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Abstract—The Number Theoretic Transform (NTT) is an
indispensable tool for computing efficient polynomial multiplica-
tions in post-quantum lattice-based cryptography. It has strong
resemblance with the Fast Fourier Transform (FFT), which is
the most widely used algorithm in digital signal processing.
In this work, we demonstrate a unified hardware accelerator
supporting both 512-point complex FFT as well as 256-point
NTT for the recently standardized NIST post-quantum key en-
capsulation and digital signature algorithms ML-KEM and ML-
DSA respectively. Our proposed architecture effectively utilizes
the arithmetic circuitry required for complex FFT, and the only
additional circuits required are for modular reduction along with
modifications in the control logic. Our implementation achieves
performance comparable to state-of-the-art ML-KEM / ML-DSA
NTT accelerators on FPGA, thus demonstrating how an FFT
accelerator can be augmented to support NTT and the unified
hardware can be used for both digital signal processing and post-
quantum lattice-based cryptography applications.

Index Terms—post-quantum cryptography, Number Theoretic
Transform (NTT), Fast Fourier Transform (FFT), FPGA.

I. INTRODUCTION

Modern public key cryptography, based on the intractability
of integer factorization and discrete logarithms, is vulnerable
to future quantum adversaries capable of realizing Shor’s
algorithm [1] in large-scale fault-tolerant quantum comput-
ers. Therefore, recent advances in quantum computing tech-
nologies have motivated the design and implementation of
new quantum-secure cryptographic algorithms, also known
as post-quantum cryptography. The U.S. National Institute
of Standards and Technology (NIST) has been driving the
standardization of post-quantum cryptography (PQC) since
2016 [2]. After several rounds of theoretical analysis, security
evaluation and optimized implementation [3]–[5], NIST has
selected CRYSTALS-Kyber [6] and CRYSTALS-Dilithium [7]
as its primary recommendations for quantum-secure key en-
capsulation mechanism (KEM) and digital signature algorithm
(DSA) respectively. These algorithms have also been included
in the recently announced NIST PQC standards ML-KEM [8]
and ML-DSA [9] respectively.
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Both ML-KEM (Kyber) and ML-DSA (Dilithium) are
lattice-based cryptographic algorithms based on the hardness
of the Module-LWE (Learning With Errors) problem [10].
They involve the computation of several polynomial multipli-
cations which can be efficiently implemented using the Num-
ber Theoretic Transform (NTT). The NTT is a generalization
of the widely used Fast Fourier Transform (FFT) [11]. All
arithmetic in NTT is performed with integers in a finite field,
while FFT requires the use of complex numbers.

Previous work has presented hardware implementations of
NTT using custom accelerators as well as re-purposing ex-
isting cryptographic co-processors [12]–[21]. However, there
has been little work in exploring how FFT hardware can be
enhanced to implement NTT. Recently, [22] has proposed a
high-level synthesis framework for polynomial multiplication
using pipelined FFT architectures.

In this work, we present the FPGA-based implementation of
a unified hardware accelerator supporting fixed-point complex
FFT along with NTT for ML-KEM and ML-DSA parameters.
We leverage the similarity between FFT and NTT butterfly op-
erations to demonstrate that a traditional fixed-point complex
FFT hardware accelerator can be augmented to achieve ML-
KEM and ML-DSA NTT performance comparable to state-of-
the-art custom NTT accelerators at the cost of ≈ 62% more
LUTs, ≈ 26% more FFs, and no additional DSPs and BRAMs
compared to the baseline FFT. Our proposed unified architec-
ture will enable digital communication systems, e.g., wireless
sensor nodes, which use FFT accelerators for data processing,
to efficiently upgrade their hardware and also support PQC
NTT for quantum-secure cryptographic protocols such as key
encapsulation and digital signature-based authentication.

II. BACKGROUND

The FFT is an efficient algorithm used to compute the
discrete Fourier Transform of sequences in digital signal
processing, e.g., conversion from time domain to frequency
domain. Given an N -length sequence of complex numbers
{x0, x1, · · · , xN−1 }, its FFT is given by another N -length
sequence of complex numbers {X0, X1, · · · , XN−1 } where

Xk =

N−1∑
m=0

xm ωmk
N for k ∈ { 0, 1, · · · , N − 1 }

Here, ωN = exp(−2πj/N) is the N -th complex root of unity
(j =

√
−1), and its powers ωmk

N are known as twiddle factors.

ar
X

iv
:2

50
4.

11
12

4v
1 

 [
cs

.C
R

] 
 1

5 
A

pr
 2

02
5

https://dx.doi.org/10.1109/ICASSP49660.2025.10889132


Similarly, given a polynomial a(x) ∈ Zq[x]/(x
N + 1) with

coefficients a(x) = (a0, a1, · · · , an−1), its NTT representation
is given by â(x) = (â0, â1, · · · , âN−1) where

âk =

N−1∑
m=0

am ζmk
N mod q for k ∈ { 0, 1, · · · , N − 1 }

Here, ζN is the N -th primitive root of unity in the ring Zq , that
is, ζNN = 1mod q and ζkN ̸= 1mod q for k ̸= N , and its powers
ζmk
N are also known as twiddle factors. The modulus q must

be chosen to be a prime such that q ≡ 1modN in order to
have elements of order N . Furthermore, to support negative-
wrapped convolution [12] for polynomial multiplication, the
modulus must also satisfy q ≡ 1mod 2N so that both the
N -th and 2N -th primitive roots of unity modulo q exist.

Both FFT and NTT algorithms exploit the cyclic properties
of ωN and ζN respectively to efficiently compute the transform
using a series of butterfly operations. There are two butterfly
configurations – Cooley-Tukey (or Decimation-in-Time) and
Gentleman-Sande (or Decimation-in-Frequency). In this work,
we implement the former which computes (a ± ω × b) and
(a ± ζ × b) mod q for FFT and NTT respectively, where
a and b are inputs to the butterfly, and ω and ζ denote the
twiddle factors. The overall FFT or NTT computation requires
N
2 log2N butterflies equally distributed across log2N stages.

For ML-DSA (Dilithium), the NTT parameters are N = 256
and q = 8380417 = 223−213+1. Therefore, it involves NTT
computation with 256 23-bit polynomial coefficients and ζN =
3073009. For ML-KEM (Kyber), the NTT parameters are N =
256 and q = 3329 = 13 · 28 + 1. However, q ̸≡ 1mod 2N
in this case, so the input polynomial is interpreted as 128
pairs of coefficients. Therefore, it involves NTT computation
with 128 pairs of 12-bit polynomial coefficients and ζN = 17.
Further mathematical details of Dilithium and Kyber NTTs are
available in [7], [9] and [6], [8] respectively.

III. HARDWARE ARCHITECTURE

To implement our unified accelerator, we begin with the
FFT hardware as baseline and then include additional logic
to add support for ML-KEM and ML-DSA NTTs. In this
work, we consider 512-point complex FFT with signed inputs
in 32-bit fixed-point Q16.15 format, that is, each of real and
imaginary parts has 1 sign bit, 16 integer bits and 15 fractional
bits. The complex twiddle factors ω (where |ω | ≤ 1) are
represented in 32-bit fixed-point Q1.30 format, that is each of
real and imaginary parts has 1 sign bit, 1 integer bit and 30
fractional bits. All negative quantities are assumed to be stored
in standard two’s complement format. Now, the complex FFT
butterfly expression can be expanded as:

a± ω × b = (aR + jaI)± (ωR + jωI)× (bR + jbI)

= (aR ± ωRbR ∓ ωIbI) + j(aI ± ωRbI ± ωIbR)

where aR, bR and ωR are the real parts of a, b and ω
respectively, and aI , bI and ωI are their complex parts re-
spectively. This requires four 32-bit fixed-point multiplications
and several additions / subtractions, as shown in Fig. 1a. The

Fig. 1. Overview of butterfly computations in (a) FFT, (b) ML-KEM
(CRYSTALS-Kyber) NTT and (c) ML-DSA (CRYSTALS-Dilithium) NTT.

Fig. 2. Design of 32-bit Karatsuba multiplier using 16-bit multipliers.

Fig. 3. Top-level architecture of the proposed unified accelerator.

complete 512-point FFT computation involves 9 stages with
256 butterflies per stage. Due the cyclic properties of twiddle
factors, 512 complex signed 32-bit twiddle factors are required
for the 512-point FFT computation.

Next, we analyze the computational requirements of ML-
KEM and ML-DSA NTT butterfly operations. For ML-KEM
butterfly (a±ζ×b) mod q, all inputs and outputs are unsigned
12-bit integers with arithmetic modulo q = 3329, as shown in
Fig. 1b. Each ML-KEM NTT involves 7 stages with 64 pairs
of identical butterflies per stage. Total 128 unsigned 12-bit
integer twiddle factors are required for the NTT. For ML-DSA
butterfly (a±ζ×b) mod q, all inputs and outputs are unsigned
23-bit integers with arithmetic modulo q = 8380417, as
shown in Fig. 1c. Each ML-DSA NTT involves 8 stages with



Fig. 4. Detailed architecture of the proposed unified butterfly unit and memory organization for FFT and ML-KEM (Kyber) + ML-DSA (Dilithium) NTT.
The pipeline stages are shown as green dashed lines. The sub-modules of the unified butterfly unit used for FFT only, FFT + ML-DSA NTT, ML-DSA NTT
only, ML-KEM NTT only and all NTT + FFT are shown in yellow, green, blue, red and white respectively.

128 butterflies per stage. Total 256 unsigned 23-bit integer
twiddle factors are required for the NTT. We observe that
ML-KEM NTT requires 12-bit multiplications while ML-DSA
NTT requires 23-bit multiplications. Therefore, we effectively
utilize the arithmetic circuits in the 32-bit fixed-point complex
FFT by implementing its 32-bit multipliers in Karatsuba
configuration [23] with several 16-bit multipliers, as shown
in Fig. 2. Similarly, 32-bit additions / subtractions are split
into pairs of 16-bit additions / subtractions with appropriate
carry / borrow propagation logic. Butterfly inputs in ML-
KEM and ML-DSA NTT are zero-padded to 16-bit and 32-
bit respectively for the arithmetic operations. This approach
requires no additional arithmetic modules except the modular
reduction circuits specific to NTT. While Barrett reduction [24]
is used to reduce the multiplication outputs, simple conditional
subtraction / addition can be used to reduce the addition /
subtraction outputs.

Finally, we analyze the memory organization required by
the FFT and the two types of NTT. The FFT inputs are 512
complex numbers stored as 1024 elements of 32 bits each.
The ML-KEM NTT inputs are 256 integers stored as 256
elements of 12 bits each. The ML-DSA inputs are 256 integers
stored as 256 elements of 23 bits each. Therefore, ML-DSA
elements can be accommodated in the same word size as FFT
elements after zero padding to 32 bits, while pairs of ML-
KEM elements can be accommodated in the same word size
as single FFT elements after zero padding to pairs of 16 bits.
Similar approach can also be followed for storing the FFT and
NTT twiddle factors. Again, no additional memory is required
to support NTT beyond the requirements of FFT.

The top-level architecture of the unified accelerator is shown
in Fig. 3. Apart from the unified butterfly unit, it contains a
data RAM bank, a twiddle factor ROM and control circuitry.

The butterfly inputs and outputs follow an in-place data flow.
The data RAM bank is implemented as a set of eight 256
× 16-bit true-dual-port memories. The twiddle factor ROM is
implemented as a 1024 × 32-bit dual-port read-only memory.
The unified butterfly unit is implemented with a 9-stage
internal pipeline for improved performance. It consists of four
instances of the 32-bit unsigned Karatsuba multiplier described
earlier. For signed multiplication in FFT, we include 32-bit and
64-bit two’s complement converter circuits respectively before
and after each 32-bit unsigned multiplier. Overall, our unified
accelerator can execute either 1 FFT butterfly or 2 parallel ML-
DSA NTT butterflies or 4 parallel ML-KEM NTT butterflies.

Detailed architecture of the accelerator with internal cir-
cuitry of the unified butterfly is shown in Fig. 4. It has
three operating modes (indicated by a 2-bit external input):
512-point FFT, NTT for ML-KEM (CRYSTALS-Kyber) and
NTT for ML-DSA (CRYSTALS-Dilithium). The 9-stage-
pipelined unified butterfly arithmetic unit has twelve 16-
bit inputs and eight 16-bit outputs. The mod kyber mul
and mod dilithium mul units are used to perform Bar-
rett reduction after multiplication in the NTT modes. The
mod kyber add/sub and mod dilithium add/sub are used to
reduce the addition/subtraction outputs in the NTT modes.
Clearly, apart from modular reduction circuits and multiplex-
ors, all other circuitry in the unified FFT + NTT butterfly unit
are those already required for FFT, thus highlighting efficient
hardware resource sharing in our proposed architecture.

IV. IMPLEMENTATION RESULTS

The proposed unified accelerator is implemented on a Xilinx
Zynq UltraScale+ MPSoC ZCU104 Evaluation Board with an
XCZU7EV-2FFVC1156E device [25] and our experimental
setup is shown in Fig. 5. Verilog HDL (Hardware Description



Fig. 5. Experimental validation setup with AMD Xilinx Zynq UltraScale+
ZCU104 MPSoC FPGA board and PYNQ interface.

TABLE I
ACCELERATOR IMPLEMENTATION RESULTS FROM ZCU104

(ZYNQ ULTRASCALE+ AT OPERATING FREQUENCY 400 MHZ)

Design Mode LUT / FF / DSP / BRAM Cycle Latency
Count (µs)

I ML-KEM 3716 / 2400 / 12 / 5 322 0.80
I ML-DSA 3716 / 2400 / 12 / 5 624 1.56
I FFT 3716 / 2400 / 12 / 5 2430 6.08
II FFT 2300 / 1898 / 12 / 5 2430 6.08
III ML-DSA 2287 / 1924 / 6 / 5 624 1.56
IV ML-KEM 1973 / 1246 / 4 / 4.5 322 0.80
V ML-KEM 3013 / 1828 / 6 / 5 322 0.80
V ML-DSA 3013 / 1828 / 6 / 5 624 1.56

Language) is used to design the hardware accelerator, and
Xilinx Vivado Design Suite version ML 2022.2 is utilized
for FPGA synthesis, implementation and simulation. Our
experimental validation framework interfaces the proposed
accelerator with an additional bank of ROMs populated with
test vectors corresponding to expected outputs at the end of all
stages of the FFT or NTT computations. These test vectors are
generated using a Python script based on the twiddle factors
and random input sequences / polynomials. The validation
framework also includes additional test logic to compare the
data stored in the data RAM bank row-wise with the golden
data stored in the ROMs. Five variants of the accelerator
design are implemented: (I) FFT + ML-DSA NTT + ML-KEM
NTT, (II) baseline FFT, (III) baseline ML-DSA, (IV) baseline
ML-KEM, and (V) ML-DSA + ML-KEM. These are used to
study the trade-offs associated with different levels of func-
tional unification in the same underlying architecture. FPGA
implementation results (resource utilization and performance
metrics) for all five variants are shown in Table I.

Design II (our baseline FFT) follows the architectural
blueprint of the Xilinx FFT IP [26]. Their primary difference is
that Design II stores the inputs / outputs (4 KB) in 4 BRAMs
compared to 2 BRAMs in [26], allowing multiple simultaneous
reads / writes per cycle. We leverage this flexibility to get
better performance metrics for our FFT baseline, as well
as better architectural consistency with our NTT baselines,
enabling fair comparison across design variants at the cost of
higher BRAM usage. Compared to Design II, Design I (FFT +
ML-DSA NTT + ML-KEM NTT) requires ≈ 62% more LUTs
and ≈ 26% more FFs. The number of DSPs and BRAMs

remains unchanged. It is noteworthy that our careful design
of the pipeline stages in the unified butterfly unit ensures that
there is no reduction in the operating frequency (400 MHz
for all the variants) due to the additional modular reduction
circuitry. This shows the trade-off between additional NTT
functionality and resource utilization. Compared to Design V
(ML-KEM + ML-DSA), Design I requires 6 additional DSPs
to accommodate two more 32-bit Karatsuba multipliers for
FFT along with ≈ 23% more LUTs and ≈ 31% more FFs.

Table II compares our unified FFT + ML-KEM / ML-DSA
NTT accelerator (Design I) with state-of-the-art FPGA-based
NTT hardware accelerators for ML-KEM and/or ML-DSA.
Despite supporting additional functionality, our implementa-
tion clearly achieves performance comparable to prior work
in similar UltraScale+ FPGA platforms. The overheads in
terms of LUTs, FFs, DSPs and BRAMs are primarily due
to the additional circuitry for 512-point complex FFT which
is not supported by any of the previous implementations. In
particular, our unified accelerator requires 12 DSPs in order
to support the fixed-point complex arithmetic for FFT and 5
BRAMs in order to store the complex inputs / outputs and
twiddle factors for FFT. Our implementation demonstrates the
efficiency and flexibility of the proposed unified FFT + NTT
architecture which allows the same hardware to be used for
both digital signal processing as well as post-quantum lattice-
based cryptography applications.

V. CONCLUSIONS AND FUTURE WORK

The Number Theoretic Transform (NTT) is an indispensable
tool for computing efficient polynomial multiplications in post-
quantum lattice-based cryptography. It has strong resemblance
with the Fast Fourier Transform (FFT) which is the most
widely used algorithm for frequency-domain analysis of se-
quences in digital signal processing. Following this observa-
tion, we demonstrate a unified hardware accelerator supporting
both 512-point complex FFT as well as 256-point NTT for
NIST post-quantum cryptography standards ML-KEM and
ML-DSA. Our proposed architecture effectively utilizes the
arithmetic circuitry and memory organization required for
FFT and re-purposes them for ML-KEM and ML-DSA NTT
computations. Our FPGA-based implementations achieve per-
formance comparable to state-of-the-art ML-KEM / ML-DSA
NTT accelerators, thus demonstrating the efficiency of our
design. Extension of our proposed architecture to support NTT
for emerging applications of lattice-based cryptography such
as homomorphic encryption [27] as well as efficient ASIC
implementations will be explored in future work.
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TABLE II
COMPARISON WITH STATE-OF-THE-ART FPGA-BASED FFT, ML-KEM NTT AND ML-DSA NTT HARDWARE IMPLEMENTATIONS

Design Supported Algorithms FPGA FPGA Resource Utilization Mode Freq. Cycle Latency
Platform LUT / FF / DSP / BRAM (MHz) Count (µs)

ISCAS ’21 [15] ML-KEM NTT only Artix-7 609 / 640 / 2 / 2 ML-KEM 257 490 1.9
ARITH ’21 [16] ML-KEM NTT only Artix-7 801 / 717 / 4 / 2 ML-KEM 222 324 1.46

CARDIS ’22 [17] ML-DSA NTT only Artix-7 524 / 759 / 17 / 1 ML-DSA 311 533 1.71
TCAS-I ’23 [18] ML-DSA NTT only Zynq UltraScale+ 2759 / 2037 / 4 / 7 ML-DSA 391 − −

TCAS-I ’23 [19] ML-KEM / ML-DSA NTT Zynq UltraScale+ 3487 / 1918 / 4 / 1
ML-KEM

270
− −

ML-DSA − −

TVLSI ’24 [20]
ML-KEM NTT only

Kintex UltraScale
1914 / 2249 / 3 / 3 ML-KEM 275 − −

ML-DSA NTT only 5478 / 4955 / 12 / 6 ML-DSA 250 284 1.14

VLSID ’24 [21] ML-KEM / ML-DSA NTT Zynq UltraScale+ 2893 / 2356 / 4 / 4.5
ML-KEM

342
224 0.65

ML-DSA 512 1.50
Xilinx FFT IP [26] 512-point Complex FFT only Zynq UltraScale+ 1462 / 2269 / 12 / 3 FFT 456 3548 7.78

This Work
(Design I)

512-point Complex FFT +
ML-KEM / ML-DSA NTT Zynq UltraScale+ 3716 / 2400 / 12 / 5

ML-KEM
400

322 0.80
ML-DSA 624 1.56

FFT 2430 6.08
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