies, is excluded from this analysis as it
does not affect runtime performance.

We measured the round-trip-time (RTT) latency for processing
the full set of API requests generated during the deployment
of the five selected operators. These requests are issued by the
kubectl apply command from the client, and include all
interactions with the API server to configure the resources defined
by the Operator. The RTT latency was defined as the total elapsed
time from issuing the apply command until the client received a
response, indicating the API server had finished processing the
requests. This experiment was conducted under two scenarios:
first with native RBAC, and then with KubeFence. All requests
were benign, as this experiment focused on normal operations
rather than attack scenarios. To ensure statistical significance,
we repeated the process 10 times per workload and computed
the average latency and standard deviation for both RBAC and
KubeFence. In addition, using the same workload, we evaluate
the impact of KubeFence on system resources. To this end, we
measured the CPU and memory usage of the proxy container,
reporting the average and standard deviation over 10 repetitions.

Table IV presents the average latencies and standard
deviations for each workload, as well as the increase in latency
introduced by KubeFence over native RBAC.

The results show that the additional latency introduced by
KubeFence remains minimal, with absolute increases ranging
from 0.0266 s to 0.0846 s. Even in the worst case, where
the overhead reaches 26%, the total RTT latency remains well
below 0.5 seconds, which is negligible for cluster management
tasks such as workload deployment [49], [50]. Furthermore, this
overhead impacts only operations initiated by external actors
interacting with the K8s control plane, such as managing deploy-
ments and querying resource modifications, while internal API
interactions by K8s components remain unaffected by KubeFence.
Moreover, the application themselves (e.g., web resources served
by Nginx) are unaffected. This minimal overhead is a worthwhile
trade-off considering the enhanced attack mitigation capabilities
and the attack surface reduction provided by KubeFence.

TABLE IV
RBAC VS KUBEFENCE AVERAGE REQUEST LATENCY

Operators RBAC RTT KubeFence RTT Increase
(ms) (ms) (ms, %)

MLflow 211.0±39.2 237.6±37.5 +26.6 (12.61%)
Nginx 168.4±25.7 210.4±26.7 +42.0 (24.94%)
PostgreSQL 178.1±16.1 213.6±13.0 +35.5 (19.93%)
RabbitMQ 242.9±16.6 307.6±23.4 +64.7 (26.64%)
SonarQube 385.9±14.0 470.5±35.0 +84.6 (21.92%)

Fig. 11. RBAC policy generated (on the right) from an audited create deployment operation (on the left).

In addition, the impact of KubeFence on system resources
was minimal. CPU usage increased only by 1.21% (±0.04),
and memory consumption increased by 85.54 MiB (±0.25),
which is a negligible overhead considering the security benefits.

The experimental results demonstrate that KubeFence effec-
tively enhances Kubernetes security. It achieves significant
attack surface reduction by restricting unused API fields
and endpoints, addressing gaps in native RBAC that cannot
enforce such fine-grained control. Moreover, KubeFence
successfully blocks all tested misconfigurations and CVE
exploits by precisely validating API requests against workload-
specific policies, ensuring robust protection against real-world
threats. Despite introducing a small latency overhead during
API request validation, the impact remains reasonable for
operations initiated by external actors and does not affect inter-
nal K8s operations. These findings establish KubeFence as a
practical and efficient solution for securing K8s environments.

VII. RELATED WORK

A. Static Analysis
Kubernetes is widely adopted for its scalability and automation

capabilities. However, its extensive configurability introduces
significant risks of misconfiguration. Static analysis tools and
methodologies have been developed to address these issues,
focusing on pre-deployment detection in Kubernetes manifests
and Helm Charts.

Empirical studies [22], [51], [52] highlight the prevalence
of Kubernetes misconfiguration and their security implications.
Research analyzing Helm charts and Operators [19], [53]
identifies insecure defaults and outdated dependencies that
elevate security risks. Broader efforts [21], [54] emphasize
adherence to best practices, including RBAC or network
segmentation, but these approaches rely on manual intervention
and lack runtime adaptability.

Static analysis tools, such as KubeLinter [55], Polaris [56],
Checkov [57], KICS [58], and SLI-Kube [22] identify miscon-
figurations using predefined rules. Graph-based methods such
as KGSecConfig [59] and [60], [61] automate secure cluster
configuration or provide security assessment of configurations.
Generative approaches like GenKubeSec [62] and [63], [64] lever-
age large language models to identify and remediate misconfigu-
rations. Despite their utility, these tools operate pre-deployment,
leaving systems exposed to runtime threats, such as malicious
API requests targeting unused or overly permissive fields.

RBAC misconfiguration detection tools, such as EPScan [65],
focus on identifying excessive permissions but lack mechanisms

to enforce fine-grained control at runtime. These approaches
are inadequate for addressing threats where unused API fields
can be exploited.

In contrast, KubeFence bridges this gap by dynamically enforc-
ing workload-specific API policies at runtime, reducing the attack
surface through fine-grained control of resource specifications.

B. Container Security

Container-centric security solutions primarily address runtime
behaviors of containers, targeting process execution and
interactions within the host environment.

Runtime monitoring tools, such as system call monitoring [66],
detect anomalous container behavior but require extensive pre-
configuration and rely on heuristic models. ProSPEC [67] predicts
potential breaches through proactive policy enforcement. Tools
like Kub-Sec [68] and KubeArmor [69] generate security profiles
for pods, enforcing the principle of least privilege. Sysdig Falco
[70] and similar tools monitor container operations based on pre-
defined rules. Tools like eBPF [71] and Seccomp [72] can be used
to whitelist allowable syscalls from containers. However, these
approaches focus on behaviors occurring within workload contain-
ers, rather than K8s API requests. In principle, syscall whitelisting
can detect some of the malicious behaviors that may occur after
exploiting K8s vulnerabilities, e.g., executing privileged system
calls. However, it is quite challenging to define policies for finer-
grain filters on system calls, since it would need complex static/-
dynamic analysis of programs, or manual definitions. Moreover,
some malicious behaviors can still escape system call policies,
such as by abusing privileges that are available to the application.

KubeFence shifts the focus to API-level security,
complementing container security solutions. By dynamically
generating fine-grained policies tailored to workload
configurations, it secures the Kubernetes control plane against
threats arising from unused API fields and misconfigurations,
offering comprehensive protection for the Kubernetes ecosystem.

C. REST API Security

Securing REST APIs have been a key focus in web and
application security, with numerous methodologies proposed
for generating and enforcing access control policies to mitigate
unauthorized access and enhance runtime security. Languages
and frameworks like RestPL [73] facilitate precise and flexible
policy definitions for RESTful APIs, emphasizing request-level
granularity but remaining confined to static pre-deployment
configurations. Similarly, Jayathilaka et al. [74] propose
a framework for enforcing API security policies in cloud
platforms, which ensures backward compatibility and enforces

best practices during API deployment. Atlidakis et al. [75]
extend REST API security through property checking, fuzzing,
and runtime monitoring, while a more recent framework by Khan
et al. [76] focuses on detecting and mitigating vulnerabilities in
REST APIs by integrating reverse proxy techniques to identify
and prevent attacks like SQL injection and XSS in real-time.

While effective for traditional REST APIs, these solutions lack
mechanisms for dynamically adapting policies on the rich con-
figurations and nested specifications unique to Kubernetes APIs.
In contrast, KubeFence extends these principles by generating
fine-grained security policies tailored to Kubernetes workloads.

VIII. DISCUSSION

Extensibility beyond Helm. The current implementation of Kube-
Fence focuses on Helm-based workloads, using Helm templates to
generate API security policies. While effective, this limitations its
applicability to Helm deployments. However, the methodology of
analyzing manifests to derive workload-specific security policies
can be easily extended to other deployment mechanisms, such as
Kustomize or raw YAML manifests. By adapting the parsing and
policy generation processes, KubeFence can ensure consistent
security enforcement across diverse deployment workflows.

Scope of attack surface hardening. The primary objective of
KubeFence is to reduce the Kubernetes attack surface, denying
unnecessary and risky features on a per-workload basis. Despite
this, it does not claim to eliminate CVE exploitability or
misconfiguration risks entirely. The solution leverages the client
configuration space to infer which API endpoints and fields allow,
and best practices guidelines to infer which critical field to lock to
safe values. This significantly mitigates opportunities for attackers
to exploit malicious configurations irrelevant to the workload.

KubeFence is based on the idea of blocking code not used by
common workloads, which can be difficult to apply for some
users. It is possible that uncommon, but legitimate workloads
are blocked by such restrictive security policy. In general, false
positives are a challenge for any filtering approach, as the same
issue is faced by admins that manage firewalls, IDS, and similar
tools. KubeFence mitigates false positives by tailoring policies
to K8s operators, which are becoming a popular approach to
manage clusters. In such use cases, features can be restricted
with very high accuracy. However, in other use cases, it may
be difficult to anticipate which features should be allowed. Still,
some enterprises may still want to block uncommon workloads,
and enable them only after more careful scrutiny.

It is also possible that KubeFence does not restrict interfaces
that are prone to vulnerabilities, in the case that these interfaces
are used by legitimate workloads, in order not to disrupt them.
These interfaces represent a residual risk, which has to be handled
through other complementary strategies. One approach is to adopt
anomaly detection methods on API calls, which can identify
misuses and exploitation attempts of the features [77]. Another
strategy is to perform more thorough testing, such as fuzzing
[78], to identify vulnerabilities in the residual attack surface.

KubeFence does not validate the functional correctness of
Helm charts when they introduce unnecessary features or omit
required ones. Instead, it enforces the stated resource definitions
as provided. Ensuring correctness in such cases is an orthogonal
problem and fall outside the scope of KubeFence. External

YAML validation tools (e.g., KubeLinter [55], Checkov [57])
can be used before policy generation to address this problem.

Furthermore, KubeFence does not address risks arising from
compromises in the Kubernetes Operator catalog through supply
chain attacks, where malicious Operators could inject unsafe
configurations. In such cases, the responsibility for addressing
these risks lies with workload developers.

Performance Optimizations. While the overhead introduced by
KubeFence is negligible for most cluster management tasks, with
latency increases ranging from 0.0266 to 0.0846 s, it could still
impact performance-critical of real-time deployment scenarios.
The current implementation relies on a proxy Pod to intercept,
validate, and forward external API requests to the API server,
which adds network latencies. To address this, KubeFence
could be integrated directly into the API server, eliminating
the forwarding delays and leaving only the validation cost.
Although it requires modifications to the API server codebase,
this approach offers a viable path to optimize enforcement
efficiency for more demanding use cases.

IX. CONCLUSION

The extensive Kubernetes API and reliance on coarse-grained
RBAC leave clusters vulnerable to misconfigurations and CVE
exploits. This paper introduced KubeFence, a proxy-based
enforcement mechanism that enhances Kubernetes security by
automatically generating and enforcing fine-grained API security
policies tailored to workloads, effectively reducing the attack
surface and mitigating insider threats.

ACKNOWLEDGMENT

We are grateful to our shepherd François Taı̈ani and to
the anonymous reviewers for their feedback. This work was
supported by the projects GENIO (CUP B69J23005770005)
funded by MIMIT, and “IDA—Information Disorder Awareness”
funded by the European Union-Next Generation EU within the
SERICS Program through the MUR National Recovery and
Resilience Plan under Grant PE00000014.

REFERENCES

[1] Kubernetes project, “Kubernetes,” https://kubernetes.io/, 2024.
[2] Cloud Native Computing Foundation, “Annual survey,” https://www.cncf.i

o/reports/cncf-annual-survey-2023/, 2024.
[3] Kubernetes project, “Kubernetes User Case Studies,” https://kubernetes.io/

case-studies/, 2024.
[4] BlackDuck Open Hub, “Kubernetes,” https://openhub.net/p/kubernetes,

2024.
[5] C. Theisen, N. Munaiah, M. Al-Zyoud, J. C. Carver, A. Meneely, and

L. Williams, “Attack surface definitions: A systematic literature review,”
Information and Software Technology, vol. 104, pp. 94–103, 2018.

[6] Benjamin Grap, and Manoj Ahuje, “CrowdStrike discovers
first ever dero cryptojacking campaign targeting Kubernetes,”
https://www.crowdstrike.com/en- us/blog/crowdstrike-discovers
-first-ever-dero-cryptojacking-campaign-targeting-kubernetes/, 2024.

[7] N. Yang, W. Shen, J. Li, X. Liu, X. Guo, and J. Ma, “Take over
the whole cluster: Attacking Kubernetes via excessive permissions of
third-party applications,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2023, pp. 3048–3062.

[8] US Cybersecurity and Infrastructure Security Agency, “Shifting the Balance
of Cybersecurity Risk: Principles and Approaches for Secure by Design
Software,” https://www.cisa.gov/resources-tools/resources/secure-by-design,
CISA, Tech. Rep., 2023.

[9] UK National Cyber Security Centre (NCSC), “Secure design principles:
Guides for the design of cyber secure systems,” https://www.ncsc.gov
.uk/collection/cyber-security-design-principles, NCSC, Tech. Rep., 2020.

https://kubernetes.io/
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://kubernetes.io/case-studies/
https://kubernetes.io/case-studies/
https://openhub.net/p/kubernetes
https://www.crowdstrike.com/en-us/blog/crowdstrike-discovers-first-ever-dero-cryptojacking-campaign-targeting-kubernetes/
https://www.crowdstrike.com/en-us/blog/crowdstrike-discovers-first-ever-dero-cryptojacking-campaign-targeting-kubernetes/
https://www.cisa.gov/resources-tools/resources/secure-by-design
https://www.ncsc.gov.uk/collection/cyber-security-design-principles
https://www.ncsc.gov.uk/collection/cyber-security-design-principles

[10] European Commission, “EU Cyber Resilience Act,” h t t p s :
//digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act, 2024.

[11] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp.
1278–1308, 1975.

[12] R. E. Smith, “A contemporary look at Saltzer and Schroeder’s 1975 design
principles,” IEEE Security & Privacy, vol. 10, no. 6, pp. 20–25, 2012.

[13] Kubernetes, “Using RBAC Authorization,” https://kubernetes.io/docs/r
eference/access-authn-authz/rbac/, 2024.

[14] Kubernetes, “Official CVE Feed,” https://kubernetes.io/docs/reference
/issues-security/official-cve-feed, 2024.

[15] Kubernetes, “Operator Pattern,” https://kubernetes.io/docs/concepts/ex
tend-kubernetes/operator/, 2024.

[16] A. Handy, “Build Your Kubernetes Operator with the Right Tool,”
https://www.redhat.com/en/blog/build-your-kubernetes-operator-with-t
he-right-tool, 2021.

[17] Cloud Native Computing Foundation, “Artifact Hub,” https://artifacthub.io/,
2024.

[18] Red Hat, “OperatorHub,” https://operatorhub.io/, 2024.
[19] A. Zerouali, R. Opdebeeck, and C. De Roover, “Helm charts for

Kubernetes applications: Evolution, outdatedness and security risks,” in
IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), 2023, pp. 523–533.

[20] S. Henning, B. Wetzel, and W. Hasselbring, “Reproducible benchmarking
of cloud-native applications with the kubernetes operator pattern,” ””, 2021.

[21] NSA, CISA, “Kubernetes Hardening Guide,” https://www.nsa.gov/Pres
s-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kub
ernetes-hardening-guidance/, NSA, CISA, Tech. Rep., 2022.

[22] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security
Misconfigurations in Open Source Kubernetes Manifests: An Empirical
Study,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4, May 2023.
[Online]. Available: https://doi.org/10.1145/3579639

[23] Kubernetes project, “Kubernetes e2e tests,” https://github.com/kuberne
tes/kubernetes/tree/master/test/e2e, 2024.

[24] ——, “CRD Conversion Webhook e2e test,” https://github.com/kuber
netes/kubernetes/blob/master/test/e2e/apimachinery/crd conversion w
ebhook.go, 2024.

[25] M. Gasch, “Go 1.20 Coverage Profiling Support for Kubernetes Apps,”
https://www.mgasch.com/2023/02/go-e2e/, 2024.

[26] CloudSecDocs, “Kubernetes Threat Model,” https://cloudsecdocs.com
/containers/theory/threats/k8s threat model/#threat-actors, 2024.

[27] Kubernetes project, “Pod security standards,” https://kubernetes.io/docs
/concepts/security/pod-security-standards, 2024.

[28] G. Liu, X. Gao, H. Wang, and K. Sun, “Exploring the unchartered space
of container registry typosquatting,” in 31st USENIX Security Symposium
(USENIX Security), 2022, pp. 35–51.

[29] A. Cortesi, M. Hils, and T. Kriechbaumer, “mitmproxy,”
https://mitmproxy.org/, 2024.

[30] Artifact Hub, “PostgreSQL Operator,” https://artifacthub.io/packages/he
lm/bitnami/postgresql, 2024.

[31] ——, “Nginx Operator,” https://artifacthub.io/packages/helm/bitnami/nginx,
2024.

[32] ——, “MLflow Operator,” https://artifacthub.io/packages/helm/commu
nity-charts/mlflow, 2024.

[33] ——, “RabbitMQ Operator,” https://artifacthub.io/packages/helm/bitna
mi/rabbitmq, 2024.

[34] ——, “SonarQube Operator,” https://artifacthub.io/packages/helm/ope
nshift-bootstraps/sonarqube, 2024.

[35] NVD, “CVE-2020-15257,” https://nvd.nist.gov/vuln/detail/cve-2020-15257,
2024.

[36] ——, “CVE-2020-8554,” https://nvd.nist.gov/vuln/detail/cve-2020-8554,
2024.

[37] ——, “CVE-2023-3676,” https://nvd.nist.gov/vuln/detail/cve-2023-3676,
2024.

[38] ——, “CVE-2017-1002101,” https://nvd.nist.gov/vuln/detail/cve-2017-1
002101, 2024.

[39] ——, “CVE-2019-11253,” https://nvd.nist.gov/vuln/detail/cve-2019-11253,
2024.

[40] ——, “CVE-2021-25741,” https://nvd.nist.gov/vuln/detail/cve-2021-25741,
2024.

[41] ——, “CVE-2023-2431,” https://nvd.nist.gov/vuln/detail/cve-2023-2431,
2024.

[42] ——, “CVE-2021-21334,” https://nvd.nist.gov/vuln/detail/cve-2021-21334,
2024.

[43] A. Suda, “Don’t use net=host,” https://medium.com/nttlabs/dont-use-h
ost-network-namespace-f548aeeef575, 2020.

[44] Kubernetes blog, “Fixing the Subpath Volume Vulnerability in Kubernetes,”
https://kubernetes.io/blog/2018/04/04/fixing-subpath-volume-vulnerabi
lity, 2018.

[45] Akamai, “Can’t Be Contained: Finding a Command Injection Vulnerability
in Kubernetes,” https://www.akamai.com/blog/security-research/kubern
etes-critical-vulnerability-command-injection, 2023.

[46] Palo Alto Networks, “Protecting Against an Unfixed Kubernetes MITM
Vulnerability,” https://unit42.paloaltonetworks.com/cve-2020-8554/, 2020.

[47] GitHub, “GitHub Advisory Database,” https://github.com/advisories, 2024.
[48] J. Liggitt, “audit2rbac,” https://github.com/liggitt/audit2rbac, 2024.
[49] M. Barletta, L. De Simone, R. D. Corte, and C. Di Martino, “Failover timing

analysis in orchestrating container-based critical applications,” in 19th
European Dependable Computing Conference (EDCC), 2024, pp. 81–84.

[50] Kubernetes, “Kubernetes scalability and performance SLIs/SLOs,”
https://github.com/kubernetes/community/blob/master/sig-scalability/s
los/slos.md, 2024.

[51] S. I. Shamim, “Mitigating security attacks in Kubernetes manifests for
security best practices violation,” in 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2021, pp. 1689–1690.

[52] D. B. Bose, A. Rahman, and S. I. Shamim, “‘under-reported’ security
defects in Kubernetes manifests,” in IEEE/ACM 2nd International
Workshop on Engineering and Cybersecurity of Critical Systems
(EnCyCriS), 2021, pp. 9–12.

[53] Q. Xu, Y. Gao, and J. Wei, “An Empirical Study on Kubernetes Operator
Bugs,” in 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), 2024, pp. 1746–1758.

[54] M. S. I. Shamim, F. A. Bhuiyan, and A. Rahman, “XI Commandments of
Kubernetes Security: A Systematization of Knowledge related to Kubernetes
Security Practices,” IEEE Secure Development (SecDev), pp. 58–64, 2020.

[55] StackRox, “KubeLinter,” https://kubelinter.io, 2024.
[56] Fairwinds, “Polaris,” https://www.fairwinds.com/polaris, 2024.
[57] Prisma Cloud, “Checkov,” https://www.checkov.io, 2024.
[58] Checkmarkx, “KIKS,” https://kics.io, 2024.
[59] M. U. Haque, M. M. Kholoosi, and M. A. Babar, “KGSecConfig: A

Knowledge Graph Based Approach for Secured Container Orchestrator
Configuration,” in IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2022, pp. 420–431.

[60] A. Blaise and F. Rebecchi, “Stay at the Helm: secure Kubernetes
deployments via graph generation and attack reconstruction,” in IEEE 15th
International Conference on Cloud Computing (CLOUD), 2022, pp. 59–69.

[61] G. Dell’Immagine, J. Soldani, and A. Brogi, “KubeHound: Detecting
Microservices’ Security Smells in Kubernetes Deployments,” Future
Internet, vol. 15, no. 7, 2023.

[62] E. Malul, Y. Meidan, D. Mimran, Y. Elovici, and A. Shabtai, “GenKubeSec:
LLM-Based Kubernetes Misconfiguration Detection, Localization,
Reasoning, and Remediation,” arXiv preprint arXiv:2405.19954, 2024.

[63] F. Minna, F. Massacci, and K. Tuma, “Analyzing and Mitigating (with
LLMs) the Security Misconfigurations of Helm Charts from Artifact Hub,”
arXiv preprint arXiv:2403.09537, 2024.

[64] G. Lanciano, M. Stein, V. Hilt, T. Cucinotta et al., “Analyzing Declarative
Deployment Code with Large Language Models,” CLOSER, vol. 2023,
pp. 289–296, 2023.

[65] Y. Gu, X. Tan, Y. Zhang, S. Gao, and M. Yang, “EPScan: Automated
Detection of Excessive RBAC Permissions in Kubernetes Applications,”
in IEEE Symposium on Security and Privacy (SP), 2025.

[66] H. Kitahara, K. Gajananan, and Y. Watanabe, “Highly-scalable container
integrity monitoring for large-scale Kubernetes cluster,” in IEEE
International Conference on Big Data (Big Data), 2020, pp. 449–454.

[67] H. Kermabon-Bobinnec, M. Gholipourchoubeh, S. Bagheri, S. Majumdar,
Y. Jarraya, M. Pourzandi, and L. Wang, “Prospec: Proactive security
policy enforcement for containers,” in 12th ACM Conference on Data
and Application Security and Privacy (CODASPY), 2022, pp. 155–166.

[68] H. Zhu and C. Gehrmann, “Kub-Sec, an automatic Kubernetes cluster
AppArmor profile generation engine,” in 14th International Conference on
COMmunication Systems & NETworkS (COMSNETS), 2022, pp. 129–137.

[69] Cloud Native Community Group, “KubeArmor,” https://kubearmor.io, 2024.
[70] Sysdig, “Falco,” https://sysdig.com/opensource/falco/, 2024.
[71] eBPF.io authors, “eBPF,” https://ebpf.io/, 2025.
[72] J. Edge, “A seccomp overview,” https://lwn.net/Articles/656307/, 2015.
[73] Y. Luo, H. Zhou, Q. Shen, A. Ruan, and Z. Wu, “Restpl: Towards a

request-oriented policy language for arbitrary restful apis,” in IEEE
International Conference on Web Services (ICWS), 2016, pp. 666–671.

[74] H. Jayathilaka, C. Krintz, and R. Wolski, “Rest web service maintenance
through api policy enforcement,” UC Santa Barbara tech report, Tech.
Rep., 2014.

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/issues-security/official-cve-feed
https://kubernetes.io/docs/reference/issues-security/official-cve-feed
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://www.redhat.com/en/blog/build-your-kubernetes-operator-with-the-right-tool
https://www.redhat.com/en/blog/build-your-kubernetes-operator-with-the-right-tool
https://artifacthub.io/
https://operatorhub.io/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/
https://doi.org/10.1145/3579639
https://github.com/kubernetes/kubernetes/tree/master/test/e2e
https://github.com/kubernetes/kubernetes/tree/master/test/e2e
https://github.com/kubernetes/kubernetes/blob/master/test/e2e/apimachinery/crd_conversion_webhook.go
https://github.com/kubernetes/kubernetes/blob/master/test/e2e/apimachinery/crd_conversion_webhook.go
https://github.com/kubernetes/kubernetes/blob/master/test/e2e/apimachinery/crd_conversion_webhook.go
https://www.mgasch.com/2023/02/go-e2e/
https://cloudsecdocs.com/containers/theory/threats/k8s_threat_model/#threat-actors
https://cloudsecdocs.com/containers/theory/threats/k8s_threat_model/#threat-actors
https://kubernetes.io/docs/concepts/security/pod-security-standards
https://kubernetes.io/docs/concepts/security/pod-security-standards
https://mitmproxy.org/
https://artifacthub.io/packages/helm/bitnami/postgresql
https://artifacthub.io/packages/helm/bitnami/postgresql
https://artifacthub.io/packages/helm/bitnami/nginx
https://artifacthub.io/packages/helm/community-charts/mlflow
https://artifacthub.io/packages/helm/community-charts/mlflow
https://artifacthub.io/packages/helm/bitnami/rabbitmq
https://artifacthub.io/packages/helm/bitnami/rabbitmq
https://artifacthub.io/packages/helm/openshift-bootstraps/sonarqube
https://artifacthub.io/packages/helm/openshift-bootstraps/sonarqube
https://nvd.nist.gov/vuln/detail/cve-2020-15257
https://nvd.nist.gov/vuln/detail/cve-2020-8554
https://nvd.nist.gov/vuln/detail/cve-2023-3676
https://nvd.nist.gov/vuln/detail/cve-2017-1002101
https://nvd.nist.gov/vuln/detail/cve-2017-1002101
https://nvd.nist.gov/vuln/detail/cve-2019-11253
https://nvd.nist.gov/vuln/detail/cve-2021-25741
https://nvd.nist.gov/vuln/detail/cve-2023-2431
https://nvd.nist.gov/vuln/detail/cve-2021-21334
https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575
https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575
https://kubernetes.io/blog/2018/04/04/fixing-subpath-volume-vulnerability
https://kubernetes.io/blog/2018/04/04/fixing-subpath-volume-vulnerability
https://www.akamai.com/blog/security-research/kubernetes-critical-vulnerability-command-injection
https://www.akamai.com/blog/security-research/kubernetes-critical-vulnerability-command-injection
https://unit42.paloaltonetworks.com/cve-2020-8554/
https://github.com/advisories
https://github.com/liggitt/audit2rbac
https://github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md
https://github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md
https://kubelinter.io
https://www.fairwinds.com/polaris
https://www.checkov.io
https://kics.io
http://arxiv.org/abs/2405.19954
http://arxiv.org/abs/2403.09537
https://kubearmor.io
https://sysdig.com/opensource/falco/
https://ebpf.io/
https://lwn.net/Articles/656307/

[75] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking security
properties of cloud service rest apis,” in IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST), 2020, pp. 387–397.

[76] M. S. Khan, R. S. F. Siam, and M. A. Adnan, “A framework for checking
and mitigating the security vulnerabilities of cloud service restful apis,”
Service Oriented Computing and Applications, pp. 1–22, 2024.

[77] Kubescape, “Behavioral Cloud Application Detection & Response,”
https://www.armosec.io/platform/cloud-detection-and-response/, 2024.

[78] P. V. Dommaraju, “Erroneous Kubernetes Object Generation using Structure-
aware Fuzzing,” Ph.D. dissertation, Universiteit van Amsterdam, 2024.

https://www.armosec.io/platform/cloud-detection-and-response/

	Introduction
	Background
	Kubernetes
	Kubernetes RBAC
	K8s Operators and Helm templates

	Motivation
	Misconfigurations of a K8s cluster
	Software Vulnerabilities in the K8s codebase
	Attack Surface across Workloads
	Threat Model

	Challenges
	KubeFence Design
	Generation of Security Policies
	Enforcement of Security Policies

	Experimental Analysis
	Experimental Setup
	Quantifying K8s Attack Surface Exposure and Reduction
	Catalog of Malicious Specifications
	Kubefence Effectiveness against RBAC
	KubeFence Overhead

	Related Work
	Static Analysis
	Container Security
	REST API Security

	Discussion
	Conclusion
	References

