
ar
X

iv
:2

50
4.

10
94

4v
1

 [
cs

.C
R

]
 1

5
A

pr
 2

02
5

Cartesian Merkle Tree

Artem Chystiakov, Oleh Komendant, Kyrylo Riabov

April 2025

Abstract

This paper introduces the Cartesian Merkle Tree, a deterministic data structure that combines
the properties of a Binary Search Tree, a Heap, and a Merkle tree. The Cartesian Merkle Tree
supports insertions, updates, and removals of elements in O(logn) time, requires n space, and enables
membership and non-membership proofs via Merkle-based authentication paths. This structure is
particularly suitable for zero-knowledge applications, blockchain systems, and other protocols that
require efficient and verifiable data structures.

1 Introduction

Cartesian Merkle Tree (CMT) research is motivated by the increasing demand for efficient and secure
data structures in cryptographic, blockchain, and zero-knowledge (ZK) systems. Traditional Merkle trees,
such as Sparse Merkle Trees (SMT)[ide24], are widely used but have limitations in terms of balance and
efficiency.

CMTs integrate binary search tree properties for key-based organization and heap properties for
priority balancing, data storage optimization, elements retrieval, and proof generation. To ensure deter-
minism, the priority value for an element is derived from its key using a predefined algorithm, such as a
hash function.

CMTs offer an efficient alternative to SMTs, reducing memory usage while preserving the key prop-
erties of the latter. One of the key features of CMT is that it stores useful data in every node, unlike
SMTs which only store it in the leaves. The time complexity of the operations is still O(log n), with the
only trade-off being a Merkle proof size at worst two times larger than SMTs.

2 Background

Merkle trees are fundamental to many cryptographic protocols, enabling efficient and secure proofs of
data inclusion. They are widely used across various systems, ranging from maintaining validator sets in
Ethereum to storing the state of zero-knowledge layer-2 rollups. The primary strength of Merkle trees
lies in their ability to prove the inclusion of data in a highly compact and efficient manner.

Although the standard Merkle tree structure is binary, there are variations, such as the Merkle-
Patricia tree, which utilizes sixteen child nodes per branch, optimizing performance in specific contexts.
Despite these advances, Merkle trees still face challenges related to storage and operational complexity.
Typically, they require O(log n) operations and 2n storage for binary trees.

While vanilla Merkle trees are often impractical for on-chain usage, they are still frequently utilized
in off-chain whitelists and similar applications. However, two significant Merkle tree modifications have
emerged that unlock the full potential of the data structure: Incremental Merkle Trees (IMT) and Sparse
Merkle Trees (SMT).

2.1 Incremental Merkle Tree

IMT is a push-only data structure that can be used on-chain to build the tree, but requires an off-chain
service to generate inclusion proofs. IMT is currently used by TornadoCash for anonymizing depositors,
by Semaphore to store group membership commitments, and by the BeaconChain deposit smart contract
to manage the list of Ethereum validators.

1

https://arxiv.org/abs/2504.10944v1

Unlike standard Merkle trees, IMTs do not store individual elements. Instead, they are merely used
to “build” the root. IMTs require log n storage, with inclusion proofs also having O(log n) complexity.
Importantly, IMTs cannot be used independently without an off-chain service, as the entire tree must
be reconstructed to generate an inclusion proof.

2.2 Sparse Merkle Tree

Until recently, SMTs were regarded as one of the most efficient data structures, particularly in the
context of blockchain technologies and ZK systems. For instance, SMT is used by Scroll to maintain its
ZK rollup state, by Rarimo to store ZK-provable national passport-based identity data, and by iden3 to
manage custom-issued on-chain identities.

SMT is a particularly fascinating data structure. Unlike IMT, SMT does not require any off-chain
services. It is deterministic, meaning the structure of the tree remains identical for a given set of elements,
regardless of their insertion order. The position of an element in the tree is determined by its bitwise
prefix: if a 0 is encountered, the left child is selected; if a 1 is encountered, the right child is chosen. This
results in the tree size being constrained by the bitwise length of this prefix. However, reaching depths
of 97 or more is currently infeasible due to limitations within the EVM stack. In practice, the size of
the tree without collisions cannot exceed 250, or approximately 1.12 × 1015 (one quadrillion) elements,
according to the Birthday Problem[Wik25a].

3 Data Structure Description

A Cartesian Merkle Tree can be seen as a standard Cartesian tree or Treap with the additional data
Merkleization property. Each element in CMT corresponds to a point on a two-dimensional plane, with
the key k representing the X-coordinate and the priority p representing the Y-coordinate. In traditional
Cartesian trees [Wik25b], the value of p is typically chosen at random, which contributes to a more
balanced tree structure. However, if p is deterministically derived from k, then the same key will always
produce the same point on the plane. As a result, the structure of the CMT becomes deterministic.

Let e = k be a new entry in the tree T, where k is the key of the entry. The entry e may also
optionally have a field v, the value. The node where this data element e is stored is determined based
on the information contained in e. Let H be a cryptographically secure hash function that returns the
hash result for an arbitrary number of values. Let p = PH(e) be the priority of the element e, where PH

can be any deterministic algorithm that transforms the values of e into a number.
Let node = (k, p, mh) be any node in the tree T, where mh is the Merkle Hash value of the node,

calculated as follows:
mh = H(entry ∥ leftChildMH ∥ rightChildMH)

Here, leftChildMH and rightChildMH are the Merkle hash values of the node’s children, sorted in
ascending order, and entry is the node’s useful payload. If a child is absent, its hash value is considered
to be 0.

The node where e should be stored is determined by the following rules:

leftChild.k ≤ e.k ≤ rightChild.k

leftChild.p ≤ e.p and rightChild.p ≤ e.p

The first rule ensures the binary search tree property, while the second rule maintains the min-heap
property.

2

k: 15
p: 200

mh: (15,2.mh,4.mh)

k: 10
p: 100

mh: (10,0,1.mh)

k: 20
p: 90

mh: (20,0,5.mh)

k: 5
p: 50

mh: (5,0,0)

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 18
p: 70

mh: (18,0,0)

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

1.

3.2.

4. 5.

k −→ BST

p
−→

H
ea
p

mh −→ Merkle Tree

Figure 1: Example of CMT

Algorithm 1: CMT Utils Functions

Function CalculateMH(key, leftChildMH, rightChildMH):
/* Sort leftChildMH, rightChildMH in ascending order */

if leftChildMH < rightChildMH then
return H(key||leftChildMH||rightChildMH);

else
return H(key||rightChildMH||leftChildMH);

Function RightRotate(node):
/* Save pointers to the left child and its right child */

currentLeftChild ← node.leftChild;
newLeftChild ← currentLeftChild.rightChild;
/* Perform the right rotation by updating the pointers */

currentLeftChild.rightChild ← node;
node.leftChild ← newLeftChild;
/* Update the mh value of the node after rotation */

node.mh ← CalculateMH(node.e.k, leftChildMH, rightChildMH);

Function LeftRotate(node):
/* Save pointers to the right child and its left child */

currentRightChild ← node.rightChild;
newRightChild ← currentRightChild.leftChild;
/* Perform the left rotation by updating the pointers */

currentRightChild.leftChild ← node;
node.rightChild ← newRightChild;
/* Update the mh value of the node after rotation */

node.mh ← CalculateMH(node.e.k, leftChildMH, rightChildMH);

3.1 Insertion

When inserting an entry e, the corresponding node n in the tree T is determined by traversing downward
from the root while maintaining the BST property. Once inserted, the structure is recursively adjusted
upward to the root to restore the min-heap property using left or right rotations. At each modification

3

of any node, the mh value is also recomputed.

Algorithm 2: Insertion of an Element into the CMT

Input: Element e = k to be inserted
Output: Updated tree T
Function Insert(T, e):

Find the appropriate position for e in T based on the BST property;
Create a new node n to insert e, and set:
begin

Set n.e← e;
Set n.p← PH(e);
Set n.mh← CalculateMH(e.k, leftChildMH, rightChildMH);

/* Restore min-heap property by rotating upwards */

Node ← n;
while Node is not root and Parent.Priority < Node.Priority do

/* Determine which child the node is to its parent and perform needed

rotation */

if Parent.leftChild = Node then
RightRotate(Parent);

else if Parent.rightChild = Node then
LeftRotate(Parent);

Node ← Parent(Node);
/* Update mh value of the node after rotation */

Node.mh← CalculateMH(Node.e.k, leftChildMH, rightChildMH);

Example

In this example, consider the insertion of the element e where e.k = 13 and PH(e) = 250 into the
tree shown in Figure 1. After the element insertion, the tree will have the following structure:

k: 13
p: 250

mh: (13,2.mh,3.mh)

k: 10
p: 100

mh: (10,0,1.mh)

k: 15
p: 200

mh: (15,0,4.mh)

k: 5
p: 50

mh: (5,0,0)

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 20
p: 90

mh: (20,0,5.mh)

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 18
p: 70

mh: (18,0,0)

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

1.

3.2.

4. 5.

6.

Figure 2: CMT after insertion

4

3.2 Removal

To remove an entry e, first determine whether there exists a node n in the tree T that corresponds to
e. If such a node is found, assign n.p = −∞, ensuring that during the heap property restoration via
rotations, n will be moved to a leaf position. Once the node becomes a leaf, it can be easily removed.
After removal, recursively traverse upward and update the mh values.

Algorithm 3: Removal of an Element from the CMT

Input: Element e = k to be removed
Output: Updated tree T
Function Remove(T, e):

Find the node n corresponding to e in T;
if n does not exist then

Throw error: “Element not found”;

/* Mark node for removal by setting its priority to −∞ */

n.p ← −∞;
/* Restore min-heap property via rotations */

Node ← n;
while Node is not a leaf do

/* Determine which child has higher priority and perform rotation */

if Node.leftChild.p > Node.rightChild.p then
RightRotate(Node);

else
LeftRotate(Node);

Node ← new position after rotation;

/* Remove the node */

Remove Node from T;
/* Update mh values while traversing upwards */

Parent ← Parent(Node);
while Parent is not null do

Parent.mh←
CalculateMH(Parent.e.k, Parent.leftChildMH, Parent.rightChildMH);
Parent ← Parent(Parent);

Example

Consider removing of an element e with a key e.k = 15 from the tree shown in Figure 2. After
removing, the tree structure will be modified as follows:

5

k: 13
p: 250

mh: (13,2.mh,3.mh)

k: 10
p: 100

mh: (10,0,1.mh)

k: 20
p: 90

mh: (20,0,5.mh)

k: 5
p: 50

mh: (5,0,0)

k: 0
p: 0
mh: 0

k: 18
p: 70

mh: (18,0,0)

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

1.

3.2.

4. 5.

Figure 3: CMT after removal

3.3 CMT Proof

Let CMT proof be a proof of membership of an element e in a tree T, represented as proof =
[prefix, suffix], where:

• prefix is an ordered list of Merkle path nodes, each containing pairs of values (n.e.k, n.mh) for
each node n;

• suffix consists of e.leftChildMH and e.rightChildMH, representing the subtree structure of e;

• existence is a boolean flag indicating whether e exists in the tree;

• nonExistenceKey is used when e does not exist in the tree, and helps verify that e is absent.

The initial value of acc is computed as:

acc = H((existence?e.k : nonExistenceKey) ∥ proof.suffix[0] ∥ proof.suffix[1])

ensuring that proof.suffix[0] < proof.suffix[1].
Then, acc is iteratively updated using values from prefix:{

acc = H(n.e.k ∥ n.mh ∥ acc), if n.mh < acc,

acc = H(n.e.k ∥ acc ∥ n.mh), otherwise.

The proof is considered valid if the final value of acc matches the root of T.

6

Algorithm 4: CMT Proof Generation

Input: Element e = k to be proven in tree T
Output: Proof proof = [prefix, suffix, existence, nonExistenceKey]
Function GenerateProof(T, e):

Initialize empty lists: prefix← [], suffix← [];
Initialize bool variable existence← true;
Initialize variable currentNode← null;
/* Get the appropriate node for the entry e */

if e does not exist in the tree T then
currentNode← node with appropriate key for non-existence proof;
existence← false;
nonExistenceKey← currentNode.e.k;

else
currentNode← node in T where n.e = e;

/* Set suffix as the hash values of currentNode’s children */

suffix← [n.leftChildMH, n.rightChildMH];
/* Construct prefix by traversing the path to the root */

while currentNode is not root do
parent← Parent(currentNode);
Append (parent.e.k, parent.mh) to prefix;
currentNode← parent;

return [prefix, suffix, existence, nonExistenceKey];

Algorithm 5: Verification of CMT Proof

Input: Proof proof = [prefix, suffix, existence, nonExistenceKey], Element e, Root hash
root

Output: true if e is in the tree or e is not in the tree and existence is false, false otherwise
Function VerifyProof(proof, e, root):

/* Initialize acc with the element’s Merkle hash */

if proof.existence then
acc← CalculateMH(e.k, proof.suffix[0], proof.suffix[1]);

else
acc← CalculateMH(nonExistenceKey, proof.suffix[0], proof.suffix[1]);

/* Iteratively compute the hash up the Merkle path */

foreach (k, mh) in proof.prefix do
acc← CalculateMH(k, acc, mh);

/* Check if computed hash matches the root */

return acc = root;

Example

Consider the generation and verification of a CMT proof for an entry e, where e.k = 18, in a tree
depicted in Figure 4. To make the example clearer, we replace the mh in all nodes with particular
numbers.

7

k: 13
p: 250
mh: 333

k: 10
p: 100
mh: 180

k: 15
p: 200
mh: 160

k: 5
p: 50

mh: 145

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 20
p: 90

mh: 130

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 18
p: 70

mh: 100

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

k: 0
p: 0
mh: 0

1.

3.2.

4. 5.

6.

Figure 4: CMT proof example

Algorithm 6: CMT Inclusion Proof Example

Input:

1. proof:

• prefix: [13, 180, 15, 0, 20, 0]

• suffix: [0, 0]

• existence: true

• nonExistenceKey: 0

2. rootNodeMH: 333

/* Initialize acc with the element’s Merkle hash */

acc = H(e.k ∥ proof.suffix[0] ∥ proof.suffix[1]); /* H(18 ∥ 0 ∥ 0) = 100 */

/* Compute the final acc value using the entries from the prefix. */

acc = H(proof.prefix[4] ∥ proof.prefix[5] ∥ acc); /* H(20 ∥ 0 ∥ 100) = 130 */

acc = H(proof.prefix[2] ∥ proof.prefix[3] ∥ acc); /* H(15 ∥ 0 ∥ 130) = 160 */

acc = H(proof.prefix[0] ∥ acc ∥ proof.prefix[1]); /* H(13 ∥ 160 ∥ 180) = 333 */

/* Compare acc with rootNodeMH */

acc == root.mh; /* Result is true */

Consider the case where an entry e with key e.k = 25 is not present in the tree depicted in Figure 4.
In this scenario, the proof will be structured as follows:

8

Algorithm 7: CMT Exclusion Proof Example

Input:

1. proof:

• prefix: [13, 180, 15, 0]

• suffix: [100, 0]

• existence: false

• nonExistenceKey: 20

2. rootNodeMH: 333

/* Initialize acc with the element’s Merkle hash */

acc = H(proof.nonExistenceKey ∥ proof.suffix[0] ∥ proof.suffix[1]);
/* H(20 ∥ 0 ∥ 100) = 130 */

/* Compute the final acc value using the entries from the prefix. */

acc = H(proof.prefix[2] ∥ proof.prefix[3] ∥ acc); /* H(20 ∥ 0 ∥ 130) = 160 */

acc = H(proof.prefix[0] ∥ acc ∥ proof.prefix[1]); /* H(13 ∥ 160 ∥ 180) = 333 */

/* Compare acc with rootNodeMH */

acc == root.mh; /* Result is true */

4 Reference Implementation

To provide a practical implementation of the Cartesian Merkle Tree and its proof verification, we reference
two existing implementations in Solidity and Circom:

• The Solidity implementation, available in the solidity-lib repository[Sol25b], provides smart
contract functionalities for CMT construction and proof generation.

• The Circom implementation, available in the circom-lib repository[Sol25a], offers a zk-SNARK-
friendly circuit for verifying CMT proofs within zero-knowledge proofs.

These implementations are fully compatible: proofs generated by the Solidity implementation can be
used to generate and verify zero-knowledge proofs in the Circom implementation.

5 Benchmarks

This section presents the benchmarking results for the Insert and Remove functions in the Solidity CMT
implementation [Sol25b] using the Keccak256 and Poseidon hash functions. A comparative analysis of
EVM gas costs was performed for each function using different datasets. The tests were conducted with
100, 1000, 5000, and 10000 elements to show how data size impacts performance. The EVM gas costs
can be considered as normalized computation units, therefore, if the operation takes more gas, it is more
computationally intensive.

In order to ensure a fair comparison of the CMT and SMT structures benchmarks, the Solidity version
of the SMT[Sol25c] was tested using the same methods as the CMT. To maintain consistency, the value
field was removed from the SMT Node structure so that they occupy the same number of storage slots.

5.1 Insert Operation

The Insert function gas benchmarks were obtained by inserting 100, 1000, 5000, and 10000 random
elements into the trees.

The CMT results are presented in Table 1 for Keccak256 and Table 2 for Poseidon. The SMT results
are presented in Table 3 and Table 4, respectively.

9

Iterations Min Gas Avg Gas Max Gas

100 97,593 187,682 301,113
1,000 97,605 254,332 421,359
5,000 97,605 286,195 502,851
10,000 97,593 303,871 552,723

Table 1: CMT gas usage with Keccak256

Iterations Min Gas Avg Gas Max Gas

100 148,017 599,943 1,246,860
1,000 148,017 883,129 2,068,385
5,000 148,017 1,090,143 2,924,415
10,000 148,017 1,140,019 2,773,845

Table 2: CMT gas usage with Poseidon

Comparing with SMT:

Iterations Min Gas Avg Gas Max Gas

100 102,125 248,063 667,958
1,000 102,137 294,404 871,190
5,000 102,125 325,785 1,306,160
10,000 102,125 339,509 877,732

Table 3: SMT gas usage with Keccak256

Iterations Min Gas Avg Gas Max Gas

100 136,354 471,704 903,027
1,000 136,366 620,547 1,522,135
5,000 136,366 723,077 2,005,911
10,000 136,366 765,205 2,155,222

Table 4: SMT gas usage with Poseidon

5.2 Remove Operation

The Remove function gas usage was calculated by removing all inserted elements from the trees of sizes
100, 1000, 5000, and 10000 nodes.

The CMT results are presented in Table 5 for Keccak256 and Table 6 for Poseidon. The SMT results
are presented in Table 7 and Table 8, respectively.

Iterations Min Gas Avg Gas Max Gas

100 41,917 129,109 259,680
1,000 41,917 178,084 363,816
5,000 41,917 226,253 475,639
10,000 41,917 244,545 522,075

Table 5: CMT gas usage with Keccak256

Iterations Min Gas Avg Gas Max Gas

100 92,329 430,727 1,071,617
1,000 92,329 757,013 2,208,417
5,000 92,341 889,249 2,143,368
10,000 92,341 982,465 2,437,679

Table 6: CMT gas usage with Poseidon

Comparing with SMT:

Iterations Min Gas Avg Gas Max Gas

100 35,029 131,847 224,916
1,000 35,039 184,186 310,235
5,000 35,039 221,294 443,089
10,000 35,029 237,191 374,284

Table 7: SMT gas usage with Keccak256

Iterations Min Gas Avg Gas Max Gas

100 35,029 284,457 466,242
1,000 35,039 436,451 693,632
5,000 35,029 544,353 902,871
10,000 35,029 590,051 864,656

Table 8: SMT gas usage with Poseidon

References

[ide24] iden3. Sparse Merkle Tree. https://docs.iden3.io/publications/pdfs/Merkle-Tree.
pdf. Accessed: 2025-01-08. 2024.

[Sol25a] DL Solarity. Cartesian Merkle Tree Circom Circuit. https://github.com/dl-solarity/
circom - lib / blob / 8f828692cb8a5211abefc2d82326b8c68fce4e1f / circuits / data -

structures/CartesianMerkleTree.circom. Accessed: 2025-04-01. 2025.

10

https://docs.iden3.io/publications/pdfs/Merkle-Tree.pdf
https://docs.iden3.io/publications/pdfs/Merkle-Tree.pdf
https://github.com/dl-solarity/circom-lib/blob/8f828692cb8a5211abefc2d82326b8c68fce4e1f/circuits/data-structures/CartesianMerkleTree.circom
https://github.com/dl-solarity/circom-lib/blob/8f828692cb8a5211abefc2d82326b8c68fce4e1f/circuits/data-structures/CartesianMerkleTree.circom
https://github.com/dl-solarity/circom-lib/blob/8f828692cb8a5211abefc2d82326b8c68fce4e1f/circuits/data-structures/CartesianMerkleTree.circom

[Sol25b] DL Solarity. Cartesian Merkle Tree Solidity Implementation. https://github.com/dl-
solarity / solidity - lib / blob / bf9c4778f442810323d7038ade30acb5d273bd0d /

contracts / libs / data - structures / CartesianMerkleTree . sol. Accessed: 2025-04-
01. 2025.

[Sol25c] DL Solarity. Sparse Merkle Tree Solidity Implementation. https : / / github . com / dl -

solarity / solidity - lib / blob / ee0ab79b70967ac6841aff9f71d2701e3f31c91c /

contracts / libs / data - structures / SparseMerkleTree . sol. Accessed: 2025-04-01.
2025.

[Wik25a] Wikipedia contributors. Birthday problem — Wikipedia, The Free Encyclopedia. Accessed:
2025-04-01. 2025. url: https://en.wikipedia.org/wiki/Birthday_problem.

[Wik25b] Wikipedia contributors. Treap — Wikipedia, The Free Encyclopedia. https : / / en .

wikipedia.org/wiki/Treap. Accessed: 2025-04-14. 2025.

11

https://github.com/dl-solarity/solidity-lib/blob/bf9c4778f442810323d7038ade30acb5d273bd0d/contracts/libs/data-structures/CartesianMerkleTree.sol
https://github.com/dl-solarity/solidity-lib/blob/bf9c4778f442810323d7038ade30acb5d273bd0d/contracts/libs/data-structures/CartesianMerkleTree.sol
https://github.com/dl-solarity/solidity-lib/blob/bf9c4778f442810323d7038ade30acb5d273bd0d/contracts/libs/data-structures/CartesianMerkleTree.sol
https://github.com/dl-solarity/solidity-lib/blob/ee0ab79b70967ac6841aff9f71d2701e3f31c91c/contracts/libs/data-structures/SparseMerkleTree.sol
https://github.com/dl-solarity/solidity-lib/blob/ee0ab79b70967ac6841aff9f71d2701e3f31c91c/contracts/libs/data-structures/SparseMerkleTree.sol
https://github.com/dl-solarity/solidity-lib/blob/ee0ab79b70967ac6841aff9f71d2701e3f31c91c/contracts/libs/data-structures/SparseMerkleTree.sol
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Treap

	Introduction
	Background
	Incremental Merkle Tree
	Sparse Merkle Tree

	Data Structure Description
	Insertion
	Removal
	CMT Proof

	Reference Implementation
	Benchmarks
	Insert Operation
	Remove Operation

