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Abstract. This article presents an encryption scheme based on the small Ree groups. We propose utilizing the
small Ree group structure to enhance the overall security parameters of the encryption scheme. By extending the
logarithmic signature to encompass the entire group and modifying the encryption algorithm, we have developed
robust protection against sequential key recovery attacks.
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INTRODUCTION

Currently, most public cryptographic primitives rely on the presumed
intractability of specific mathematical problems in very large finite abelian
groups. These hard problems include factoring large integers, solving discrete
logarithm problems over finite fields or elliptic curves, and similar challenges.
However, with the development of quantum algorithms capable of factoring large
integers and solving discrete logarithm problems, most established public-key
cryptosystems will become vulnerable once practical quantum computers are
implemented.

Since the 1980s, researchers have been developing cryptographic schemes
based on difficult problems in group theory. In [1], an approach to design public-
key cryptosystems based on groups and semigroups with undecidable word
problems was introduced. This approach was further explored and enhanced in
[2-6]. The algebraic properties of logarithmic signatures and related
cryptosystems were specifically examined in [7,8]. In 2002, Magliveras et al. [9]
introduced the public key cryptosystems MST1 and MST2. Subsequently,
Lempken et al. [10] utilized logarithmic signatures and random covers to
construct the generic MST3 encryption scheme.

MST cryptosystems have not demonstrated vulnerability to quantum

algorithm attacks, positioning them as viable candidates for post-quantum public-



key cryptography. A comprehensive analysis of this resistance is presented in
[13]. The classical MST3 cryptosystem employs logarithmic signature
computations in the center of the Suzuki group, which has a relatively large
center. Implementations of MST3 cryptosystems using groups of automorphisms
of the Suzuki, Hermitian, and Ree functional fields, as well as generalized Suzuki
groups, are proposed in [21-23]. These works demonstrate that efficient
encryption schemes with high security can be constructed using logarithmic
signatures on multi-parameter groups of large orders.

The small Ree group offers three parametric representations and maintains
a smaller center relative to its group order. In this paper, we present an encryption
scheme based on small Ree groups of large order, utilizing logarithmic signatures

outside the group's center.

SMALL REE GROUPS

The small Ree groups were first described by Ree [16,17], with their basic
construction detailed in [18]. The matrix generators for these groups are explicitly
characterized in [17]. Let g = 32™*1 for some m > 0 and t = 3™,

The small Ree group is defined as Ree(q) = (a(x),,[)’(x),y(x), h(/l),l_|x €
F,, A € E)).

Subgroup U(q) for the group Ree(q) of upper triangular matrices
a(x), B(x), y(x) has presentation U(q) = (a(x),ﬁ(x),y(x)|x € Fq).

Each element of U(q) can be expressed uniquely S(a, b, c¢) = a(a)B(b)y(c)
s0 U(q) = {S(a,b,c)|a,b,c € F,}, and it follows that |U(q)| = ¢>. Also, U(q)
Is a Sylow 3 —subgroup of Ree( q), and direct calculations show that

S(ay, by, ¢1)S(ay, by, c;) = S(ay + ay, by + b, — ajadt,c; + ¢, — ayby +
a;a3ttt — a?a3t), S(a,b,c)"t = S(—a,—b — &>t —c — ab + a3,

The center Z(U(q)) = {S(0,0,¢)|c € F,}.



The deriver group U, (q) = {S(0,b,c)|b,c € E,}, it follows that |U;(q)| =
g?and its elements have order 3. The elements in U(q)\U;(q) = {S(a, b,c)|a #
0} have order 9.

The subgroup U(q) for the small group Ree( q) has a greater ordU(q) = ¢3
then the orders of the Suzuki groups and the automorphism group A(P,)of the

Hermitian function field H|qu . Suzuki groups, which appear in MST3
cryptosystems, are isomorphic to the projective linear group PGL(B, Fq), where
q = 2q4, qo = 2™ and has order g2. The automorphism group of the Hermitian
function field H|qu , has a ordA(P,) = q3(q®> — 1) . Several encryption

algorithms have been proposed for MST cryptosystems, with the latest version,
known as MST3, having been implemented for the Suzuki group [6]. This paper
proposes an alternative encryption scheme based on small Ree groups. Our
approach utilizes logarithmic signatures for encryption across coordinates outside
the group's center. The subsequent chapter presents a detailed discussion of our

proposed solution, including practical computational aspects.

PROPOSED SOLUTION
We will show the correctness of the obtained expressions in the following
simple example. Fix the subgroup U(q)={5(a,b,c)|a,b,cqu} for the group Ree(q)
over F,, q=3°,9()=x"+2x+1, t=3". Group operation is defined as a product of two
matrices s(a,.b,.c,)S(a,.b,.c,) =S(a, +a, b +b, —aal c, +c, —a,b +aa’* —a’ad).
The inverse element is determined as s(ab,c)™ = S(-a,~b—a®",—c —ab+a®*?).
The identity is the triple s(0,0,0).

Step 1. We construct tame logarithmic signatures g, =[B,.... Bs(k)]:(blj)(k) ,

by € Fy »i=Ls(K), j=1r4 k=12 of types (r,...r,) for coordinate o , c.
Logarithmic signatures s and g, in a group representations define b, and b,

coordinates. Types (r,....%, ) and logarithmic signatures g and p, are chosen



independently. Let's logarithmic signatures g and p,, as an example, have a
tYPES (hu bt ) =(32323) 1 (R hoy By ) =(332,32) - AITAYS by, and by, consists of
three subarrays with a number of rows equal to r . You can select any
fragmentation of arrays with the condition I1:,r =q. In our case we have IT3,r =3°
. Each row b, it's an element of the field r, . The construction of arrays of
logarithmic signatures is presented in [19]. First stage is to generate a tame

logarithmic signature with the dimension of corresponding selected type

(R Ty ) @nd finite field F . To increase the security of arrays s, various

cryptographic transformations can be used. For example, simple ones like adding

noise vectors, permutations of strings in subarrays s, , merge of arrayss,, , their

(7 [N

permutation, matrix transformations. In our example, we use array noise. This

allows you to build two different logarithmic signatures g, =[B,,.B,,.By, | - Arrays

of logarithmic signatures p, in the group representation, defines the coordinates
Biico » reSpeCtively ,81 = [Bl(l)l vy Bs(l)] = (bl])(l) = S(O, bij(l)' 0)

B2 = |Biy -+ Bs| = (bij) ) = S(0.0,byjz)).

p1= bij o S (0, bij > 0) p2= bij(Z) S (0, 0, b”-(z) )
B1(1) | 00| 00| 0] 0,00 B1(2) | 0| 00 | 00 | 0,0,0
10|00 |0 | 0,a%0 1100 |00 |0,0,0a°
20 | 00 | 0 | 0,00 2100 | 00| 0,0,a?
01|00 |0 0,040 B2(2) | 0| 00| 00| 0,00
11|00 | 0 | 0,a%,0 2|10 | 00 | 0,0,a®
21 (00 | 0| 0,050 2 (20| 00| 0,0,a
02 ({00 | 0] 0,020 101 (00| 0,00
12100 | 0 | 0,a%%5,0 01100 0,0,a”
22 {00 | 0 0,00 22100 | 0,0,a??
B2(1) [ 2100 | 0] 0,0°0 102 |00 | 0,00
12110 | 0 | 0,a*%,0 2|12 |00 | 0,0,a"
02 (20| 0] 0,01°,0 2 (2200|000
12101 |0 | 0,a'%,0 B3(2) | 2|12 |00 0,0,a"
01|11 |0 0,020 12110 0,0,a%
20 (21|01 0,0%,0 10220 0,00a
20|02 | 0] 0,0%,0 2221|011 0,0,a
11|12 | 0| 0,0*,0 0|10 | 11| 0,0,a%%®
11|22 |0 | 0,020 1102|211 0,00a
B3(1) | 01|12 | 0] 0,aX0 1|01 |02]|0,00%°
0220 |1]0,010 2100 |12 | 0,0,a%°
22120 |21 0,0%%0 1|02 |22|0,00%°




Step 2. We construct random covers ¢, , for the same type as g u 3,

* = [Am),..., 'A%a)] =(ay )(1) =S (aija)l iy, » Ay, ) 1 % = [Al(Z) e As(Z)J =(a )(2) =S (0’ 8j(2), » aij(z)s) ]

where a, eU(a), au, i, 2w, € F, M0}, i=1s, j=Lr,, k=12.

ij(k)y * Tj (k) T i (K)s

Each cover ¢, defined by three arrays (a,.a,.a,,) With non-zero entries.
Let’s generate random COVErS a, =[ Ay, Ay Ay | @ =[Ap . A A |-

In the field representation a, =S(ayq, . 8u,.2, ), k=12 has the following form

ij(K)2 * 7 (K5

o = |:A1(1) Aoy As(l)] a = |:A1(2) Aoy As<2):|

Al(1) A2(1) A3(1) Al(2) A2(2) A3(2)
a*8.0,0% @B o2 | o802 o35 | 0,00,02% | 0,053,002 | 0,0%%,0%
a61.a11,a159 | 02 017,028 | b o2 o114 | 0,01% 620 | 0,033,177 | 0,007,165
023 2% 67 1% 1% o115 | 166 538 531 | () 686 oT71 | (o198 6% | 0,001,125
155 (204 1% | (215 ;208 ;99 0,000 165 | (155 152
ool 0127 59 103 0,602,088 | 0,05 0%
132,85 o5 15080, 206 0,02%a1T | 0,75 o3
P 1503, 186 0,028 | 00202
1% (21T (216 | 54 ;6T 3 0,096 | 0,a2% o5
1%, q10% o o 05%, 108 0,019,693 | 0,0,

Step 3. Choose random ty,,ty. -ty €U@\Z ,5=3, k=12 and t,, =t .

For the first logarithmic signatures g, 5, we have

t0(1)=(a123,031,(151) t—10(1)=((x2,(x218,(117°) t0(2)=((x241,(x69,(x45) t_lo(z):((XlZO’QZS’QBS)
tl ( 1 ):((1133,(194,(126) t-11 ( 1 ):((112,(194,(1147) tl (2):((1206,0{130,0{106) t-11 (2):(0{85,0,174, 0,19)
t2(1):((1205,(1149,(1164) t-12(1):((184,(194,(1214) t2(2):((l49,0t10,0.180) t_lz(z):(al70’a228’a21l)
t3(1):((1241,(169,(145) t—10(1)=((x12°,(x28,(135) t3(2):((197,0t43,0.118) t-13(2):((1218,0,37,0,113)

Step 4. Calculate the arrays ,
7k =[hl(k),...,h3(k)] :(hij )k =il T ((‘%‘ )k)(bij )k tigs k=12

Step 5. Construct a homomorphism f defined by f(s(ab,c))=s(0,a,b).

In the field representation y, =s(h,,, .0, he,) AN 7, =S(he, he, . he,) has the

following form

n= S(hij(l)l , hij(1)2 ’hij(1)3) V2 = S(hij(z)1 ' hij(z)2 : hij(2)3)

h1(1) h2(1) h3(1) h1(2) h2(2) h3(2)

193 738 29 | 10 oI5 83 07,05, 0108 2,009 618 | 58 ges 029 | a8 o 1%
1% o 0% 10 o212 g8 | 75 141 135 | 2 o160 T3T | (456 56 146 | (463 88 ;169
al%B 72 q166 | 10 0215 083 | 675 621 657 | 02,0l o122 | 56 o5 o a8 % 28

1% o213 13 | 10 (210 ;185 %05 o1 | 8 o o223
1% 203 19 | 10 (14T B a®,0% 03 | af 0% o123
1% 2L 180 | (10 o115 167 % 0% 0% | a8 o o2

1% 167 214 | 10 (22 1% % 0% o1 | a8 o o2

1% 179 138 | 10 ;61 ;232 % 0 o2 a® o o222
1% gl o7 010 o197 209 0% o177 | af 0 15




For example, let r =29. We obtain the following basis factorization for a given
type (ny .he.he)=(333) in the form of R =(Ry Ry .Ry)=(230) , Where
R +R,3 +R,3*=29. Compute ,,

7:(29) = hy (2) Mgy (3) ey (0) = S (@™, 2, &™) S (o, 0™, &) S (0™ 0, & ) = S (2™, ™, ™).

Let r,=31. We obtain the R,=(Ry, Ry Ry)=(111)=31 for a given type

)=(3.3%,3?). Compute »,

(TR A
72 (31) =hyy (Dhyy (D (1) =S (™, a™).

For the encryption stage we have a following input: a message meu,(q) ,
m=s(0,m,m,), and the public key [f («.»)], k=12. SO, we are going to have
ciphertext (y,,y,) of the message x as an output.

Let m=(0,a’a')=5(0,a°,a').

Choose a random R=(r,,R,) =(29,31), R Ry 2 -

Compute y, =a'(R)m=a,'(R)-a,'(R,)-m=S(a”,a",a"),

Y, =7'(R)=r'(R)7'(R,)=5(a™,a™,a’), y, = f(a,'(R,))=5(0,0,&").

Output y, = (a,a™,a™), y, =(a®,a™,a°), v, =(0,0,a%).

For the decryption stage we have a ciphertext (y,y,y,) and private key
[ﬂk,(to(k) ..... t3(k))J , k=12 . S0, we expect a message meu,(q) corresponding to
ciphertext (v, v,.y,)-

To decrypt a message m, we need to restore random numbers rR=(R,,R,) .

Compute D®(Ry,Ry) = to(1)}’2ts,_(%) = to)S(@®®®, a? O)ts(z) =
S(O, a233, a143)’

D*(R) = f(y)'DW(Ry, Ry) = S(0,a%, a'*)S(0, a?*, a'*?)
= S(0,a?, al’°).

We get 5, (R)=a’ =(00100).

Recovery of r was done earlier r =(R,.Ry Ry )=(2.3,0).



00|10|0 R1=(**,0)

01]12|0 row 0 from B3(1)
00]10j0—01]12|0=02|01]0 R1= (*,3,0)
12|01|0 row 3 from B2(1)
02|01|0—12]01|0=20|00]0 R1=(2,3,0)

For further calculations, it is necessary to remove the components of the arrays
a'(R) and »'(R) from ciphertext (y,y,).
Compute
yz(l) =y, (R 1y, = S(a?°6, @106, o 219)~15(¢238 3210 40) =
S(C{85, 6{171, a“)S(a238,a210, aO) — S(a18’ a154, a151)_
Repeat the calculations
D®(Ry) = tomyy2 Pty = to)Sa™®, a>*, a'®>)ity i/, = 5(0,0,a®)

and
-1
D*(R) = DD (R)y;™* = DO (R)S(0,0,a2,(R)) =

5(0,0,®)5(0,0,a®®)~1 = 5(0,0, «®)5(0,0, 37) = $(0,0, a?27).

Restore Rr, with 3,(R,)

a® =(10110).
Perform inverse calculations g, (r,)™. Select bit groups in vector s(r) according
to type (r...ne)=(333"). We use the same calculations as in the example for

A (R)™, and we get

10110 R2=(**1)

1|21|10 row 1 from B3(2)
101]10-1[21]10=0|10]00 R2= (*,1,1)
2|10|00 row 1 from B2(2)
0]10/00—2|10]00=1|00]00 R2=(1,1,1)

B (R ')_1 =1/07j10= <R1(2) Ry Raey ) =(L11).

R; = (Ri2), Rag2), Razy) = (1,1,1) = 31.

Receive a message m=a (R) Yy; =a,’(Ry)™ - a; (R v,



— S(O, a,66, a139)_15(a86, a34—, a217)—15(a86’ a186' a113) — S(O, CZO, al)_

So, message m = (0, a®, al) is expected output.

SECURITY ANALYSIS

We consider the following types of attacks. Brute force attack on cipher text.
By selecting rR=(r,R,) try to decipher the text y -«'(R)m=¢,'(R)-a,'(R,)-m. FOr this
case we consider complexity of attack implementation equal to ¢>. Brute force
attack on rR=(R,R,). Select rR=(r,R,) to match y,=»'(R)=5'(R)-7'(R,) . For this case
we also consider complexity of attack implementation equal to ¢>. Third possible
attack is to choose r to match the value of a, (Rr) in the vector y, and choose R,
to match the value of a, (R,) in the vector y,. For this case we consider
complexity of attack implementation equal to q. But it can be improved with a
possible link of r and R, through matrix transformation. For this case,
complexity of attack implementation equal ¢ also. Also, there is a way to brute

force on (t,,...t,) - For this case we consider complexity of attack
implementation equal to ¢¢. Another possible attack is attack on the algorithm.
Extraction parameters a, (R), a,, (R,) Of y ,y, does not allow to calculate
a'(R)-e,'(R,) IN y,=e'(R)-a,'(R,)-m. SO, simple search of parameters r,Rr, leads to
brute force attack with complexity q>. Since the Ree group is defined over a large

field r,, the attack is not computationally possible.

CONCLUSION
The encryption scheme implementation based on small Ree groups represents
our contribution to the ongoing development of the established MST3
cryptosystem. We propose encrypting two logarithmic signatures that extend
beyond the group's center, thereby increasing the encrypted message length and

enhancing security. The length ciphertext is 2 log q for computing in the finite



field over F;. The implementation of a cryptosystem on a group of Ree requires
the construction of a logarithmic signature g on vectors 3", where n is
determined by the size of type r=3". All blocks B are subgroups of the

U,(@)={s@bo)p.ceF,|. The size of the arrays s and o is determined by the type
(t,r,), and (r,..r). for coordinate b,c for the subgroups u,() . For 128-bit

cryptography, which is equivalent to calculations over field q=3%, if the " type
IS r=3° =243, s=8, only the 1944 entries are required for cryptography on the

group. A common disadvantage of cryptosystems on logarithmic signatures is the

large size of key data.
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