
 

 

 

 

 

 

 

 

 

 

 

 

 

 A Quantitative Approach 

Browser Security Comparison 

Document Profile 

Version 0.0 

Published 12/6/2011 

  



 

Browser Security Comparison – A Quantitative Approach Page| i of v 
Version 0.0 Revision Date: 12/6/2011 

Revision History 
Version Date Description 

0.0 12/26/2011 Document published. 

   

   

 

  



 

Browser Security Comparison – A Quantitative Approach Page| ii of v 
Version 0.0 Revision Date: 12/6/2011 

Contents 
Authors .......................................................................................................................................................... v 

Executive Summary ....................................................................................................................................... 1 

Methodology Delta ................................................................................................................................... 1 

Results ....................................................................................................................................................... 2 

Conclusion ................................................................................................................................................. 2 

Introduction .................................................................................................................................................. 3 

Analysis Targets ........................................................................................................................................ 4 

Analysis Environment................................................................................................................................ 4 

Analysis Goals ........................................................................................................................................... 4 

Browser Architecture .................................................................................................................................... 5 

Google Chrome ......................................................................................................................................... 5 

Internet Explorer ....................................................................................................................................... 5 

Mozilla Firefox ........................................................................................................................................... 6 

Summary ................................................................................................................................................... 6 

Browser Comparison ................................................................................................................................. 8 

Historical Vulnerability Statistics .................................................................................................................. 8 

Browser Comparison ................................................................................................................................. 8 

Issues with Counting Vulnerabilities ......................................................................................................... 9 

Issues Surrounding Timeline Data .......................................................................................................... 10 

Issues Surrounding Severity .................................................................................................................... 11 

Issues Unique to Particular Vendors ....................................................................................................... 11 

Data Gathering Methodology ................................................................................................................. 13 

Update Frequencies ................................................................................................................................ 13 

Publicly Known Vulnerabilities ................................................................................................................ 16 

Vulnerabilities by Severity ...................................................................................................................... 17 

Time to Patch .......................................................................................................................................... 18 

URL Blacklist Services .................................................................................................................................. 20 

Comparing Blacklists ............................................................................................................................... 20 

“Antivirus-via-HTTP” ............................................................................................................................... 20 

Multi-Browser Defense ........................................................................................................................... 20 

Comparing Blacklist Services ................................................................................................................... 21 



 

Browser Security Comparison – A Quantitative Approach Page| iii of v 
Version 0.0 Revision Date: 12/6/2011 

Comparison Methodology ...................................................................................................................... 21 

Results Analysis ....................................................................................................................................... 21 

Conclusions ............................................................................................................................................. 25 

Anti-exploitation Technologies ................................................................................................................... 26 

Address Space Layout Randomization (ASLR) ......................................................................................... 26 

Data Execution Prevention (DEP) ............................................................................................................ 26 

Stack Cookies (/GS) ................................................................................................................................. 26 

SafeSEH/SEHOP ....................................................................................................................................... 26 

Sandboxing .............................................................................................................................................. 27 

JIT Hardening .......................................................................................................................................... 28 

Browser Anti-Exploitation Analysis ............................................................................................................. 31 

Browser Comparison ............................................................................................................................... 32 

Google Chrome ....................................................................................................................................... 34 

Microsoft Internet Explorer .................................................................................................................... 45 

Mozilla Firefox ......................................................................................................................................... 58 

Browser Add-Ons ........................................................................................................................................ 67 

Browser Comparison ............................................................................................................................... 68 

Google Chrome ....................................................................................................................................... 69 

Internet Explorer ..................................................................................................................................... 80 

Firefox ..................................................................................................................................................... 89 

Add-on summary .................................................................................................................................... 97 

Conclusions ................................................................................................................................................. 98 

Bibliography .............................................................................................................................................. 100 

Appendix A – Chrome Frame ......................................................................................................................... I 

Overview .................................................................................................................................................... I 

Decomposition .......................................................................................................................................... II 

Security Implications ................................................................................................................................ III 

Risk Mitigation Strategies ......................................................................................................................... V 

Conclusion ................................................................................................................................................. V 

Bibliography ............................................................................................................................................. VI 

Appendix B ..................................................................................................................................................... I 

Google Chrome .......................................................................................................................................... I 



 

Browser Security Comparison – A Quantitative Approach Page| iv of v 
Version 0.0 Revision Date: 12/6/2011 

Internet Explorer .................................................................................................................................... XIII 

Mozilla Firefox ...................................................................................................................................... XVIII 

Tools ............................................................................................................................................................... I 

 

  



 

Browser Security Comparison – A Quantitative Approach Page| v of v 
Version 0.0 Revision Date: 12/6/2011 

Authors 
Listed in alphabetical order: 

 Joshua Drake (jdrake@accuvant.com) 

 Paul Mehta (pmehta@accuvant.com) 

 Charlie Miller (charlie.miller@accuvant.com) 

 Shawn Moyer (smoyer@accuvant.com) 

 Ryan Smith (rsmith@accuvant.com) 

 Chris Valasek (cvalasek@accuvant.com) 

 



 

Browser Security Comparison – A Quantitative Approach Page| 1 of 102 
Version 0.0 Revision Date: 12/6/2011 

Executive Summary 
Accuvant LABS built criteria and comparatively analyzed the security of Google Chrome, 

Microsoft Internet Explorer, and Mozilla FireFox. While similar comparisons have been performed in the 

past, previous studies compared browser security by considering metrics such as vulnerability report 

counts and URL blacklists. This paper takes a fundamentally different approach, examining which 

security metrics are most effective in protecting end users and evaluating those criteria using publicly 

available data and independently verifiable techniques. 

 Methodology Delta 
Most attempts to compare the security of different vendors within a software class rely on statistical 

analysis of vulnerability data.  The section entitled Historical Vulnerability Statistics and its subsections 

examine publicly available vulnerability data and discuss why such an approach is limited in its 

usefulness for comparatively assessing security.  

In contrast, we believe an analysis of anti-exploitation techniques is the most effective way to compare 

security between browser vendors.  This requires a greater depth of technical expertise than statistical 

analysis of CVEs, but it provides a more accurate window into the vulnerabilities of each browser.  

Accuvant LABS’ analysis is based on the premise that all software of sufficient complexity and an 

evolving code base will always have vulnerabilities.  Anti-exploitation technology can reduce or 

eliminate the severity of a single vulnerability or an entire class of exploits. Thus, the software with the 

best anti-exploitation technologies is likely to be the most resistant to attack and is the most crucial 

consideration in browser security. 

An important difference between this paper and previous studies is that we’ve made our data and the 

tools used to derive the data available for scrutiny.  Previous attempts have been made to compare 

Historical Vulnerability Statistics and URL Blacklist Services; however, those studies’ conclusions have 

differed wildly from this paper’s results, and the difference in outcomes arises largely from the choice of 

data sources. We believe our own data is correctly representative of the population and have made it, 

along with our tools and methodologies, available to test this belief. Finally, we invite others to examine 

the tools for issues, or to extend and improve on them to encompass more criteria.  

We hope this paper presents readers with a definitive statement as to which browser is currently the 
most secure against common attacks, and provides criterion that vendors may use to measure and 
improve the security posture of their browsers.  Finally, it is our hope that this is helpful to others who 
work to evaluate browser security, and that they will reciprocate the open nature of this effort to help 
eliminate unverifiable data and conclusions. 



 

Browser Security Comparison – A Quantitative Approach Page| 2 of 102 
Version 0.0 Revision Date: 12/6/2011 

 

 

 

Results 
The following graph shows the results of our analysis: 

Criteria Chrome 
Internet 
Explorer 

Firefox 

Sandboxing 
   

Plug-in Security 
   

JIT Hardening 
   

ASLR 
   

DEP 
   

GS 
   

URL Blacklisting 
   

 
Industry standard 

 
Implemented 

 
Unimplemented or ineffective 

 

Conclusion 
The URL blacklisting services offered by all three browsers will stop fewer attacks than will go 

undetected.  Both Google Chrome and Microsoft Internet Explorer implement state-of-the-art anti-

exploitation technologies, but Mozilla Firefox lags behind without JIT hardening.  While both Google 

Chrome and Microsoft Internet Explorer implement the same set of anti-exploitation technologies, 

Google Chrome’s plug-in security and sandboxing architectures are implemented in a more thorough 

and comprehensive manner.  Therefore, we believe Google Chrome is the browser that is most secured 

against attack. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 3 of 102 
Version 0.0 Revision Date: 12/6/2011 

Introduction 
 

From the cellular phone to the desktop, the web browser has become a ubiquitous piece of software in 

modern computing devices. These same browsers have become increasingly complex over the years, 

not only parsing plaintext and HTML, but images, videos and other complex protocols and file formats. 

Modern complexities have brought along security vulnerabilities, which in turn attracted malware 

authors and criminals to exploit the vulnerabilities and compromise end-user systems. This paper 

attempts to show and contrast the current security posture of three major Internet browsers: Google 

Chrome, Microsoft Internet Explorer and Mozilla Firefox. 

The following sections (Anti-Exploitation Technologies, Browser Anti-Exploitation Analysis and Browser 

Add-Ons) cover anti-exploitation technologies for the browsers and their add-ons. First a general 

discussion of anti-exploitation technologies, followed by more detailed information and comparisons of 

each browser’s anti-exploitation and add-on capabilities. Lastly, our conclusions based on the 

aforementioned information and comparisons. 

All information enumeration techniques that were automated are provided in a separate archive, so 

results can be reproduced, analyzed and challenged by third parties if so desired. 

We concluded the research for this paper in July 2011. Changes and updates may occur after this paper 

is released. We may attempt to update the paper or develop errata to deal with the security evolution 

of each assessed browser. 

Finally, readers should understand that, while Google funded the research for this paper, Accuvant LABS 

was given a clear directive to provide readers with an objective understanding of relative browser 

security. 

The views expressed throughout this document are those of Accuvant LABS, based on our independent 

data collection. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 4 of 102 
Version 0.0 Revision Date: 12/6/2011 

Analysis Targets 
The following targets were selected for analysis. These targets were selected for their market share. As 

of July, 2011 a combination of Google Chrome, Microsoft Internet Explorer and Mozilla Firefox represent 

93.4% of all users accessing the Internet [W3_Schools_Market_Penetration]. While other browsers 

would have been interesting to compare, in the interest of time they were excluded from this study. 

Google Chrome 

Google, Inc. develops the Google Chrome web browser. Google released the first stable version of 

Chrome on December 11, 2008. Chrome uses the Chromium interface for rendering, the WebKit layout 

engine and the V8 Java Script engine. The components of Chrome are distributed under various open 

source licenses. We included Google Chrome versions 12 (12.0.724.122) and 13 (13.0.782.218) in our 

evaluation. 

Microsoft Internet Explorer 

Microsoft develops the Internet Explorer web browser. Microsoft released the first version of Internet 

Explorer on August 16, 1995. Internet Explorer is installed by default in most current versions of 

Microsoft Windows, and components of Internet Explorer are inseparable from the underlying operating 

system. Microsoft Internet Explorer and its components are closed source applications. We evaluated 

Internet Explorer 9 (9.0.8112.16421). 

Mozilla Firefox 

Mozilla develops the Firefox web browser. Mozilla released the first version was released on September 

23, 2002. Firefox uses the Gecko layout engine and the SpiderMonkey JavaScript engine. The 

components of Firefox are released under various open source licenses. Firefox 5 (5.0.1) was evaluated 

for this project. 

Analysis Environment 
All targets were analyzed while running on Microsoft Windows 7 (32-bit). MacOS X, Linux and other 

operating systems were excluded from the analysis to simplify analysis tasks, provide timely and 

relevant information, and to increase applicability for the majority of users. Windows 7 was chosen over 

other variants in order to compare the latest operating system supported security measures. While it is 

regrettable that other environments and targets were excluded from the analysis, the sheer magnitude 

of material to cover combined with the pace that browser technologies evolve led to these constraints. 

Analysis Goals 
The goal of our analysis was to provide a relevant and actionable comparison of the security of the three 

web browsers. Additionally, since there are several other papers that address this goal, we have 

included similar metrics in our analysis. While some of these parity metrics have noted flaws, it was our 

goal to expose those flaws so readers would be aware of them and not view their omission as oversight. 

 



 

Browser Security Comparison – A Quantitative Approach Page| 5 of 102 
Version 0.0 Revision Date: 12/6/2011 

Browser Architecture 
Browsers have evolved over time, taking on characteristics that were classically the domain of the 

operating system. Recent browser architecture uses a combination of multi-process and multi-threaded 

architecture to provide security barriers and trust zones. In the following sections, we will describe 

individual browsers' process architecture and trust zones and how these browsers function across 

process boundaries. 

Google Chrome 
Chrome uses a medium integrity broker process that manages the UI, creates low integrity processes 

and further restricts capabilities by using a limited token for a more comprehensive sandbox than the 

standard Windows low integrity mechanism. These processes are created for rendering tabs, hosting 

plug-ins and extensions out of process and GPU acceleration. The broker process creates named pipes 

for inter-process communication. 

 

 
 

The extensive use of sandboxing limits both the available attack surface and potential severity of 

exploitation. A compromised renderer process would only have access to the current process and what 

is made available through the broker process IPC mechanism. The compromised process would need a 

method of privilege escalation from low integrity with a limited token in order to persist beyond the 

process. 

Internet Explorer 
Internet Explorer uses the “loosely coupled IE” [MSDN_LCIE] model where the UI frame and tabs are 

largely independent of each other, which allows for the browser tab processes to function at low 

integrity. A medium integrity broker process creates the low integrity tabs used for browsing, hosting 

ActiveX controls, GPU acceleration and manages activity independent of tabs such as downloads and 

toolbars. 

 

• Multi-Process 
• Low Integrity Limited Token 

• Comprehensive sandboxing 

• Out of Process 

• Renderer 

• Plug-ins (Flash, Silverlight, 

etc.) 

• Extensions 

• GPU acceleration 

• Process Based Site Isolation 

• Crash & Hang recovery 



 

Browser Security Comparison – A Quantitative Approach Page| 6 of 102 
Version 0.0 Revision Date: 12/6/2011 

 

 
  

In the event of a crash, the tab is automatically reloaded the first time, allowing malicious content 

multiple attempts to succeed, or have an unsuccessful exploit attempt go unnoticed. A tab 

compromised by an exploit would have read access to the file system and any low integrity process, 

including other browser tabs. The compromised process would need a method of privilege escalation 

from low integrity to persist beyond the browser session. 

Mozilla Firefox 
Firefox uses a single process medium integrity browser process which contains the entire browsing 

session including all tabs, add-ons, GPU acceleration and more in a single address space, with the 

exception of plug-ins like Flash and Silverlight. Plug-ins are hosted out of process and independent of 

each other at medium integrity. A crash in the browser process would take down the entire browser and 

all plug-in processes. Alternatively, a crash in a plug-in process would be isolated to that single process. 

 

 
  

A compromised browser or plug-in process would not require privilege escalation to persist beyond the 

browser process. 

Summary 
The following screen shot shows the different browsers as they appear after browsing common sites. It 

is easy to see the different processes that are spawned and the different integrity levels for each 

process. 

 
• Multi-Process 
• Low Integrity 

• Sandboxing 

• Out of Process 

• Tabs 

• In-Process Plug-ins 

• Crash & Hang recovery 

 

 
• Single-Process Browser 
• Out of Process Plug-ins 

• Medium Integrity 

• Flash, Silverlight 

• In-Process Add-Ons 



 

Browser Security Comparison – A Quantitative Approach Page| 7 of 102 
Version 0.0 Revision Date: 12/6/2011 

 
Figure4. Browser processes overview 

The table below shows the processes by function and the integrity levels granted to each. A process with 

a higher integrity level represents a greater value for an attacker to compromise; however; with most of 

the higher integrity processes, an attacker can only interact with a very small attack surface. 

Process Name Pid 
Integrity 

Level 
Limited Token Description 

chrome.exe 5880 Medium No Chrome Main Broker 

chrome.exe 2072 Low Yes Chrome Renderer 

chrome.exe 3956 Low Yes Sandboxed Flash plug-in 

iexplore.exe 5732 Medium No IE UI Frame 

iexplore.exe 4476 Low No 
IE Low Integrity 

Browser 

firefox.exe 360 Medium No Firefox browser 

plug-in-
container.exe 

3064 Medium No 
Plug-in container for 

Firefox 
Figure5. Browser security overview 

With multiple processes and limited communication channels between processes, modern browsers 

provide a unique exploitation target. Merely compromising the browser, in some cases, is not enough 

for a compromise to persist past the life of the browser process. The following sections look at how 

these security barriers are implemented in order to determine which browsers provide the strongest 

resistance to compromise. 

 

 

  



 

Browser Security Comparison – A Quantitative Approach Page| 8 of 102 
Version 0.0 Revision Date: 12/6/2011 

Browser Comparison 
 

Category Google Chrome Internet Explorer Mozilla Firefox 

Vulnerability Patching    

Safe browsing API    

Sandboxing    

JIT Hardening    

Plug-in Architecture    
  

 
First rate implementation 

 
Implementation has deficiencies 

 
Not implemented 

Figure6. Browser comparison 

Historical Vulnerability Statistics 
One of the key factors to browser security is ensuring the browser is up-to-date and has the latest 

security patches. Each browser vendor has devised its own update methodology; relying on their own 

infrastructure to deliver updates. Furthermore, vendors have their own processes and procedures for 

handling, tracking, fixing and ultimately disclosing vulnerability information. Many statistics can be 

collected and analyzed by examining data from the execution of these processes. However, these 

statistics can be misleading when used to compare the relative security posture of the software. By 

analyzing the aforementioned points in finer detail, we hope to shed some light on the nuances of each 

vendor’s approach, and the relative ease with which these statistics can be misappropriated to arrive at 

a conclusion. 

Browser Comparison 
For some of the other cross-browser test cases in this paper, the results are clear-cut. A browser’s 

architecture or defensive model either blocks a given attack vector, or it does not. As described in this 

section of this document, it is difficult to draw provably unbiased conclusions when each browser 

project’s datasets differ in so many ways. A great deal of data is available, but the true quality of that 

data and its usefulness as a metric of browser security is questionable. 

In general, a move toward greater transparency in the security update process would benefit 

consumers, and create a level playing field if metrics such as vulnerability severity and the timeline from 

disclosure to release of updates are to be truly beyond the realm of being merely marketing material. 

While Accuvant LABS did not approach Microsoft for internal statistics on privately identified 

vulnerabilities and vulnerabilities with undisclosed remediation timelines, it is likely that these statistics 

exist, and could open the door for an unambiguous debate about each project’s true response time. 



 

Browser Security Comparison – A Quantitative Approach Page| 9 of 102 
Version 0.0 Revision Date: 12/6/2011 

Issues with Counting Vulnerabilities 
In the past, studies have compared browser security by comparing the number of advisories that affect 

each browser within a specific period. Advisory comparisons may be quite popular due to the availability 

of data but problems arise  when vendors issueadvisories in order to advise users to install patches, not 

to generate statistical vulnerability information. Since the intent of issuing advisories and that of 

collecting statistics regarding numbers of advisories differ, problems arise during statistical analysis. 

Vendors may fold several unique vulnerabilities into a single advisory, fold unacknowledged 

vulnerabilities and one or more acknowledged vulnerabilities into a single advisory or issue a code fix for 

a software defect without announcing that the defect has security implications. These situations 

introduce errors into any numeric analysis of comparative browser security as a result of asymmetry 

between use and intent. Although they do not adversely affect an end-user whose goal is to patch, this 

asymmetry weakens the foundation of any propositions extrapolated from the data. 

Every advisory that a vendor releases requires time and effort to document. If the vendor can fold 

multiple vulnerabilities into a single advisory, the amount of time and effort expended is reduced while 

still allowing end-users to understand the need to patch. Accuvant made an effort to mitigate this issue 

by using semi-manual analysis consisting of regular expression searches and manual review of the 

advisory text. While some errors may still exist, many were fixed within the collected data. 

Some vendors will discover vulnerabilities internally and release fixes for these vulnerabilities alongside 

patches for publicly reported vulnerabilities. Microsoft has stated that their policy is to not report 

internally discovered vulnerabilities [MSDN_SilentPatches]. Additionally, it is not beyond the realm of 

possibility that a patch meant to address one vulnerability closes a completely separate one that was 

never discovered. In order to properly account for both of these scenarios, every patch would have to 

be analyzed to determine each issue that was intentionally patched, and whether the patch closes issues 

that would have otherwise existed. It is generally accepted that it is impossible to find every 

vulnerability for a sufficiently complex system, and even in this reduced case, the likelihood of misses is 

intuitively high. Accuvant did not account for this type of error within the dataset. 

For browsers such as Firefox and Google Chrome, patches are issued in order to address software 

defects alongside security patches. As an example, if a font is rendered improperly within the browser, 

an update may be released to render the font correctly. However, by modifying the code, unless the 

developer is aware of all potential implications of their patch, the developer may inadvertently mitigate 

an undiscovered vulnerability in the code. 

If a developer could predict every implication of changing a small piece of code, there would be no need 

to put a piece of software through QA for even the smallest code change. Therefore, it is likely safe to 

assume that there are vulnerabilities that have been addressed but are not represented within the data 

based on this scenario. Due to the complexity and time required to mitigate this error, Accuvant did not 

account for this type of error within the dataset. 

Though this is not a thorough and complete account of possible errors within the dataset, they are 

representative of issues surrounding vulnerability counting. While setting up statistical measures for 



 

Browser Security Comparison – A Quantitative Approach Page| 10 of 102 
Version 0.0 Revision Date: 12/6/2011 

advisories and drawing conclusions from these measures is logically attractive and provides a cute 

graphic, vulnerability counts within software are neither ordinal nor can a complete set be derived. 

However, in the interest of parity with other documents comparing browser security, the following 

sections will display statistical measures of the ameliorated data. 

Issues Surrounding Timeline Data 
Another seemingly useful measure of vulnerability data is timeline information. When a vulnerability is 

first reported or exploited in the wild and patched by the vendor seem like interesting and security 

relevant metrics. The only sources of timeline data, outside of the software vendor companies, are the 

public advisories and bug tracking systems. The intent of advisories is to notify end users that they 

should patch and the intent of bug tracking systems is to ensure bugs are reported and remediated, 

whereas our use is to derive meaningful statistics. Again, due to this asymmetry, there are issues that 

arise when extracting timeline information. 

The first issue with timeline information stems from extracting the information from bug tracking 

systems. Since bug tracking systems are used for the purpose of ensuring bugs are patched, the 

participants may perform actions that obfuscate the time information. One example is bug duplication. 

If a vulnerability is reported twice in the tracking system, and the disclosure points to the most recent 

bug instance, then the date will be off. Another example: a vendor may receive notification of a 

vulnerability and begin work without immediately entering the vulnerability into the bug tracking 

database. In this scenario, the data will suggest a patch window of shorter duration than what actually 

took place. Accuvant made no attempt to ameliorate this discrepancy. 

The second issue with timeline information stems from non-reporting. Microsoft does not make their 

bug tracking database public and the only source of vulnerability information is contained within the 

security advisories. However, the Microsoft security advisories do not provide timeline information. 

Third parties such as VeriSign iDefense and HP TippingPoint provide a timeline of disclosure, and 

Accuvant used these third party timelines. 

The third issue with timeline information surrounds 0-day exploitation. Generally, when a vulnerability is 

exploited in the wild without vendor notification, the public only learns of the exploitation when a third 

party makes the exploitation known. A vendor may learn of the exploitation prior to the public and 

begin working on a patch. If the vendor does not admit to prior knowledge of exploitation, or provide a 

timeline, then the best date that can be derived is the date the public was informed. Accuvant used the 

public date for all 0-day exploitation timelines. 

While these three issues are representative of problems encountered when extracting timeline data, 

this is by no means an exhaustive list. Without a vendor implementing strict and rigorous cataloging of 

when vulnerability information is first received, it is impossible to determine the exact time it takes to 

patch. 



 

Browser Security Comparison – A Quantitative Approach Page| 11 of 102 
Version 0.0 Revision Date: 12/6/2011 

Issues Surrounding Severity 
The severity of issues is another metric that appears interesting to compare. If one browser has more 

“critical” patched vulnerabilities, one might assume that particular browser is less secure because the 

other browsers do not have as much critical vulnerability. Another individual might assume that the 

browser with more patched critical vulnerabilities is more secure because the other browsers may have 

more undiscovered critical vulnerabilities. However, the truth of the matter is far more complex. 

There are no solid industry accepted metrics for rating the criticality of vulnerabilities for every possible 

environment. CVSS, DREAD and several other vulnerability ranking systems are available; however, all of 

them include subjective components to arrive at an overall score. Additionally, each vendor may choose 

their own ranking methodology to arrive at a ranking for their advisories. These facts weaken any cross-

browser comparisons unless each vulnerability is analyzed and ranked by a single person and all 

subjective criteria are removed. 

Another issue involves making judgment calls regarding the severity of vulnerabilities. If a vulnerability 

cannot be exploited, it is easy to say that the severity of the vulnerability is low. However, since each 

vulnerability is unique and exploitation of vulnerabilities is an art, many of these judgment calls can be 

flawed. One such example MS-08-001 [MSDN_MS08001], and the resulting paper released by Immunity 

at [Immunity_Exploitibility_Index]. Given that even a vendor can misunderstand the implications of 

vulnerabilities, it is easy to see that a third party may not be qualified to provide a precise severity label. 

Another  issue surrounds vulnerability chaining. Since vulnerabilities are really just pieces of code that 

allow an attacker to perform operations that were not intended, a single operation may not qualify as 

high severity. However, if many low severity unintended operations can be combined in unique ways, 

then the overall chain of operations may qualify as high severity. 

Comparing vulnerabilities across vendors can lead to many issues because of a fundamental difference 

in how these vulnerabilities are ranked. Applying a ranking system can be subjective, and errors made 

due to novel exploitation strategies. An issue’s severity in isolation may be very different than the same 

vulnerability combined with others. Therefore, any security conclusions drawn based on severity metrics 

are going to be subjective. 

Issues Unique to Particular Vendors 
Each vendor also presented unique issues when collecting vulnerability data. The following subsections 

describe problems with individual browsers. 

Internet Explorer 

As previously discussed, collecting data for Internet Explorer was particularly challenging due to the 

closed nature of development at Microsoft. Beyond the challenges of data collection, we encountered 

several other difficulties during research and data collection. 

In several Microsoft security bulletins, some CVEs are mentioned as having been publicly disclosed 

without any public reference. In some cases, Microsoft may have been alerted to information from an 

obscure source. In these cases, it was not possible to obtain a valid tracking date. 



 

Browser Security Comparison – A Quantitative Approach Page| 12 of 102 
Version 0.0 Revision Date: 12/6/2011 

One considerable piece of complexity that is specific to collecting data for Internet Explorer is the way 

that Microsoft breaks down their security bulletins into various products. For example, when 

vulnerabilities are reported in Microsoft’s JScript and VBScript engines, Microsoft creates a separate 

bulletin for that product. Despite the fact that these products directly affect the security posture of 

Internet Explorer, no Internet Explorer security bulletin was released. This differs from Chrome and 

Firefox, who both ship their own respective JavaScript engines. Accuvant included a number of 

Microsoft Security Bulletins that affect critical browser components in the interest of data amelioration. 

Conversely, some vulnerabilities that were exploitable via Internet Explorer were not included. One such 

issue was CVE-2009-2495. We did not include the bulletin containing this CVE since it affects Visual 

Studio and additional third party applications built with Visual Studio. We did not include bulletins that 

were for non-essential or non-default Windows components. 

Firefox 

Despite the open nature of Firefox development, we encountered several issues while collecting data. 

First, Mozilla tends to group many issues together under the generic heading “Crashes with evidence of 

memory corruption” [Mozilla_Crashes_Evidence]. Fortunately, Mozilla includes all related bug numbers 

for these advisories. This inclusion allowed Accuvant to split these issues apart based on bug number, 

tracking each one individually. 

The last Mozilla specific issue occurred when gathering bug report dates. Accuvant encountered tickets 

that were not accessible. It is possible that tickets were never opened despite the issues having been 

publicly disclosed. For these twelve bugs, time-to-patch information is not available. 

Chrome 

Unlike Mozilla and Microsoft, the Chrome team does not release formal security advisories. Instead, 

security relevant bugs that are fixed are posted to the Chrome Stable Release blog. For releases prior to 

3.0.195.25, detailed bug fix information is available from the development channel release notes 

[Chromium_Release]. When gathering data from the Chromium release notes, Accuvant excluded posts 

that did not contain any security fixes or those that included only an updated Flash Player. 

Another issue that cropped up deals with Chrome’s version scheme. For the sake of consistency, 

Accuvant devised a custom milestone numbering scheme derived from the first two parts of the version 

number and a counter. The counter is incremented for each security-relevant release. For example, the 

second security fix release for Chrome 10 would be called “m10.0u2”. 

Although Chrome ships with a customized version of Flash Player, vulnerabilities affecting Flash will not 

be included in the analysis. Flash was excluded in order to present only the vulnerabilities inherent to 

the Chrome browser. 

Similar to Firefox data collection, date information was gathered from the public Chrome bug tracker. 

Unfortunately, a large number bugs were not publicly accessible. In those cases, the dataset was 

augmented with data supplied by Google. 



 

Browser Security Comparison – A Quantitative Approach Page| 13 of 102 
Version 0.0 Revision Date: 12/6/2011 

Data Gathering Methodology 
Accuvant attempted to generate a dataset that was granular to the individual vulnerability level to avoid 

issues arising from vendors folding multiple vulnerabilities into a single CVE. After gathering information 

about advisory releases, discussed further in the “Security Updates” section below, Accuvant proceeded 

to examine each issue individually. For each issue, the following information was collected and manually 

checked for consistency: vendor bug identifier, CVE identifier, severity, date reported and date 

disclosed. 

The resulting dataset, which covers the period between January 1, 2009 and June 28, 2011, was used 

throughout the rest of this section. The dataset includes versions of Firefox from 2.0 to 5.0, versions of 

IE from IE6 to IE9 and all stable releases of Chrome. 

Update Frequencies 
When designing a security update program, each vendor has policies and procedures in place to perform 

QA and, subsequently release the updates to end users. Browser development teams operate on a pre-

set schedule for major version releases. This preset schedule is apparent within the data collected. 

In addition to major releases, browser manufacturers also routinely provide updates that specifically 

address security vulnerabilities and other urgent issues. In some rare cases, such as when widespread 

attacks are taking place on the Internet, vendors will issue emergency updates. These emergency 

updates differ from periodic updates because the quality assurance cycle faster than usual, and end-

user communication needs to reach a wide audience. Different vendors have varying difficulties in 

executing emergency patch updates, and this shows in the data. 

The following sections provide some analysis for the patch data. The differences between vendors are 

demonstrative of different development practices and overhead in the patching process. Although it is 

tempting to derive conclusions from the graphs, the only fair conclusion is that they are just different. 

Internet Explorer 

By examining the frequency of Microsoft Security Bulletins with the title “Cumulative Security Update 

for Internet Explorer”, as seen in Figure 6, one can deduce that the IE team typically aspires for a two-

month release cycle. In some cases, such as MS09-034 or MS10-002, Microsoft deviated from their 

cycle. Both of these deviations were necessitated by outside pressure. Other than those examples, 

Microsoft’s release process for bulletins with the title “Cumulative Security Update for Internet 

Explorer” is very regular. 

 



 

Browser Security Comparison – A Quantitative Approach Page| 14 of 102 
Version 0.0 Revision Date: 12/6/2011 

 
Figure 1. Cumulative Security Update for Internet Explorer 

 
As previously noted, Microsoft tends to split components that directly affect Internet Explorer from 

Internet Explorer-related advisories. When all Internet Explorer-related updates are included within the 

timeline, the overall impression garnered from the graphs is that updates occur much less regularly. 

 
Figure 2. Updates not released under “Cumulative Security Updates for Internet Explorer” 

This irregularity may be an artifact resulting from the divisions between development groups at 

Microsoft, or it may be due to different quality assurance processes applied to particular patches. In 

either case, a less regular update schedule has no direct impact on security. While it may be harder to 

apply updates on a non-scheduled basis, this difficulty is indicative of issues in patch deployment 

infrastructure rather than something that is intrinsic to the browser. 

MS09-002 

MS09-014 

MS09-019 

MS09-034 

MS09-054 

MS09-072 

MS10-002 

MS10-018 

MS10-035 

MS10-053 

MS10-071 

MS10-090 

MS11-003 

MS11-018 

MS11-050 

Jan
-0

9

Fe
b

-0
9

M
ar-0

9

A
p

r-0
9

M
ay-0

9

Ju
n

-0
9

Ju
l-0

9

A
u

g-0
9

Se
p

-0
9

O
ct-0

9

N
o

v-0
9

D
e

c-0
9

Jan
-1

0

Fe
b

-1
0

M
ar-1

0

A
p

r-1
0

M
ay-1

0

Ju
n

-1
0

Ju
l-1

0

A
u

g-1
0

Se
p

-1
0

O
ct-1

0

N
o

v-1
0

D
e

c-1
0

Jan
-1

1

Fe
b

-1
1

M
ar-1

1

A
p

r-1
1

M
ay-1

1

Ju
n

-1
1

IE Security Updates 

MS09-002 

MS09-007 

MS09-014 

MS09-019 

MS09-029 

MS09-034 

MS09-037 

MS09-046 

MS09-051 

MS09-072 

MS10-001 

MS10-002 

MS10-007 

MS10-018 

MS10-022 

MS10-033 

MS10-043 

MS10-046 

MS10-053 

MS10-062 

 
MS10-076 

MS10-090 

MS11-002 

MS11-003 

MS11-018 

MS11-044 

Jan
-0

9

Fe
b

-0
9

M
ar-0

9

A
p

r-0
9

M
ay-0

9

Ju
n

-0
9

Ju
l-0

9

A
u

g-0
9

Se
p

-0
9

O
ct-0

9

N
o

v-0
9

D
e

c-0
9

Jan
-1

0

Fe
b

-1
0

M
ar-1

0

A
p

r-1
0

M
ay-1

0

Ju
n

-1
0

Ju
l-1

0

A
u

g-1
0

Se
p

-1
0

O
ct-1

0

N
o

v-1
0

D
e

c-1
0

Jan
-1

1

Fe
b

-1
1

M
ar-1

1

A
p

r-1
1

M
ay-1

1

Ju
n

-1
1

IE and Related Security Updates 



 

Browser Security Comparison – A Quantitative Approach Page| 15 of 102 
Version 0.0 Revision Date: 12/6/2011 

Firefox 

The Firefox team is less predictable when releasing updates for its suite of products. As seen in Figure 9, 

Firefox has no pre-set pattern that determines release updates. In some instances, Mozilla has released 

updates in quick succession, within only a few days. Other times, up to three months passed without an 

update release. Note that this data treats multiple advisories released on the same day as a single 

update event. In some cases, Mozilla has released as many as 15 advisories on the same day. 

 

 
Figure 3. Mozilla Foundation security advisories affecting Firefox over time 

The graph in Figure 8 is far less regular than either one of the Microsoft Internet Explorer graphs. This 

irregularity most likely stems from a fundamentally different approach to development, and a 

fundamentally different organization structure. However, these differences cannot be used to draw any 

security relevant conclusions. 

Chrome 

Google, like Mozilla, does not have a rigid update release schedule. Based on the data in Figure 9, 

Chrome tends to release updates more frequently than both Mozilla and Microsoft. Note that this data 

does not include Flash-only or non-security updates. 

2009-06 

2009-11 

2009-12 

2009-14 

2009-23 

2009-32 

2009-41 

2009-39 

2009-43 

2009-45 

2009-49 

2009-54 

2009-69 

2010-03 

2010-08 

2010-14 

2010-16 

2010-25 

2010-32 

2010-40 

2010-52 

2010-67 

2010-73 

2010-82 

2011-02 

2011-11 

2011-16 

2011-23 

Jan
-0

9

Fe
b

-0
9

M
ar-0

9

A
p

r-0
9

M
ay-0

9

Ju
n

-0
9

Ju
l-0

9

A
u

g-0
9

Se
p

-0
9

O
ct-0

9

N
o

v-0
9

D
e

c-0
9

Jan
-1

0

Fe
b

-1
0

M
ar-1

0

A
p

r-1
0

M
ay-1

0

Ju
n

-1
0

Ju
l-1

0

A
u

g-1
0

Se
p

-1
0

O
ct-1

0

N
o

v-1
0

D
e

c-1
0

Jan
-1

1

Fe
b

-1
1

M
ar-1

1

A
p

r-1
1

M
ay-1

1

Ju
n

-1
1

Firefox Security Updates 



 

Browser Security Comparison – A Quantitative Approach Page| 16 of 102 
Version 0.0 Revision Date: 12/6/2011 

Figure 4. Chrome Security Update over time 

The graph in Figure 9 appears more regular than Firefox but less regular than Internet Explorer’s update 

graphs. The similarities with Firefox might stem from a more similar approach to development and a 

more similar corporate structure when compared to Microsoft. The increased regularity when compared 

to Firefox’s update release may be due to differences in quality assurance testing. However, no security 

conclusions can be drawn from any of these graphs. 

Reflections 

Over the past 54 months, many updates have been for released for each browser. Chrome has 

conducted 47 update events. Mozilla has conducted 29, although the number of individual advisories 

reached 178. Microsoft has only conducted 27 update events, with 62 individual bulletins, due to their 

more rigid update release cycle. 

While each vendor has different practices and procedures, all of them are roughly comparable. Chrome 

clearly stands out as being the most frequently updated of the three; based strictly on the number of 

update events, regularity of updates, and method by which the browser itself updates. 

Given all this information, we can conclude that the browsers are different. Development 

methodologies, corporate structure and patch release infrastructure all play a role in making dissimilar 

graphs. However, none of these pieces of information can be used to draw a security related conclusion. 

Publicly Known Vulnerabilities 
Vulnerabilities within web browsers have become an increasingly common way for an attacker to 

compromise an end user’s system. It seems intuitive that a larger number of patched vulnerabilities 

1/28/2009 

2/3/2009 

4/23/2009 

5/5/2009 

5/7/2009 

6/9/2009 

6/22/2009 

7/16/2009 

8/25/2009 

9/15/2009 

9/30/2009 

10/12/2009 

11/5/2009 

11/12/2009 

1/25/2010 

2/10/2010 

3/17/2010 

3/30/2010 

4/20/2010 

4/27/2010 

5/25/2010 

6/8/2010 

6/24/2010 

7/2/2010 

7/26/2010 

8/19/2010 

9/2/2010 

9/14/2010 

9/17/2010 

10/19/2010 

11/4/2010 

12/2/2010 

12/13/2010 

1/12/2011 

2/3/2011 

2/8/2011 

2/28/2011 

3/8/2011 

3/11/2011 

3/24/2011 

4/14/2011 

4/27/2011 

5/13/2011 

5/24/2011 

6/7/2011 

6/28/2011 

Jan
-0

9

Fe
b

-0
9

M
ar-0

9

A
p

r-0
9

M
ay-0

9

Ju
n

-0
9

Ju
l-0

9

A
u

g-0
9

Se
p

-0
9

O
ct-0

9

N
o

v-0
9

D
e

c-0
9

Jan
-1

0

Fe
b

-1
0

M
ar-1

0

A
p

r-1
0

M
ay-1

0

Ju
n

-1
0

Ju
l-1

0

A
u

g-1
0

Se
p

-1
0

O
ct-1

0

N
o

v-1
0

D
e

c-1
0

Jan
-1

1

Fe
b

-1
1

M
ar-1

1

A
p

r-1
1

M
ay-1

1

Ju
n

-1
1

Chrome Security Updates 



 

Browser Security Comparison – A Quantitative Approach Page| 17 of 102 
Version 0.0 Revision Date: 12/6/2011 

imply that a particular browser is less secure; however, this is not the case. The reason is that the 

number of patched vulnerabilities does not indicate the number of vulnerabilities within a given code 

base. As an example, consider the following chart: 

 

 
Figure 5. Total vulnerability counts for each browser 

The chart depicts the total number of vulnerabilities patched within the period of the dataset. A naïve 

interpretation would be that Firefox is the least secure, Chrome is in the middle and Internet Explorer is 

the most secure. However, what this could indicate is that Firefox has the most vulnerabilities because 

researchers have an easy time exploiting the vulnerabilities and thus pay more attention to Firefox. 

Chrome may have the second most because they offer a bounty program so researchers pay more 

attention. Internet Explorer may have the least because they require more quality assurance overhead 

before creating a patch. The point is, any conclusion drawn from the data is speculation and the data 

does not aid in discovering which browser is most secure. 

Vulnerabilities by Severity 
Another way to look at the data is to look at the number of vulnerabilities in each browser broken down 

by severity. This breakdown seems attractive because if one browser has more highly critical 

vulnerabilities compared to the others, then it would appear to be less secure. However, another 

argument would be that a browser with more highly critical vulnerabilities disclosed puts an emphasis 

on fixing these vulnerabilities as soon as possible. In rebuttal, the browser with the most high severity 

vulnerabilities may have a bad architecture that contributes to more severe vulnerabilities. The truth of 

the matter is far more complex, and these uncertainties are better documented in the Historical 

Vulnerability Statistics section of this paper. 

  

449 

168 

321 

0 100 200 300 400 500

Firefox

IE

Chrome

Vulnerabilites 

Vulnerabilites



 

Browser Security Comparison – A Quantitative Approach Page| 18 of 102 
Version 0.0 Revision Date: 12/6/2011 

As a concrete example of these issues, consider the following chart: 

 
Figure 6. Vulnerabilities by severity for each browser 

The differences between browsers are quite dramatic. Firefox, Internet Explorer and Chrome all appear 

to have a very different severity profile. A naïve determination might be that Firefox has the worst 

security, Internet Explorer is in the middle and Chrome has the best security. However, since risk ratings 

are designed to convey urgency for the end user to patch, the only real conclusion that can be drawn is 

that Mozilla applies a higher risk rating to convey their message and Google feels comfortable rating 

their vulnerabilities with a lesser severity. Any conclusions drawn from this type of data regarding the 

inherent security posture of the code base are ill founded. 

Time to Patch 
The amount of time it takes for a vendor to go from vulnerability awareness to a fix can be seen as a 

security commitment indicator. However, the reality is not so simple. Internet Explorer has such a deep 

integration with the Windows operating system that a change in Internet Explorer can have 

repercussions throughout a much larger code base. In short, the average time to patch is less indicative 

of a commitment to patch, as it is of complications with providing a good patch. 

In Figure 12 below, it is clear that Microsoft’s average time to patch is the slowest. To be fair, this 

information was based on a much smaller sample set than Firefox and Chrome. Even worse, it may be 

possible that the advisories for these vulnerabilities had timeline information only because of the fact 

that they had taken so long to patch. 

Firefox comes in second, taking an average of 50 days less than Microsoft to issue a patch. The browser 

with the fastest average time to patch is Chrome. With an average of 53 days to patch vulnerabilities, 

they are nearly three times faster than Firefox and slightly more than four times faster than Microsoft. 

363 

23 36 27 

125 

31 
12 0 

15 

189 

64 52 

0

50

100

150

200

250

300

350

400

Critical High Medium Low

Firefox

IE

Chrome



 

Browser Security Comparison – A Quantitative Approach Page| 19 of 102 
Version 0.0 Revision Date: 12/6/2011 

 
Figure 7. Average time to patch for all three browsers 

Time to patch is not a good indicator of a browser’s susceptibility to compromise. Some vendors may 

prioritize patching efforts to address high impact vulnerabilities quickly, while neglecting less severe 

vulnerabilities. Some vendors may address “easy fix” vulnerabilities quickly and neglect more severe 

vulnerabilities. Additionally, the only metric that can be tracked is the date a vendor was made aware of 

a vulnerability or the date it was detected in the wild, which neglects 0-day vulnerabilities and skews the 

metric for vulnerabilities that took time to detect in the wild. Finally, the quality of the data that could 

be collected is great for Chrome, good for Firefox and terrible for Internet Explorer. Since these issues 

cannot be corrected, making strong security comparisons between browsers on that basis is not 

feasible. 

What it does show is the respective vendor’s efficiencies in their response processes for vulnerabilities 

that we can track. Google’s update mantra for Chrome is “Release Early, Release Often” and this is 

reflected within their lower average time to patch. Firefox is slightly less efficient at delivering updates 

to end users, and according to the data, Internet Explorer is the least efficient. However, both Firefox 

and Internet Explorer’s code bases are more heavily integrated with other products. Therefore, the 

additional overhead may be due to coordination of releases and additional QA to ensure stable patches. 

  

158 

214 

53 

0

50

100

150

200

250

Firefox Internet Explorer Chrome

Average Time to Patch 



 

Browser Security Comparison – A Quantitative Approach Page| 20 of 102 
Version 0.0 Revision Date: 12/6/2011 

URL Blacklist Services 
The stated intent of URL blacklisting services is to protect a user from him or herself. When a link is 

clicked inadvertently, via a phishing email or other un-trusted source, the browser warns the user “are 

you sure?” and displays a warning that the site might be unsafe based on a list of unsafe URLs regularly 

updated as new malware sites go live and are taken offline. Microsoft’s URL Reporting Service (from 

here forward, “URS”), formerly “Phishing Filter”, referred to in the browser application as “SmartScreen 

Filter”, was the first to provide this feature, with Google’s Safe Browsing List (“SBL”) following suit later, 

utilized initially by Mozilla Firefox, and now by Chrome as well as Safari. 

Both services utilize functionally similar approaches, storing a local copy of hashed URLs in the blacklist, 

and sending the hash value of a URL to a public web service for validation if it doesn’t exist in the local 

table. Google’s API is publically documented and accessible to anyone who wishes to develop a client 

within terms-of-use constraints, while Microsoft’s is proprietary and specific to the Internet Explorer 

browser only. 

Comparing Blacklists 
URL blacklisting is another area where metrics are challenging, not in that the metrics are difficult to 

generate, but in that in our analysis, neither Google’s Safe Browsing service nor Microsoft’s URS appears 

to provide a fully comprehensive snapshot of all malware in the wild at any given point in time. Other 

blacklist and early-warning services, such as those used for botnet detection or spam prevention, also 

differ greatly in content, so this isn’t entirely unexpected. An apt analogy might be Signals Intelligence in 

the military. Two monitoring stations tracking enemy communications in two geographic areas both 

intercept some enemy radio traffic, but neither station picks up every single message, so neither has a 

complete picture. 

 “Antivirus-via-HTTP” 
Like antivirus, URL blacklists implement a negative security model, or an antipattern-based approach 

(“that which is not expressly denied is permitted”, as opposed to “that which is not expressly permitted 

is denied”). This means that URL blacklists do not protect well against customized payloads created for a 

specific target, or against small-batch propagation to a limited user population. 

However, URL blacklists do provide a deterrent against mass deployment of fast-flux malware to large 

user populations, with the benefit of rapid updates due to the realtime delivery of these services. As 

with other blacklist services like SMTP Realtime Blackhole Lists, URL blacklists provide one part of a 

larger set of defensive measures that helps to improve the overall security posture of the browser. 

Multi-Browser Defense 
Another criterion to consider in the case of URL blacklists is the fact that while MS URS was 

implemented to protect against threats targeting Internet Explorer, Google’s SBL primarily is in use to 

defend against attacks targeting the other three major browsers. While multi-browser attacks are 

increasingly common, attacks specific to Internet Explorer still outnumber those targeting the other 

three browsers with less market share. While not material to this paper per se, it is worth noting that by 



 

Browser Security Comparison – A Quantitative Approach Page| 21 of 102 
Version 0.0 Revision Date: 12/6/2011 

definition, the number of URLs blacklisted in Microsoft’s URS should be higher, based on the MS URS’ 

stated purpose. 

Comparing Blacklist Services 
A previous third-party study of blacklist services used an undisclosed set of sample URLs for the 

generation of browser tests. Samples were from a number of private sources, and results appeared to 

skew heavily toward Microsoft’s URS. 

For our purposes, Accuvant used four public sources for active malware URLs: MalwareDomains, 

MalwarePatrol, BLADE and MalwareBlackList. This approach has the advantage of providing public 

attribution of sources, de-emphasizing private feeds and undisclosed sources that may favor one 

blacklist over another. In particular, since Microsoft licenses several private feeds to populate the URS 

list, Accuvant LABS wanted to ensure that our test dataset did not mirror Microsoft’s too closely. 

Likewise, our analysis didn’t make use of Google’s internal SBL source material either. Our intent was to 

replicate a fairly broad sample of malware URLs in the wild, with minimal bias toward either blacklist 

being evaluated. 

Comparison Methodology 
Accuvant LABS performed daily downloads of the current blacklists from the malware URL sources 

above, removed duplicates and utilized browser automation to request each URL with Internet Explorer 

9, recording whether the URL was reported unsafe by the MS URS service. Because Chrome and Firefox 

both utilize the Google SBL, an API client queried the Safe Browsing API during the same period, again 

recording the results for each page requested. 

Due to restrictions of the testing environment and the desire to maintain a strictly independent test 

flow, Microsoft’s application reputation component and Chrome’s malicious executable detection were 

not included in the comparison. Additionally, tests against Google SBL were performed directly using the 

public Lookup API, which does not account for detection in redirect chains or have access to the full 

blacklist used by the Chrome and Firefox Clients. As such, we would expect real world detection rates to 

vary slightly from those in the report. We intend to investigate more direct methods of comparison in 

future studies. 

Testing took place over an eight-day period, from July 23, 2011 through July 30, 2011, with an average of 

5960 URLs per day. Of these samples, an average of 3086 per day was live and responding during the 

test period. Dead hosts were discarded from the sample set as not posing a threat during the testing 

period. 

Results Analysis 
Overall, neither service identified a majority of URLs from the diverse sample set. On average, both 

services identified nearly an identical number of URLs, though the URLs identified differed. Over the 

course of testing, 42 URLs present in the MS URS were also flagged by Google’s SBL, while no SBL URLs 

were identified at any time that was in the MS URS. This demonstrates that both services use 



 

Browser Security Comparison – A Quantitative Approach Page| 22 of 102 
Version 0.0 Revision Date: 12/6/2011 

substantially different data sources, and that no one service appears to have a truly comprehensive 

dataset of all malware present on the web. 

Gathering intelligence about malware URLs is generally performed by running honeypots and spam-

traps, and harvesting URLs from malware captured in the wild. Since no authoritative source exists, it is 

likely that each organization gathering data is getting one part of the overall picture. Based on 

Accuvant’s analysis, no party is performing this data collection comprehensively. During the course of 

testing, our test environment was infected numerous times by malware that was not in the database of 

either URL blacklist service. 

The table below lists the daily results of testing, averages, and the number of total URLs versus 

confirmed-live URLs in the sample set. Overall, both URL blacklists performed roughly the same in terms 

of number of URLs identified as malware, with minor variances each day. 

 

Date 7/23 7/24 7/25 7/26 7/27 7/28 7/29 7/30 Average 

Google SBL 
Matches 

409 411 411 422 393 396 397 404 405 

Microsoft 
URS 

Matches 
361 336 364 371 401 447 499 450 404 

Total URLS 5684 5724 5738 6128 6145 6089 6149 6025 5960 

Live URLS 2993 2948 3040 3416 3128 3043 3115 3003 3086 
Figure 8. URL blacklists over time 

  



 

Browser Security Comparison – A Quantitative Approach Page| 23 of 102 
Version 0.0 Revision Date: 12/6/2011 

The daily detail below shows the gap between the numbers of live URLs provided versus those identified 

by either service. 

 
Figure 9. Malware URL vs. sample set 

  



 

Browser Security Comparison – A Quantitative Approach Page| 24 of 102 
Version 0.0 Revision Date: 12/6/2011 

The table below shows the rolling daily averages of the two blacklist services, showing an overall trend 

toward near parity in the number of URLs identified. 

 
Figure 10. Average detected malware URLs 

 
Figure 11. Daily detected malware URLs 



 

Browser Security Comparison – A Quantitative Approach Page| 25 of 102 
Version 0.0 Revision Date: 12/6/2011 

In the daily detail view, it’s clear that on one day, July 29, a large update was made to the MS URS, 

possibly due to a specific threat that was identified, or a weekly update. Again, this demonstrates that 

data sources for both services appear to be quite different. The trend lines seem to indicate that 

Google’s SBL undergoes more incremental updates, whereas the MS SBL may be receiving updates in 

batches, though a longer sample period (several months or more) would be required to confirm this. 

Conclusions 
Based on our testing, it seems clear that no URL blacklisting service is fully comprehensive, and that any 

antipattern-based defensive measure is, by definition, imperfect. As with antivirus, the question is not 

whether the pattern-based detection will fail, but when and how. As such, blacklisting services should be 

considered a part of the overall browser defense model, rather than the only perimeter an attacker 

must traverse. 

Other defenses discussed elsewhere in this paper, such as exploit mitigation and other approaches to 

limiting the extent of the damage from a given payload, are likely a better criteria for browser security 

than simple pattern matching alone. 

 
Figure 12. Blacklist overview 



 

Browser Security Comparison – A Quantitative Approach Page| 26 of 102 
Version 0.0 Revision Date: 12/6/2011 

Anti-exploitation Technologies 
The premise of this paper was to evaluate the overall security of each web browser selected. We 

achieved this by evaluating security controls independently and formulating a conclusion based on the 

security controls in place. This section provides information on distinct security controls and their 

relevance within this paper. 

Address Space Layout Randomization (ASLR) 
Address Space Layout Randomization (ASLR) attempts to make it harder for attackers to answer the 

question ‘where do I go’. By taking away the assumption of known locations (addresses), the process 

implementing ASLR makes it much more difficult for an attacker to use well-known addresses as 

exploitation primitives. One key weakness of ASLR is the ability for one module to ruin it for the rest, a 

weak link in an overall strong chain. During analysis, each executable used by a browser was evaluated 

to ascertain its ability to implement proper randomization. 

Data Execution Prevention (DEP) 
One of the first steps in compromising a system is achieving arbitrary code execution, the ability run 

code provided by the attacker. During traditional exploitation scenarios, this is achieved by providing the 

compromised application with shellcode, data furnished by the attacker to be run as code. Data 

Execution Prevention (DEP) addresses the problem of having data run as code directly. DEP establishes 

rules that state: “Only certain regions of memory in which actual code resides may execute code. 

Safeguard the other areas by stating that they are non-executable”. Our audit included querying each 

browser process about its ability to establish a DEP policy at run time. 

Stack Cookies (/GS) 
Due to common programming errors, archaic APIs and trusted user input, stack-based buffer overflows 

have been leveraged to gain code execution on Intel-based architectures for over 30 years. Microsoft 

compilers (all three browsers tested were compiled with Microsoft Visual Studio 2005 or greater) have 

the ability to put a stack cookie on the stack at compile time. This cookie can be validated, certifying the 

stack variables’ integrity upon returning to the caller. The /GS mechanism can re-order the variables on 

the stack as an attempt to prevent overflow-able variables from tainting other local variables, avoiding a 

future change in code execution [Microsoft_GS]. Executables used and installed by each browser were 

examined for characteristics of being compiled with /GS. Unfortunately, this is a flawed process, due to 

the nature of /GS. 

Note: Although a library may have been compiled with the stack cookie feature, if it has no functions 

that meet the /GS requirements, then there will be no trace of the compilation feature. 

SafeSEH/SEHOP 
Other addresses used for code execution, other than the saved return address, became necessary due 

to the advent of the /GS compilation flag. The next logical candidate was the Structured Exception 

Handling (SEH) information residing on the stack. These exception handlers could be overwritten to 

execute data disguised as code at an address of the attacker’s choosing; completely circumventing the 

security attempts of the stack cookie. SafeSEH was designed to ensure that only the addresses of 



 

Browser Security Comparison – A Quantitative Approach Page| 27 of 102 
Version 0.0 Revision Date: 12/6/2011 

validated exception handlers could be executed. Unfortunately, SafeSEH requires full code rebuilds with 

the SafeSEH compiler option enabled. The limitations of SafeSEH brought on the invention of Structured 

Exception Handler Overwrite Protection (SEHOP). Instead of validating that an image contained safe 

exception handlers, the exception handler code changed; validating the entire chain before dispatching 

an exception [Microsoft_SEHOP]. Because SEHOP was disabled by default on Windows 7 SP1 

[Microsoft_SEHOP_KB], no additional testing regarding SEH overwrite exploit mitigation was completed. 

Sandboxing 
A sandbox is a mechanism of isolating objects/threads/processes from each other in an attempt to 

control access to various resources on a system. At the time of this writing, Google Chrome and 

Microsoft Internet Explorer both implement security restrictions that are considered a sandbox. The 

following entries describe the unit tests used to assess sandbox effectiveness. Although not 

comprehensive, the tests provide good insight into the overall protection provided by each sandbox. 

File System 

A proper sandbox should attempt to limit certain processes from accessing files and directories that may 

contain vital system information or used in a context that could result in executing code of the attacker’s 

choosing. We augmented Chrome’s file test cases, resulting in full read/write testing of integral 

Windows files and directories. 

Registry 

Limiting access to the Windows Registry is integral to maintaining system integrity. By limiting access to 

the registry, the sandbox can ensure that sensitive information cannot be obtained, altered or added. 

We chose to test a variety of registry hives with the maximum permissions available. 

Network Access 

Although file system and registry access may be limited to an attacker, it is still important to ensure that 

information cannot be leaked via the network. We tested the sandbox’s ability to limit outbound 

network access along with determining if a port could be bound to the current process for listening. 

Resource Monitoring 

Certain techniques are prevalent within most spyware utilities. Malware authors may need the ability to 

read portions of the screen (i.e. take screenshots) or log input from the keyboard. We included tests 

that attempted to read pixels on the current display along with attempts to log keyboard input. 

Processes/Threads 

While it’s necessary for many processes and threads to run concurrently on a system, arbitrary access to 

them is debatable. A sandboxed process should have very limited access to other processes and threads 

on a system. Our test cases enumerated the security permissions for every thread and process on a 

system from the perspective of the sandboxed process. 

Handles 

Windows keeps track of entire important objects (windows, buttons, files, etc.) for future reference 

within the system. Each object is tracked via a unique HANDLE. By enumerating all the handles on the 



 

Browser Security Comparison – A Quantitative Approach Page| 28 of 102 
Version 0.0 Revision Date: 12/6/2011 

system and validating access permissions, we determined how processes from inside the sandbox 

communicate with other objects running on the operating system. 

Windows Clipboard 

The Windows clipboard provides functionality to permit multiple applications to transfer data 

[Microsoft_Clip]. By limiting the ability to set and receive data via the clipboard, a sandbox can reduce 

the likely hood that attacker-supplied data will be used in a malicious manner. Our tests evaluated the 

capabilities of the browser process to use the clipboard functionality. 

Windows Desktop 

Most people are familiar with the Windows desktop because it is the first thing they see after login; 

however, desktops also group windows together in the same security context [Chrome_Sandbox]. We 

tested the functionality to change and create desktops to evaluate process isolation. 

System Wide Parameters 

Alteration of system wide parameters by an unauthorized user could lead to an undesirable effect on 

system stability and security. We conducted tests to evaluate security constrictions around getting and 

setting system wide parameters. 

Windows Messages 

Windows messages are fundamental to inter-window communication, but unprivileged processes 

should be limited to where these messages are sent. We put test cases in the harness to determine if 

broadcast messages could be sent to all other windows (on the same desktop) via the sandboxed 

process. 

Windows Hooks 

Windows hooks are used to monitor various types of system events. The hooking functionality adds a 

hook to the chain in anticipation of performing an action based on standard windows events 

[Microsoft_SWH]. The same hooking functionality can also be used by malware authors; for example, 

hooking keyboard actions to monitor user input. Our tests determined if Windows hooks are permitted 

via SetWindowsHookEx() API. 

Named Pipes 

Named pipes are one-way or two-way pipes used for client/server communication [Microsoft_Pipes], 

which can also be used for local Inter Process Communication (IPC). Since named pipes are used for 

communication, reducing the set of named pipes that the browser can talk to reduces the overall attack 

surface for a potential attacker. Our test harness assessed some well-known named pipes on Windows 7 

(32-bit). 

JIT Hardening 
JIT engines by necessity emit executable code, often at predictable locations in an application’s address 

space. However, the presence of predictable code can weaken the security of a piece of software by 

simplifying the process of exploiting vulnerabilities elsewhere in the same address space. Technologies 



 

Browser Security Comparison – A Quantitative Approach Page| 29 of 102 
Version 0.0 Revision Date: 12/6/2011 

like ASLR and DEP already exist for compiled binaries, but are not effective protections for JIT engines. 

As such, different mechanisms would be necessary to achieve a comparable effect. 

 JIT code must currently be emitted in-process. 

 Scripting engines provide a robust method that exploits often use to prepare the address space 

in order to be successful. 

 JIT compilation bridges the distinction between data and code, which reduces the effectiveness 

of standard mitigation techniques, such as DEP. 

JIT hardening is important because it can reduce the exploitability and impact of vulnerabilities in other 

software within the same address space. As a result, the larger the scope of the process, the more 

important JIT hardening becomes. 

JIT Hardening Techniques 

Codebase Alignment Randomization 

The code emitted by JIT engines can begin with a random number of NOP or INT 3 instructions to 

randomize the alignment of the instructions within. This prevents the prediction of specific instructions 

within emitted code. 

Emitted Instructions Hex Encoding 

nop  90 

nop  90 

nop  90 

push ebp 55 

mov ebp, esp 8BEC 

push esi 56 
Figure 13. Example of codebase alignment randomization 

Instruction Alignment Randomization 

Even if the codebase offset is randomized, the internal alignment of basic blocks may allow for the 

accurate prediction of instructions. To prevent this, NOP instructions can be randomly inserted during 

compilation to randomize the alignment of subsequent instructions. 

Constant Blinding 

User controllable values can be obfuscated by XOR encoding the constant values with a random cookie 

during compilation and emitting two instructions that will de-obfuscate the value at runtime. This 

prevents constant values from being present in executable memory, therefore cannot be used to seed 

code that could be used during a later stage of an exploit. 

Value Emitted Instructions Resulting Hex Code 

0x02222222 
mov eax, 89EF3D74 
xor eax, 8BCD1F56 

b8743def89 
35561fcd8b 



 

Browser Security Comparison – A Quantitative Approach Page| 30 of 102 
Version 0.0 Revision Date: 12/6/2011 

0x22222222 
mov eax, A9EF3D74 
xor eax, 8BCD1F56 

b8743defa9 
35561fcd8b 

0x12345678 
mov eax, 99F9492E 
xor eax, 8BCD1F56 

b82E49f999 
35561fcd8b 

Figure 14. Example of constant binding 

Constant Folding 

The possible values that can be emitted as instructions are limited by instead emitting the folded value. 

The result is that only even constant values will appear as instruction operands. 

Script Emitted Instruction 

x = 1; mov eax,00000002 

x = 0x1111; mov eax,00002222 
Figure 15. Example of constant folding 

Memory Page Protection 

If the code emitted by a JIT engine is not modified after the initial compilation, it will only require the 

PAGE_EXECUTE memory protection. This will result in a crash if targeted by a memory leak or memory 

corruption. If the JIT engine requires that the code be updated dynamically, the page protection can be 

temporarily changed to PAGE_EXECUTE_READWRITE for the modification. PAGE_EXECUTE_READWRITE 

is the least secure memory protection. 

Resource Constraints 

A constraint can be placed on the total executable allocations allowed by the JIT engine. The total size of 

compiled code is often very small. The source is likely malicious if large amounts of code are being 

emitted. Placing a constraint on the total executable memory prevents the bypass of ASLR and DEP 

through address space exhaustion. 

Additional Randomization 

The JIT engine can attempt to specify a random address at which to allocate executable memory 

manually instead of using the default OS behavior. ASLR does randomize the base address to not be 

completely predictable, but the significance of this decreases for many allocations where multiple large 

allocations will often result in a contiguous block of memory which then becomes predictable. 

Additional randomization can prevent the spraying of large amounts of code at predictable addresses. 

Guard Pages 

If the memory page protections must be PAGE_EXECUTE_READWRITE, guard pages can be placed before 

each region of executable memory to protect against memory corruption from crossing page 

boundaries. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 31 of 102 
Version 0.0 Revision Date: 12/6/2011 

Browser Anti-Exploitation Analysis 
Each of the browsers selected for the study were put through rigorous tests, including but not limited to, 

statistical vulnerability analysis, plug-in architecture review, malware prevention analysis and simulated 

sandbox review. These tests attempt to give an accurate representation of the browser’s overall 

security, not that of a singular, narrow scope. Although not all possible permutations could be achieved, 

a representative number of tests were performed to give the readers of this paper a view into the 

holistic security of each browser. 

An additional note, the sandbox testing was performed by modifying the sandbox project that resides in 

the Google Chrome source tree. By augmenting tests and logic to the Chrome sandbox testing harness, 

we were able to easily integrate sandbox measurement code into the current architecture. Also, by 

compartmentalizing the test harness into a single module (DLL), it can be used by other third party 

testing utilities if desired. 

By overwriting and adding the following files to the sandbox_poc project in the Google Chrome source 

tree, one will be able to reproduce our results; through the creation of the pocdll.dll library: 

 pocdll.cc 

o This original library was altered to add additional measurements to the test harness. The 

exported Run(logfile) function can be called after opening a log file of the assessors 

choosing. 

 cv.cc 

o Code that contains Accuvant specific test material to be used by pocdll.dll. 

 processes_and_threads 

o Code that contains process and thread tests. A test for ‘CreateProcess()’ was added. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 32 of 102 
Version 0.0 Revision Date: 12/6/2011 

Browser Comparison 
 

Sandbox Result Chrome Internet Explorer Firefox 

Read Files    

Write Files    

Read Registry Keys    

Write Registry Keys    

Network Access    

Resource Monitoring    

Thread Access    

Process Access    

Process Creation    

Clipboard Access    

System Parameters    

Broadcast Messages    
Desktop & Windows 

Station Access    

Windows Hooks *   

Named Pipes Access    
  

 
Action was blocked 

 
Action was partially blocked 

 
Action was allowed 

Figure 16. Sandbox overview 

  

*Isolated Desktop and Window Station 



 

Browser Security Comparison – A Quantitative Approach Page| 33 of 102 
Version 0.0 Revision Date: 12/6/2011 

JIT Hardening Techniques Chrome 
Internet 
Explorer 

Firefox 

Codebase Alignment Randomization 
   

Instruction Alignment 
Randomization    

Constant Folding 
   

Constant Blinding 
   

Resource Constraints 
   

Memory Page Protection 
   

Additional Randomization 
   

Guard Pages * 
  

  

 
Technique was implemented 

 
Technique was not necessary 

 
Technique was not implemented 

Figure 17. JIT hardening overview 

Although there was a plethora of tests performed on all the browsers, a general conclusion about each 

browser can be derived from the figure above. Google Chrome prevents processes in the sandbox from 

doing much of anything, and even if permission is granted, it is limited to the alternate desktop. 

Microsoft Internet Explorer generally allows read access to most objects on the operating system, while 

only preventing a hand full of system modification changes. Mozilla Firefox, on the other hand, is only 

limited by the medium integrity under which it runs; permitting read, write and system change 

capabilities associated with regular, non-administrator users. 

  

* Chrome 14 



 

Browser Security Comparison – A Quantitative Approach Page| 34 of 102 
Version 0.0 Revision Date: 12/6/2011 

Google Chrome 

ASLR Results 

Accuvant examined each binary installed or loaded during browser startup to determine its ASLR 

compatibility. The pefile python library was used to check the OPTIONAL_HEADER.DllCharacteristics 

attribute to determine if a given module’s address space would be randomized by the loader. 

All the binaries that were currently loaded and being used in the browser were ASLR compatible, leaving 

only one installation file (GoogleUpdater.exe) incompatible with ASLR. For a full listing, please see the 

Google Chrome ASLR Results in Appendix A. 

Note: We are aware that the list in Appendix A may be missing binaries and will attempt to update it if 

new modules are discovered. Also note that this omits any third party/plug-in modules. 

DEP Results 

As mentioned previously, Data Execution Prevention (DEP) prevents attackers from executing their data 

as code. By limiting execution rights to certain address spaces, DEP greatly reduces the attack surface. 

The default DEP policy for Windows 7 (32-bit) is OptIn [Microsoft_DEP]; meaning that the module will 

either have to be compiled with the /NXCOMPAT flag set or DEP will need to be enabled via 

NTSetInformationProcess() [Uninformed_DEP] (Windows XP & Windows 2003) or 

SetProcessDEPPolicy() [Microsoft_SPDEP] (Windows Vista and later). 

Code: Please see dep.cc in the Google Chrome project. 

 
Figure 18. Chrome DEP being enabled 

  



 

Browser Security Comparison – A Quantitative Approach Page| 35 of 102 
Version 0.0 Revision Date: 12/6/2011 

Process Examination: Process Explorer shows DEP enabled for the browser and rendering processes. 

 
Figure 19. Chrome permanent DEP enabled 

GS Results (Stack Cookies) 

A test was run to determine if a module was compiled with the /GS compiler option for each item 

installed by Google Chrome. Although flawed*, this simple test attempted to see if a stack cookie named 

object was referenced within a binary. While having stack cookies doesn’t completely prevent 

exploitation, it does make writing an exploit more difficult. 

While the majority of the modules used by Google Chrome are compiled with stack cookies, our IDA 

script to detect /GS presence could have false-negatives due to a lack of debugging symbols for certain 

libraries or modules that contain no code. We recognize that currently, this is a flawed process and will 

develop a new /GS checking process in the future. 

For a full listing of the stack cookie results for Google Chrome please reference the Google Chrome GS 

Results section in Appendix A. 

*Note: A module may not have the need for a stack cookie, which is determined by stack variable usage 

[Microsoft_GS]. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 36 of 102 
Version 0.0 Revision Date: 12/6/2011 

JavaScript JIT Hardening 

Constant Blinding 

During compilation, each constant value is XOR encoded with a random cookie that is securely 

generated per code chunk. Only values greater than 0x7FFF are obfuscated this way. 

Script Emitted Instruction Hex Value 

x = 0x00000001; mov eax,2 B802000000 

x = 0x00000002; mov eax,4 B804000000 

x = 0x00000003; mov eax,6 B806000000 

x = 0x0000007F; mov eax,0FEh B8FE000000 

x = 0x000007FF; mov eax,0FFEh B8FE0F0000 

x = 0x00007FFF; mov eax,0FFFEh B8FEFF0000 

x = 0x00008000; mov 
xor 

eax, 82C82646h 
eax, 82C92646h 

B84626C882 
354626C982 

x = 0x0000FFFF; mov 
xor 

eax, 82C8D9B8h 
eax, 82C92646h 

B8B8D9C882 
354626C982 

x = 0x00011111; mov 
xor 

eax, 82CB0464h 
eax, 82C92646h 

B86404CB82 
354626C982 

x = 0x11111111; mov 
xor 

eax, A0EB0464h 
eax, 82C92646h 

B86404EBA0 
354626C982 

Figure 20. Chrome V8 constant binding 

Constant Folding 

Instruction operands will only contain even values. 

Emitted Value = constant value << 1; 

Script Emitted Instruction Hex Value 

x = 0x00000001; mov eax,3 B802000000 

x = 0x00000002; mov eax,5 B804000000 

x = 0x00000003; mov eax,7 B806000000 

x = 0x0000007F; mov eax,0FEh B8FE000000 

x = 0x000007FF; mov eax,0FFEh B8FE0F0000 

x = 0x00007FFF; mov eax,0FFFEh B8FEFF0000 

Figure 21. Chrome V8 constant folding 

When combined with Constant Blinding results, only even values of less than 0x8000 can be emitted as 

instruction operands. 

Resource Constraints 

V8 allows the application to manage the resource constraints as required. Chrome allows V8 to allocate 

a maximum of about 540 MB per process, of which 128 MB may be executable. 



 

Browser Security Comparison – A Quantitative Approach Page| 37 of 102 
Version 0.0 Revision Date: 12/6/2011 

 
Figure 22. api.cc v8.googlecode.com 

Guard Pages (Introduced in Chrome 14) 

Guard pages are used to protect against memory corruption across region boundaries. 

 
Figure 23. Chrome VMMap showing V8 guard pages 

Additional Randomization 

V8 attempts to randomize the address of executable memory manually before using the default OS 

behavior, which results in significantly less predictable regions of executable memory. 



 

Browser Security Comparison – A Quantitative Approach Page| 38 of 102 
Version 0.0 Revision Date: 12/6/2011 

 
Figure 24. Chrome platform-win32.cc (v8.googlecode.com) 

Sandbox Results 

All sandbox testing was performed from inside the lowest privileged process (rendering/render process) 

by attempting to open new resources. Therefore, the results only reflect a rendering process attempting 

to access resources not previously opened. 

File System 

Testing attempted to access certain system directories and files via the sandboxed browser process 

(sometimes referred to as the renderer/rendering process). 

Note: Permissions may have overlapped due to generic and specific permission checks. This is done to 

give a general overview accompanied by precise security permissions. 



 

Browser Security Comparison – A Quantitative Approach Page| 39 of 102 
Version 0.0 Revision Date: 12/6/2011 

Permission %SystemDrive% 
%SystemRoot%  
%ProgramFiles% 
%AllUsersProfile% 
%UserProfile% 
%Temp% 
%SystemRoot%\System32 
%AppData% 

ZERO BLOCKED 
GENERIC_READ BLOCKED 

GENERIC_WRITE BLOCKED 

FILE_ADD_FILE BLOCKED 
FILE_ADD_SUBDIRECTORY BLOCKED 

FILE_APPEND_DATA BLOCKED 

FILE_CREATE_PIPE_INSTANCE BLOCKED 

FILE_DELETE_CHILD BLOCKED 

FILE_LIST_DIRECTORY BLOCKED 
FILE_READ_ATTRIBUTES BLOCKED 

FILE_READ_DATA BLOCKED 

FILE_READ_EA BLOCKED 

FILE_TRAVERSE BLOCKED 

FILE_WRITE_ATTRIBUTES BLOCKED 
FILE_WRITE_DATA BLOCKED 

FILE_WRITE_EA BLOCKED 

WRITE_DAC BLOCKED 
Figure 25. Chrome directory permissions  

  



 

Browser Security Comparison – A Quantitative Approach Page| 40 of 102 
Version 0.0 Revision Date: 12/6/2011 

Files 

Permission %SystemRoot%\explorer.exe 
%SystemRoot%\Cursors\arrow_i.cur 

ZERO BLOCKED 
GENERIC_READ BLOCKED 

GENERIC_WRITE BLOCKED 

GENERIC_EXECUTE BLOCKED 

FILE_EXECUTE BLOCKED 

FILE_READ_ATTRIBUTES BLOCKED 

STANDARD_RIGHTS_EXECUTE BLOCKED 

SYNCHRONIZE BLOCKED 

FILE_READ_DATA BLOCKED 

FILE_READ_EA BLOCKED 
STANDARD_RIGHTS_READ BLOCKED 
FILE_APPEND_DATA BLOCKED 
FILE_WRITE_ATTRIBUTES BLOCKED 
FILE_WRITE_DATA BLOCKED 
FILE_WRITE_EA BLOCKED 
STANDARD_RIGHTS_WRITE BLOCKED 

WRITE_DAC BLOCKED 
Figure 26. Chrome file permissions 

Registry 

A select few registry hives and keys were accessed from inside the sandbox. These hives and keys 

represent locations that would be of interest to malware authors in an attempt to gain persistence. 

Note: The MAXIMUM_ALLOWED permission by the rending process is read-only. 

Hive Subkey Permission Result 

HKEY_LOCAL_MACHINE NULL MAXIMUM_ALLOWED BLOCKED 
HKEY_CURRENT_USER NULL MAXIMUM_ALLOWED BLOCKED 
HKEY_USERS NULL MAXIMUM_ALLOWED BLOCKED 

HKEY_LOCAL_MACHINE 
Software\Microsoft\Windows 
NT\CurrentVersion\WinLogon 

MAXIMUM_ALLOWED BLOCKED 

Figure 27. Chrome registry permissions 

  



 

Browser Security Comparison – A Quantitative Approach Page| 41 of 102 
Version 0.0 Revision Date: 12/6/2011 

Network Access 

The ability for a browser to access the Internet is vital to its operation, but creation of network sockets 

for reading, writing and listening could permit an attacker to communicate readable information to the 

outside world. The ability to initiate, read, write and listen on Windows sockets are listed below. 

Action Result 

WSAStartup BLOCKED 

Send() N/A 

Recv() N/A 

Listen() N/A 
Figure 28. Chrome network accessibility 

Note: If WSAStarup() fails, then none of the other tests are applicable due to the inability to start up 

network sockets. Otherwise, reading/writing and listening (port 88) are attempted. 

Resource Monitoring 

Recording keystrokes, registering hotkeys and attempting to read screen data (i.e. screen captures) are 

widely employed amongst attackers and spyware authors in their attempts to intercept and read user’s 

confidential information. The sandbox test harness has three checks for methods that attempt to 

acquire user information (obviously, there are various other techniques.) 

Action Result 

GetPixel() BLOCKED 

RegisterHotKey() BLOCKED 

GetAsyncKeyState() BLOCKED 
Figure 29. Chrome Resource monitoring 

Threads 

Access to other threads running on the system could be used to escalate privileges or trampoline onto 

different parts of the system. The sandbox test harness provides functionality that tests the access 

privileges of every thread currently alive on the system. Since this list can vary too greatly, only a list of 

threads and the privileges granted will be supplied. Please see ‘chrome_sandbox_results.txt’  in the 

attachment for a full listing. In addition, the threads used in the sandbox testing were omitted from the 

results. 

Process:Thread ID Permission Granted 

N/A N/A 
Figure 30. Chrome threads permission granted 

Note: There are no entries because access was denied for all threads running. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 42 of 102 
Version 0.0 Revision Date: 12/6/2011 

Processes 

Processes, like threads, can be used to escalate privileges or trampoline onto different parts of the 

system. The harness provides functionality to test the access privileges of every process currently alive 

on the system. Only the processes granted certain access have been listed. Please see 

‘chrome_sandbox_results.txt’ in the attachment for a full listing. Also, the processes used in the sandbox 

testing were omitted from the results. 

Process Permission Granted 

N/A N/A 
Figure 31. Chrome processes permission granted 

Note: There are no entries because access was denied for all processes running. 

Process Creation 

An attacker might find it valuable to create a new process, even if that process has the same 

authorization and privilege level as the compromised application. This could permit a plethora of other 

opportunities that could be used for privilege escalation or data leakage. A simple example of calling the 

CreateProcess() API with “C:\Program Files\Internet Explorer\iexplore.exe” was used. 

Executable Permission Granted 

C:\Program Files\Internet Explorer\iexplore.exe BLOCKED 
Figure 32. Chrome CreateProcess() 

Note: We are aware that this is in a system directory and only presents one example, but deemed it 

appropriate for the limitations of this assessment. 

Handles 

Handles are used by the Windows operating system to keep track of content-specific identifiers. This 

permits applications to reference resources by handle, instead of, for example, process ID. Since handles 

are used to access resources, they must also contain security restrictions so that other applications, 

specifically those from the sandbox, may not use them to gain privileges. 

The number of handles on a system may vary, but note that the typical Desktop (\Default) and 

WindowStation (\WinSta0) are not present due to the Chrome sandbox. For more granular information 

on handling test cases, please see ‘chrome_sandbox_results.txt’ in the attachment. 

Windows Clipboard 

The Windows Clipboard enables different applications to share messages and data [Microsoft_Clip]. Not 

only could a compromised application read sensitive information from the clipboard, the attacker could 

also use flaws in the clipboard to gain further system access (i.e. sandbox escape) [Clip_Exploit]. During 

our tests, we attempted to GET and SET information to the clipboard. 

Action Permission Granted 

GetClipboardData(CF_TEXT) BLOCKED 
SetClipboardData(CF_TEXT) BLOCKED 

Figure 33. Chrome Clipboard Access 



 

Browser Security Comparison – A Quantitative Approach Page| 43 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Desktop 

The Windows desktop not only provides a display surface for user interaction, but also contains objects 

such as windows, menus and hooks (it is also a securable object). Windows messages are limited to 

communicating with other processes that reside on the same desktop; inter-desktop process 

communication is not operational [Microsoft_Desktop]. The ability to create, switch and open other 

desktops with varying permissions may also lead to privilege escalation scenarios [CVE-2009-1123].  

Action Permission Granted 

CreateDesktop() BLOCKED 
OpenWindowsStation(“winsta0”) BLOCKED 

OpenDesktop(“Default”) 
ERROR_FILE_NOT_FOUND  
[due to failed OpenWindowsStation()] 

Figure 34. Chrome Desktop/WindowStation access 

System Parameters 

It should be obvious that an attacker could use system wide parameters to his advantage. These can 

control screen saver parameters, menu parameters and many other options [Microsoft_SysParam]. By 

limiting the ability to set these parameters, the sandbox can ensure that no underhandedness can be 

achieved by someone attempting to escape the sandboxed environment.  

Action Permission Granted 
SystemParametersInfo(SPI_GETMOUSE) [GET] GRANTED 
SystemParametersInfo(SPI_SETMOUSE) [SET] BLOCKED 

Figure 35. Chrome SystemParametersInfo() 

Note: Only a single system parameter was checked for brevity’s sake. 

Windows Message Broadcasts 

By sending a Windows message with the ‘HWND_BROADCAST’ option set, an application effectively 

sends the same message to every top-level window. Each of these windows could interpret the 

broadcast message differently, due to expecting a varying number of parameters [MSDN_Broad]. This 

could cause operating system instability and exploitation scenarios. We sent an example broadcast 

message to determine if it was permitted from within the sandbox. A great example of exploiting the 

Windows messaging system for authoritative gain would be a shatter attack [Wiki_Shatter]. 

Action Permission Granted 

SendMessage(HWND_BROADCAST, WM_TIMER) BLOCKED 
Figure 36. Chrome send broadcast message 

  



 

Browser Security Comparison – A Quantitative Approach Page| 44 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Hooks 

Windows Hooks are a procedure used to monitor certain types of system events on the same desktop as 

the calling thread [Microsoft_Hooks]. These same hooks have historically been used by malware to do 

such things as monitor keyboard input and other nefarious tasks. We checked the ability to set system 

hooks.  

Action Permission Granted 

SetWindowsHookEx(WH_KEYBOARD) GRANTED 
Figure 37. Chrome set Windows hooks 

Note: Since Google Chrome creates an alternate desktop, the hooking mechanisms are limited to those 

threads on the alternate-desktop (i.e. renderer/sandbox desktop). 

Named Pipes 

Named pipes are used for one-way or two-way communications within the Windows operating system 

[Microsoft_Pipes]. While the ability to communicate between client and server is an integral part of 

inter process communication, unbridled communications can be used to bypass sandbox protection 

mechanisms. For example, imagine an attacker has the ability to send data to a named pipe, which has a 

privilege and authorization level greater than the process that is sending data. We attempted to 

enumerate all the named pipes for a system for permissions testing. If that were not possible, we would 

iterate through a list of ‘well-known’ pipes for the Windows 7 (32-bit) operating system in an attempt to 

validate permissions. 

Named Pipe 
PIPE_ACCESS_INBOUND 
PIPE_ACCESS_OUTBOUND 

\\.\pipe\lsass BLOCKED 

\\.\pipe\ntsvcs BLOCKED 

\\.\pipe\scerpc BLOCKED 

\\.\pipe\protected_storage BLOCKED 

\\.\pipe\plugplay BLOCKED 

\\.\pipe\epmapper BLOCKED 

\\.\pipe\eventlog BLOCKED 

\\.\pipe\atsvc BLOCKED 

\\.\pipe\wkssvc BLOCKED 

\\.\pipe\keysvc BLOCKED 

\\.\pipe\trkwks BLOCKED 

\\.\pipe\srvsvc BLOCKED 
Figure 38. Chrome named pipe access 

Summary 

It is apparent that the Chrome sandbox prohibits the ability of the rendering process to do much of 

anything. There aren’t any easily viable ways for malware to gain persistence or communicate with the 

outside world. Any permissible actions, such as hooking windows messages, are mitigated by the fact 

that an alternate Windows desktop is used for rendering content. Out of the three browsers examined, 



 

Browser Security Comparison – A Quantitative Approach Page| 45 of 102 
Version 0.0 Revision Date: 12/6/2011 

it is obvious that Google Chrome has the most stringent constraints when it comes to interacting with 

the operating system from a sandboxed process. 

Microsoft Internet Explorer 

ASLR Results 

Accuvant examined each binary installed or loaded during browser startup to determine its ASLR 

compatibility. The pefile python library was used to check the OPTIONAL_HEADER.DllCharacteristics 

attribute to determine if a given module’s address space would be randomized by the loader. 

All the binaries that were currently loaded and being used in the browser were ASLR compatible, 

although it is quite difficult to predict all modules that Internet Explorer is capable of using. For a full 

listing, please see the Internet Explorer ASLR results in Appendix A. 

Note: We are aware that this list may be missing binaries and will attempt to update it if new modules 

are discovered. Also, note that this omits any third party/plug-in modules. 

DEP Results 

As mentioned previously, Data Execution Prevention (DEP) prevents attackers from executing their data 

as code. By limiting execution rights to certain address spaces, DEP greatly reduces the attack surface. 

The default DEP policy for Windows 7 (32-bit) is OptIn [Microsoft_DEP]; meaning that the module will 

either have to be compiled with the /NXCOMPAT flag set or DEP will need to be enabled via 

NTSetInformationProcess()  [Uninformed_DEP] (Windows XP & Windows 2003) or 

SetProcessDEPPolicy() [Microsoft_SPDEP] (Windows Vista and later). 

Code: Please see iexplorer.exe disassembly. 

 

 
Figure 39. Internet Explorer DEP being enabled 



 

Browser Security Comparison – A Quantitative Approach Page| 46 of 102 
Version 0.0 Revision Date: 12/6/2011 

Process Examination: Process Explorer shows DEP enabled for the browser and rendering processes. 

 
Figure 40. Internet Explorer permanent DEP enabled 

GS Results (Stack Cookies) 

A test was run to determine if a module was compiled with the /GS compiler option [Microsoft_GS] for 

each item used by Internet Explorer. Although flawed*, this simple test attempted to see if a stack 

cookie named object was referenced within a binary. While having stack cookies doesn’t completely 

prevent exploitation, it does make writing an exploit more difficult. 

While all but two of the modules used by Internet Explorer are compiled with stack cookies, our IDA 

script to detect /GS presence could have false-positives due to a lack of debugging symbols for certain 

libraries or libraries without any code. We recognize that, currently, this is a flawed process and will 

develop a new /GS checking process in the future. 

For a full listing of the stack cookie results for Internet Explorer, please reference the Internet Explorer 

GS section in Appendix A. 

*Note: A module may not have the need for a stack cookie, which is determined by stack variable usage 

[Microsoft_GS]. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 47 of 102 
Version 0.0 Revision Date: 12/6/2011 

JavaScript JIT Hardening 

Codebase Alignment Randomization 

The first code chunk emitted does not randomize its alignment, but when emitting code into an existing 

buffer, IE9 will prepend a random number (0-0x0F) of INT 3 instructions prior to copying the compiled 

instructions into executable memory. This randomizes the offset of each subsequent instruction and has 

the additional benefit of crashing if ever executed. 

Address EmitBufferManager::GetAllocation Comment 

 
 

  

10021734 cmp byte ptr [ebp+arg_C], al  

10021739 call Math::Rand(void) Get a random value 

1002173E and eax, 0Fh Mask off the lower 4 bits 
Figure 41. Internet Explorer alignment randomization 

 

Hex Value Instruction Hex Value Instruction 

CC int 3 CC int 3 

CC int 3 CC  int 3 

CC int 3 CC int 3 

CC int 3 CC int 3 

CC int 3 CC int 3 

CC int 3 CC int 3 

CC int 3 CC int 3 

CC int 3 CC int 3 

CC int 3 CC int 3 

   CC int 3 

   CC int 3 

   CC int 3 

   CC int 3 

55 push ebp 55 push ebp 

8BEC  mov ebp,esp 8BEC mov ebp, esp 

81FC54C91A03 cmp esp,31AC954h 81FC54C91A03 cmp esp,31AC954h 

0F8F0F000000 jg 028D59F1 0F8F0F000000 jg 009259C9 

6818FD5E02   push 25EFD18h 68086C5F02 push 25F6C08h 

6854090000 push 954h 6854090000 push 954h 
Figure 42. Internet Explorer code alignment randomization of the same script 

  



 

Browser Security Comparison – A Quantitative Approach Page| 48 of 102 
Version 0.0 Revision Date: 12/6/2011 

Constant Blinding 

Each constant value is XOR encoded with a separate cookie that is securely generated during 

compilation. Only values greater than 0x7FFF are obfuscated this way. 

Script Emitted Instruction Hex Value 

x = 0x00000001; mov eax,3 b803000000 

x = 0x00000002; mov eax,5 b805000000 

x = 0x00000003; mov eax,7 b807000000 

x = 0x0000007F; mov eax,0FFh b8ff000000 

x = 0x000007FF; mov eax,0FFFh b8ff0f0000 

x = 0x00007FFF; mov eax,0FFFFh b8ffff0000 

x = 0x00008000; 
mov 
xor 

eax,17D562B2h 
eax,17D462B3h 

b8b262d517 
35b362d417 

x = 0x0000FFFF; 
mov 
xor 

eax,8D36BBD0h 
eax,8D37442Fh 

b8d0bb368d 
352f44378d 

x = 0x00011111; 
mov 
xor 

eax,0E9E6C90Ah 
eax,0E9E4EB29h 

b80ac9e6e9 
3529ebe4e9 

x = 0x11111111; 
mov 
xor 

eax,0BE262007h 
eax,9C040224h 

b8072026be 
352402049c 

Figure 43. Internet Explorer constant binding 

Constant Folding 

Instruction operands will only contain odd values. 

Emitted Value = (constant value << 1) + 1; 

Script Emitted Instruction Hex Value 

x = 0x00000001; mov eax,3 b803000000 

x = 0x00000002; mov eax,5 b805000000 

x = 0x00000003; mov eax,7 b807000000 

x = 0x0000007F; mov eax,0FFh b8ff000000 

x = 0x000007FF; mov eax,0FFFh b8ff0f0000 

x = 0x00007FFF; mov eax,0FFFFh b8ffff0000 
Figure 44. Internet Explorer constant folding 

When combined with Constant Blinding results, only odd values of less than 0x07FFF can be emitted as 

instruction operands. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 49 of 102 
Version 0.0 Revision Date: 12/6/2011 

Memory Page Protection 

Memory protection for the regions of emitted code is PAGE_EXECUTE, which will protect against both 

memory corruption and memory leaks targeting the emitted code. 

The region is initially allocated as PAGE_EXECUTE. It is later marked PAGE_EXECUTE_READWRITE for the 

minimal period required to copy in the compiled code and return the protections to PAGE_EXECUTE. 

JSCRIPT9!EmitBufferManager::CommitBuffer: Comment 

 
  

push  eax  

push 40h  

push esi  

push  ebx  

mov [ebp+lpAddress], ebx  

mov [ebp+dwSize], esi  

call Virtual Protect Set protections to PAGE_EXECUTE_READWRITE 

 
  

push esi  

push ecx  

push edx  

push ebx  

call memcpy_s 
Copy compiled into 
PAGE_EXECUTE_READWRITE region 

 
  

mov ecx, [ebp+dwSize]  

mov      edx, [ebp+lpAddress]  

mov eax, [ebp+flOldProtect]  

push eax  

push 10h  

push ecx  

push edx  

call VirtualProtect Set protections back to PAGE_EXECUTE 
Figure 45. Internet Explorer memory page protections 

Additionally, when the page protections are returned to PAGE_EXECUTE, the size of the memory is 

reduced to the minimal size. After this, the memory protection is not modified. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 50 of 102 
Version 0.0 Revision Date: 12/6/2011 

Resource Constraints 

Constraints are placed on the total committed executable memory to prevent malicious content from 

spraying excessive amounts of executable memory. 

The maximum total committed memory with protection PAGE_EXECUTE is 7MB (0x00700000). 

BackgroundCodeGenThread::MainProc(void *)+A4 Comment 

mov ecx, [ecx+1F8h] Get size of currently committed 
PAGE_EXECUTE 

cmp dword ptr [ecx+334h], 700000h Compare against max PAGE_EXECUTE 
memory 

jnb loc_10068A8E If above, error out 

Figure 46. Internet Explorer PAGE_EXECUTE allocation constraints 

There is no constraint placed on the total committed PAGE_READWRITE protected memory. 

Instruction Alignment Randomization 

NOP equivalent instructions are randomly inserted into the stream during compilation to randomize the 

alignment of subsequent instructions. 

Address Instruction Address Instruction 

026101B5 mov eax, 84564C4Bh 026101B5 mov eax, 689B3476h 

026101BA xor eax, 0A6746E68h 026101BA xor eax, 4AB91655h 

026101BF mov ecx, [ebx+4] 026101BF mov ecx, [ebx+4] 

026101C2 cmp ecx, ds:7319018h 026101C2 cmp ecx, ds:7319018h 

026101C8 jnz loc_26104F8 026101C8 jnz loc_26104F9 

026101CE mov ecx, [ebx+8] 026101CE mov ecx, [ebx+8] 

026101D1 movzx edx, word ptr 731901Eh 026101D1 movzx edx, word ptr 731901Eh 

026101D8 lea ecx, [ecx] 026101D8 mov [ecx+edx*4], eax 

026101DA mov [ecx+edx*4], eax 
  

 
Figure 47. Internet Explorer random NOP instructions 

Guard Pages 

IE9 has no need for guard pages because after initialization, regions that contain emitted code are 

protected with PAGE_EXECUTE, which remains for the lifetime of the script and protects against 

corruption and information leaks. It can be modified briefly while appending additional code to the 

current region. 

Additional Randomization 

The low constraint on PAGE_EXECUTE allocations combined with codebase and instruction alignment 

randomization are effective enough that additional randomization is not required. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 51 of 102 
Version 0.0 Revision Date: 12/6/2011 

Sandbox Results 

All sandbox testing was performed from inside the lowest privileged process (rendering/render process) 

by attempting to open new resources. Therefore, the results only reflect a rendering process attempting 

to access resources not previously opened.  

Note: The sandbox test harness specifically ignored the function hooks set in place by IEShims.dll due to 

the way most shellcode locates and executes functions. 

File System 

We attempted to access certain system directories and files via the sandboxed browser process 

(sometimes referred to as the renderer/rendering process). 

Note: Permissions may have overlap due to generic and specific permission checks. This is done to give 

an overview accompanied by precise security permissions. 

Permission %SystemDrive% 
%SystemRoot% 
%ProgramFiles% 
%AllUsersProfile% 
%UserProfile% 
%Temp% 
%SystemRoot%\System32 
%AppData% 

ZERO GRANTED 
GENERIC_READ GRANTED 
GENERIC_WRITE BLOCKED 
FILE_ADD_FILE BLOCKED 
FILE_ADD_SUBDIRECTORY BLOCKED 
FILE_APPEND_DATA BLOCKED 
FILE_CREATE_PIPE_INSTANCE BLOCKED 
FILE_DELETE_CHILD BLOCKED 
FILE_LIST_DIRECTORY GRANTED 
FILE_READ_ATTRIBUTES GRANTED 
FILE_READ_DATA GRANTED 
FILE_READ_EA GRANTED 
FILE_TRAVERSE GRANTED 
FILE_WRITE_ATTRIBUTES BLOCKED 
FILE_WRITE_DATA BLOCKED 
FILE_WRITE_EA BLOCKED 
WRITE_DAC BLOCKED 

Figure 48. Internet Explorer directory permissions 

  



 

Browser Security Comparison – A Quantitative Approach Page| 52 of 102 
Version 0.0 Revision Date: 12/6/2011 

Files 

Permission %SystemRoot%\explorer.exe 
%SystemRoot%\Cursors\arrow_i.cur 

ZERO GRANTED 
GENERIC_READ GRANTED 

GENERIC_WRITE BLOCKED 

GENERIC_EXECUTE GRANTED 

FILE_EXECUTE GRANTED 
FILE_READ_ATTRIBUTES GRANTED 
STANDARD_RIGHTS_EXECUTE GRANTED 
SYNCHRONIZE GRANTED 
FILE_READ_DATA GRANTED 
FILE_READ_EA GRANTED 
STANDARD_RIGHTS_READ GRANTED 
FILE_APPEND_DATA BLOCKED 
FILE_WRITE_ATTRIBUTES BLOCKED 
FILE_WRITE_DATA BLOCKED 
FILE_WRITE_EA BLOCKED 
STANDARD_RIGHTS_WRITE GRANTED 

WRITE_DAC BLOCKED 
Figure 49. Internet Explorer file permissions 

Registry 

A select few registry hives and keys were accessed from inside the sandbox. These hives and keys 

represent locations that would be of interest to malware authors in an attempt to gain persistence. 

Note: The MAXIMUM_ALLOWED permission for a low integrity process is read-only. 

Hive Subkey Permission Result 

HKEY_LOCAL_MACHINE NULL MAXIMUM_ALLOWED GRANTED 
HKEY_CURRENT_USER NULL MAXIMUM_ALLOWED GRANTED 
HKEY_USERS NULL MAXIMUM_ALLOWED GRANTED 

HKEY_LOCAL_MACHINE 
Software\Microsoft\Windows 
NT\CurrentVersion\WinLogon 

MAXIMUM_ALLOWED GRANTED 

Figure 50. Internet Explorer registry permissions 

  



 

Browser Security Comparison – A Quantitative Approach Page| 53 of 102 
Version 0.0 Revision Date: 12/6/2011 

Network Access 

The ability for a browser to access the Internet is vital to its operation, but creating a new socket for 

reading, writing and listening could permit an attacker to communicate read-able information to the 

outside world. The ability to initiate, read, write and listen on Windows sockets are listed below. 

Action Result 

WSAStartup GRANTED 
Send() GRANTED 
Recv() GRANTED 
Listen() [port 88] GRANTED 

Figure 51. Internet Explorer network accessibility 

Resource Monitoring 

Recording keystrokes, registering hotkeys and attempting to read screen data (i.e. screen captures) are 

widely employed amongst attackers and spyware authors in attempts to intercept and read user’s 

confidential information. The sandbox test harness has three checks for methods that attempt to 

acquire user information (obviously, there are various other techniques.) 

Action Result 

GetPixel() GRANTED 
RegisterHotKey() GRANTED 
GetAsyncKeyState() BLOCKED 

Figure 52. Internet Explorer resource monitoring 

Threads 

Access to other threads running on the system could be used to escalate privileges or trampoline onto 

different parts of the system. The sandbox test harness provides functionality that tests the access 

privileges of every thread currently alive on the system. Since this list can vary too greatly, only a list of 

threads and the privileges granted will be supplied. 

Note that a majority of the threads could not be accessed, but those that could generally only permitted 

SYNCHRONIZE and THREAD_QUERY_LIMITED_INFORMATION access (there were some that had full 

access). Please see ‘ie9_sandbox_results.txt’ for a full listing. Also, the threads used in the sandbox 

testing were omitted. 

Process:Thread ID Permission Granted 

N/A N/A 
Figure 53. Internet Explorer threads permission granted 

  



 

Browser Security Comparison – A Quantitative Approach Page| 54 of 102 
Version 0.0 Revision Date: 12/6/2011 

Processes 

Processes, like threads, can be used to escalate privileges or trampoline onto different parts of the 

system. The harness provides functionality to test the access privileges of every process currently alive 

on the system. Only processes that granted certain access are listed. In addition, processes specific to 

VMWare, the sandbox test harness and instances of low integrity Internet Explorer were omitted. 

Please see ‘ie9_sandbox_results.txt’ in the attachment for a full listing. 

Process Permission Granted 

taskhost.exe PROCESS_QUERY_LIMITED_INFORMATION 
taskhost.exe PROCESS_TERMINATE 
dwm.exe PROCESS_QUERY_LIMITED_INFORMATION 
dwm.exe PROCESS_TERMINATE 
dwm.exe SYNCHRONIZE 
explorer.exe PROCESS_QUERY_LIMITED_INFORMATION 
explorer.exe PROCESS_TERMINATE 
explorer.exe SYNCHRONIZE 
conhost.exe PROCESS_QUERY_LIMITED_INFORMATION 
conhost.exe PROCESS_TERMINATE 
conhost.exe SYNCHRONIZE 
iexplore.exe PROCESS_QUERY_LIMITED_INFORMATION 
iexplore.exe PROCESS_TERMINATE 
iexplore.exe SYNCHRONIZE 

Figure 54. Internet Explorer processes granted 

Process Creation 

An attacker might find it valuable to create a new process, even if that process has the same 

authorization and privilege level as the compromised application. This could permit a plethora of other 

opportunities for privilege escalation or data leakage. A simple example of calling the CreateProcess() 

API with “C:\Program Files\Internet Explorer\iexplore.exe” was used. 

Executable Permission Granted 

C:\Program Files\Internet Explorer\iexplore.exe GRANTED 
Figure 55. Internet Explorer CreateProcess() 

Note: We are aware that this is in a system directory and only presents one example, but deemed it 

appropriate for the limitations of this assessment. 

Handles 

Handles are used by the Windows operating system to keep track of content-specific identifiers. This 

permits applications to reference resources by handle, instead of, for example, process ID. Since handles 

are used to access resources, they must also contain security restrictions so that other applications, 

specifically those from the sandbox, may not use them gain privileges. 

For more granular information on handling test cases, please see ‘ie9_sandbox_results.txt’ in the 

attachment. 



 

Browser Security Comparison – A Quantitative Approach Page| 55 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Clipboard 

The Windows clipboard enables different applications to share messages and data [Microsoft_Clip]. Not 

only could a compromised application read potentially sensitive information from the clipboard, the 

attacker could also use flaws in the clipboard to gain further system access (i.e. sandbox escape) 

[Clip_Exploit]. During our tests, we attempted to GET and SET information to the clipboard. 

Action Permission Granted 
GetClipboardData(CF_TEXT) BLOCKED 
SetClipboardData(CF_TEXT) BLOCKED 

Figure 56. Internet Explorer clipboard access 

Windows Desktop 

The Windows desktop not only provides a display surface for user interaction, but also contains objects 

such as windows, menus and hooks (it is also a securable object). Windows messages are limited to 

communicating with other processes that reside on the same desktop; inter-desktop process 

communication is not operational [Microsoft_Desktop]. The ability to create, switch and open other 

desktops with varying permissions may also lead to privilege escalation scenarios [CVE-2009-1123]. 

Action Permission Granted 
CreateDesktop() GRANTED 
OpenWindowsStation(“winsta0”) GRANTED 
SetProcessWindowStation(“winsta0”) GRANTED 
OpenDesktop(“Default”) GRANTED 

Figure 57. Internet Explorer desktop/WindowStation access 

System Parameters 

It should be obvious that an attacker could use the system wide parameters to his advantage. These 

parameters can control screen savers, menus and many other options [Microsoft_SysParam]. By limiting 

the ability to set these parameters, the sandbox can ensure that no underhandedness can be achieved 

by someone attempting to escape the sandboxed environment.  

Action Permission Granted 

SystemParametersInfo(SPI_GETMOUSE) [GET] GRANTED 
SystemParametersInfo(SPI_SETMOUSE) [SET] BLOCKED 

Figure 58. Internet Explorer SystemParametersInfo() 

Note: Only a single system parameter was checked for brevity’s sake. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 56 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Message Broadcasts 

By sending a Windows Message with the ‘HWND_BROADCAST’ option set, an application effectively 

sends the same message to every top-level window. Each of these windows could interpret the 

broadcast message differently; due to expecting a varying number of parameters [MSDN_Broad]. This 

could cause many operating system instability and exploitation scenarios. We sent an example 

broadcast message to determine if it was permitted from within the sandbox. A great example of 

exploiting the Windows messaging system for authoritative gain would be a shatter attack 

[Wiki_Shatter]. 

Action Permission Granted 

SendMessage(HWND_BROADCAST, WM_TIMER) GRANTED 
Figure 59. Internet Explorer send broadcast message 

Windows Hooks 

Windows hooks are a procedure used to monitor certain types of system events on the same desktop as 

the calling thread [Microsoft_Hooks]. These same hooks historically have been used by malware to do 

such things as monitor keyboard input and other nefarious tasks. We checked the ability to set system 

hooks. 

Action Permission Granted 

SetWindowsHookEx(WH_KEYBOARD) GRANTED 
Figure 60. Internet Explorer set Windows hooks 

  



 

Browser Security Comparison – A Quantitative Approach Page| 57 of 102 
Version 0.0 Revision Date: 12/6/2011 

Named Pipes 

Named pipes are used for one-way or two-way communications within the Windows operating system 

[Microsoft_Pipes]. While the ability to communicate between client and server is an integral part of 

inter process communication, unbridled communications can be used to bypass sandbox protection 

mechanisms. For example, imagine an attacker has the ability to send data to a named pipe, which has a 

privilege and authorization level greater than the process that is sending data. We attempted to 

enumerate all the named pipes for a system for permissions testing. If that were not possible, we would 

iterate through a list of ‘well-known’ pipes for the Windows 7 (32-bit) operating system in an attempt to 

validate permissions. For a complete listing, please see ‘ie9_sandbox_results.txt’ in the attachment. 

Named Pipe PIPE_ACCESS_INBOUND PIPE_ACCESS_OUTBOUND 

\\.\pipe\lsass GRANTED INDETERMINATE  
[Resource not Available] 

\\.\pipe\ntsvcs GRANTED BLOCKED 

\\.\pipe\scerpc GRANTED BLOCKED 

\\.\pipe\protected_storage GRANTED GRANTED 

\\.\pipe\plugplay GRANTED BLOCKED 

\\.\pipe\epmapper GRANTED BLOCKED 

\\.\pipe\eventlog GRANTED BLOCKED 

\\.\pipe\atsvc GRANTED BLOCKED 

\\.\pipe\wkssvc GRANTED GRANTED 

\\.\pipe\keysvc GRANTED BLOCKED 

\\.\pipe\trkwks GRANTED BLOCKED 

\\.\pipe\srvsvc GRANTED GRANTED 
Figure 61. Internet Explorer named pipe access 

Summary 

Internet Explorer permits the low privileged browser processes limited interaction with the operating 

system by permitting read-only accessibility to most resources. While the ability to prevent attacker 

persistence through limiting write access is notable, the attacker still has the ability to read and export 

information to the outside world via network sockets. In addition, since there is no alternate desktop 

and desktops can be created; there is an ability to communicate with other non-sandboxed window 

objects. Named pipes are also accessible for reading and writing, which could result in additional attack 

surfaces used for privilege escalation (i.e. escalating from low integrity to a higher integrity). Overall, 

Internet Explorer does a satisfactory job of preventing malware persistence, but lacks the ability to lock 

down browser processes that may be exploited to gain further privilege level by using available system 

resources. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 58 of 102 
Version 0.0 Revision Date: 12/6/2011 

Mozilla Firefox 

ASLR Results 

Each binary installed or loaded during browser startup was investigated to determine its ASLR 

compatibility. The pefile python library was used to check the OPTIONAL_HEADER.DllCharacteristics 

attribute to determine if a given module’s address space would be randomized by the loader. 

All the binaries that were currently loaded and being used by the browser were ASLR compatible, 

although it is difficult to predict all modules that could be loaded. For a full listing, please see the Mozilla 

Firefox ASLR results in Appendix A. 

Note: We are aware that this list may be missing binaries and will attempt to update it if new modules 

are discovered. Also, note that this omits any third party/plug-in modules. 

DEP Results 

As mentioned previously, Data Execution Prevention (DEP) prevents attackers from executing their data 

as code. By limiting execution rights to certain address spaces, DEP reduces the attack surface. The 

default DEP policy for Windows 7 (32-bit) is OptIn [Microsoft_DEP]; meaning that the module will either 

have to be compiled with the /NXCOMPAT flag set or DEP will need to be enabled via 

NTSetInformationProcess()  [Uninformed_DEP] (Windows XP & Windows 2003) or 

SetProcessDEPPolicy() [Microsoft_SPDEP] (Windows Vista and later). 

NXCOMPAT: Bit 0x100 Set in DllCharactieristics. 

 
Figure 62. Firefox DEP enabled 



 

Browser Security Comparison – A Quantitative Approach Page| 59 of 102 
Version 0.0 Revision Date: 12/6/2011 

Process Examination: Process Explorer shows DEP enabled for the browser. 

 
Figure 63. Firefox permanent DEP enabled 

GS Results (Stack Cookies) 

A test was run to determine if a module was compiled with the /GS compiler option [Microsoft_GS] for 

each item used by Mozilla Firefox. Although flawed*, this simple test attempted to see if a stack cookie 

named object was referenced within a binary. While having stack cookies doesn’t completely prevent 

exploitation, it does make writing an exploit more difficult. 

All modules tested that were used by Mozilla Firefox are compiled with stack cookies. 

For a full listing of the stack cookie results for Mozilla Firefox, please reference the Mozilla Firefox GS 

results section in Appendix A. 

*Note: A module may not have the need for a stack cookie, which is determined by stack variable usage 

[Microsoft_GS]. 

JavaScript JIT Hardening 

Firefox does not implement any JIT hardening techniques. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 60 of 102 
Version 0.0 Revision Date: 12/6/2011 

Sandbox Results 

At the time of this writing, Mozilla Firefox does not implement any type of formal sandbox technology. It 

relies on the Windows integrity level given to the application on start-up (by default, this is medium). 

The following results are shown, not as sandbox results, but the inverse, the browser’s capabilities when 

no sandbox or additional integrity restrictions are implemented. 

File System 

Certain directories and files were accessed attempting to show the browsers file system access 

capabilities. 

Note: Permissions may overlap due to generic and specific permission checks. This is done to give an 

overview accompanied by precise security permissions. 

Permission %SystemDrive% %SystemRoot% 
%ProgramFiles% 
%SystemRoot%\System32 

%UserProfile
% 
%Temp% 
%AppData% 

ZERO GRANTED GRANTED GRANTED 
GENERIC_READ GRANTED GRANTED GRANTED 
GENERIC_WRITE GRANTED BLOCKED GRANTED 
FILE_ADD_FILE GRANTED BLOCKED GRANTED 
FILE_ADD_SUBDIRECTORY GRANTED BLOCKED GRANTED 
FILE_APPEND_DATA GRANTED BLOCKED GRANTED 
FILE_CREATE_PIPE_INSTAN

CE GRANTED BLOCKED GRANTED 

FILE_DELETE_CHILD GRANTED BLOCKED GRANTED 
FILE_LIST_DIRECTORY GRANTED GRANTED GRANTED 
FILE_READ_ATTRIBUTES GRANTED GRANTED GRANTED 
FILE_READ_DATA GRANTED GRANTED GRANTED 
FILE_READ_EA GRANTED GRANTED GRANTED 
FILE_TRAVERSE GRANTED GRANTED GRANTED 
FILE_WRITE_ATTRIBUTES GRANTED BLOCKED GRANTED 
FILE_WRITE_DATA GRANTED BLOCKED GRANTED 
FILE_WRITE_EA GRANTED BLOCKED GRANTED 
WRITE_DAC GRANTED BLOCKED GRANTED 

Figure 64. Firefox directory permissions I 

  



 

Browser Security Comparison – A Quantitative Approach Page| 61 of 102 
Version 0.0 Revision Date: 12/6/2011 

Permission %AllUsersProfile% 

ZERO GRANTED 
GENERIC_READ GRANTED 
GENERIC_WRITE GRANTED 
FILE_ADD_FILE GRANTED 
FILE_ADD_SUBDIRECTORY GRANTED 
FILE_APPEND_DATA GRANTED 
FILE_CREATE_PIPE_INSTANCE GRANTED 
FILE_DELETE_CHILD BLOCKED 
FILE_LIST_DIRECTORY GRANTED 
FILE_READ_ATTRIBUTES GRANTED 
FILE_READ_DATA GRANTED 
FILE_READ_EA GRANTED 
FILE_TRAVERSE GRANTED 
FILE_WRITE_ATTRIBUTES GRANTED 
FILE_WRITE_DATA GRANTED 
FILE_WRITE_EA GRANTED 
WRITE_DAC BLOCKED 

Figure 65. Firefox directory permissions II 

Files 

Permission %SystemRoot%\explorer.exe 
%SystemRoot%\Cursors\arrow_i.cur 

ZERO GRANTED 
GENERIC_READ GRANTED 

GENERIC_WRITE BLOCKED 

GENERIC_EXECUTE GRANTED 

FILE_EXECUTE GRANTED 
FILE_READ_ATTRIBUTES GRANTED 
STANDARD_RIGHTS_EXECUTE GRANTED 
SYNCHRONIZE GRANTED 
FILE_READ_DATA GRANTED 
FILE_READ_EA GRANTED 
STANDARD_RIGHTS_READ GRANTED 
FILE_APPEND_DATA BLOCKED 
FILE_WRITE_ATTRIBUTES BLOCKED 
FILE_WRITE_DATA BLOCKED 
FILE_WRITE_EA BLOCKED 
STANDARD_RIGHTS_WRITE GRANTED 

WRITE_DAC BLOCKED 
Figure 66. Firefox file permissions 

  



 

Browser Security Comparison – A Quantitative Approach Page| 62 of 102 
Version 0.0 Revision Date: 12/6/2011 

Registry 

A select few registry hives and keys were accessed. These hives and keys represent locations that would 

be of interest to malware authors in an attempt to gain persistence. 

Note: The MAXIMUM_ALLOWED permission by a medium integrity process is read-only for all hives and 

keys other than HKEY_CURRENT_USER, which is read/write. 

Hive Subkey Permission Result 
HKEY_LOCAL_MACHINE NULL MAXIMUM_ALLOWED GRANTED 
HKEY_CURRENT_USER NULL MAXIMUM_ALLOWED GRANTED 
HKEY_USERS NULL MAXIMUM_ALLOWED GRANTED 
HKEY_LOCAL_MACHINE Software\Microsoft\Windows 

NT\CurrentVersion\WinLogon 

MAXIMUM_ALLOWED GRANTED 

Figure 67. Firefox registry permissions 

Network Access 

The ability for a browser to access the Internet is vital to its operation, but creating a new socket for 

reading, writing and listening could permit an attacker to communicate read-able information to the 

outside world. The ability to initiate, read, write and listen on Windows sockets are listed below. 

Action Result 

WSAStartup GRANTED 
Send() GRANTED 
Recv() GRANTED 
Listen() [port 88] GRANTED 

Figure 68. Firefox network accessibility 

Resource Monitoring 

Recording keystrokes, registering hotkeys, and attempting to read screen data (i.e. screen captures) are 

widely employed amongst attackers and spyware authors in their attempts to intercept and read user’s 

confidential information. The sandbox test harness has three checks for methods that attempt to 

acquire user information (obviously, there are various other techniques).  

Action Result 
GetPixel() GRANTED 
RegisterHotKey() GRANTED 
GetAsyncKeyState() GRANTED 

Figure 69. Firefox resource monitoring 

  



 

Browser Security Comparison – A Quantitative Approach Page| 63 of 102 
Version 0.0 Revision Date: 12/6/2011 

Threads 

Access to other threads running on the system can be used to escalate privileges or trampoline onto 

different parts of the system. The sandbox test harness provides functionality that tests the access 

privileges of every thread currently alive on the system. Since this list can vary greatly, only a list of 

threads and the privileges granted will be supplied. 

Since there is no sandbox in place, all threads that are running with medium integrity will grant full-

access to the Firefox process. Please see ‘firefox5_nosandbox_results.txt’ for a full listing.  

Process:Thread ID Permission Granted 

N/A N/A 
Figure 70. Firefox threads permission granted 

Processes 

Processes, like threads, can be used to escalate privileges or trampoline onto different parts of the 

system. Just like threads, all processes that are medium integrity will be fully accessible by the Firefox 

process. Due to the number of accessible processes, they have been omitted from this paper. Please see 

‘firefox5_nosandbox_results.txt’ for a full listing. 

Process Permission Granted 

N/A N/A 
Figure 71. Firefox processes permission granted 

Process Creation 

An attacker might find it valuable to create a new process, even if that process has the same 

authorization and privilege level as the compromised application. This could permit a plethora of other 

opportunities that could be used for privilege escalation or data leakage. A simple example of calling the 

CreateProcess() API with “C:\Program Files\Internet Explorer\iexplore.exe” was used.  

Executable Permission Granted 

C:\Program Files\Internet Explorer\iexplore.exe GRANTED 
Figure 72. Firefox CreateProcess() 

Note: We are aware that this is in a system directory and only presents one example, but deemed it 

appropriate for the limitations of this assessment. 

Handles 

Handles are used by the Windows operating system to keep track of content-specific identifiers. This 

permits applications to reference resources by handle, instead of, for example, process ID. Since handles 

are used to access resources, they must also contain security restrictions so that other applications, 

specifically those from the sandbox, may not use them gain privileges. 

For more granular information on handling test cases, please see ‘firefox5_nosandbox_results.txt’ in the 

attachment. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 64 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Clipboard 

The Windows clipboard enables different applications to share messages and data [Microsoft_Clip]. Not 

only could a compromised application read sensitive information from the clipboard, the attacker could 

also use flaws in the clipboard to gain further system access (i.e. sandbox escape) [Clip_Exploit]. During 

our tests, we attempted to GET and SET information to the clipboard. 

Action Permission Granted 

GetClipboardData(CF_TEXT) GRANTED 
SetClipboardData(CF_TEXT) GRANTED 

Figure 73. Firefox Clipboard access 

Windows Desktop 

The Windows desktop not only provides a display surface for user interaction, but also contains objects 

such as windows, menus and hooks (it is also a securable object). Windows messages are limited to 

communicating with other processes that reside on the same desktop; inter-desktop process 

communication is not operational [Microsoft_Desktop]. The ability to create, switch and open other 

desktops with varying permissions may also lead to privilege escalation scenarios [CVE-2009-1123].  

Action Permission Granted 

CreateDesktop() GRANTED 
OpenWindowsStation(“winsta0”) GRANTED 
SetProcessWindowStation(“winsta0”) GRANTED 
OpenDesktop(“Default”) GRANTED 

Figure 74. Firefox Desktop/WindowStation permissions 

System Parameters 

It should be obvious that an attacker could use the system wide parameters to his advantage. These 

parameters can control screen savers, menus and many other options [Microsoft_SysParam]. By limiting 

the ability to set these parameters, the sandbox can ensure that no underhandedness can be achieved 

by someone attempting to escape the sandboxed environment.  

Action Permission Granted 

SystemParametersInfo(SPI_GETMOUSE) [GET] GRANTED 
SystemParametersInfo(SPI_SETMOUSE) [SET] GRANTED 

Figure 75. Firefox SystemParametersInfo() 

Note: Only a single system parameter was checked for brevity’s sake. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 65 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Message Broadcasts 

By sending a Windows message with the ‘HWND_BROADCAST’ option set, an application effectively 

sends the same message to every top-level window. Each of these windows could interpret the 

broadcast message differently; due to expecting a varying number of parameters [MSDN_Broad]. This 

could cause many operating system instability and exploitation scenarios. We sent an example 

broadcast message to determine if it was permitted from within the sandbox. A great example of 

exploiting the Windows messaging system for authoritative gain would be a shatter attack 

[Wiki_Shatter]. 

Action Permission Granted 
SendMessage(HWND_BROADCAST, WM_TIMER) GRANTED 

Figure 76. Firefox send broadcast message 

Windows Hooks 

Windows hooks are a procedure used to monitor certain types of system events on the same desktop as 

the calling thread [Microsoft_Hooks]. These same hooks historically have been used by malware to do 

such things as monitor keyboard input and other nefarious tasks. We have checked the ability to set 

system hooks. 

Action Permission Granted 
SetWindowsHookEx(WH_KEYBOARD) GRANTED 

Figure 77. Firefox set Windows hooks 

  



 

Browser Security Comparison – A Quantitative Approach Page| 66 of 102 
Version 0.0 Revision Date: 12/6/2011 

Named Pipes 

Named pipes are used for one-way or two-way communications within the Windows operating system 

[Microsoft_Pipes]. While this ability to communicate between client and server is an integral part of 

inter process communication, unbridled communications can be used to bypass sandbox protection 

mechanisms. For example, imagine an attacker has the ability to send data to a named pipe, which has a 

privilege and authorization level greater than the process that is sending data. We attempted to 

enumerate all the named pipes for a system for permissions testing. If that were not possible, we would 

iterate through a list of ‘well-known’ pipes for the Windows 7 (32-bit) operating system attempting to 

validate permissions.  

Named Pipe PIPE_ACCESS_INBOUND PIPE_ACCESS_OUTBOUND 

\\.\pipe\lsass GRANTED 
INDETERMINATE 
[Resource not Available] 

\\.\pipe\ntsvcs GRANTED GRANTED 

\\.\pipe\scerpc GRANTED GRANTED 

\\.\pipe\protected_storage GRANTED GRANTED 

\\.\pipe\plugplay GRANTED GRANTED 

\\.\pipe\epmapper GRANTED GRANTED 

\\.\pipe\eventlog GRANTED GRANTED 

\\.\pipe\atsvc GRANTED GRANTED 

\\.\pipe\wkssvc GRANTED GRANTED 

\\.\pipe\keysvc GRANTED GRANTED 

\\.\pipe\trkwks GRANTED GRANTED 

\\.\pipe\srvsvc GRANTED GRANTED 
Figure 78. Firefox named pipe access 

Summary 

Firefox has yet to implement a formal sandbox at the time of this writing, relying solely on the default 

Windows integrity level (medium). This leaves many doors open for attackers when it comes to 

persistence, external communication and additional operating system resources used for privilege 

escalation. Out of all the browsers tested for exploit and persistence mitigation, Firefox contains the 

most potential from an attacker’s perspective. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 67 of 102 
Version 0.0 Revision Date: 12/6/2011 

Browser Add-Ons 
Browser add-ons are software components, typically written by third parties that add to the 

functionality of the browser. Such new functionality may include the ability for browsers to play video, 

scan for viruses, view particular file types, make modifications to displayed HTML, and many other tasks. 

These add-ons include components such as plug-ins, extensions and themes. The exact types of add-ons 

available vary from browser to browser. Common examples of add-ons include the Firefox NoScript 

extension and plug-ins that allow viewing of files normally used by Microsoft Office, Shockwave Flash 

and Adobe Acrobat Reader. 

Adding new code to the browser represents several potential security risks. One may be that the new 

code itself may be malicious. In this case, it is important to consider whether the add-ons are reviewed 

in some manner before being offered. This helps prevent malicious add-ons from being installed. 

Another important issue regarding malicious add-ons is whether they alert the user that they are being 

installed or that they can be silently installed in the background. Clearly, if add-ons can be installed 

without user notification/interaction, it can result in code being placed on the system without user 

knowledge. 

Another way that add-ons introduce security risk is by introducing new security vulnerabilities into the 

browser, which may be exploited by attackers. A number of factors play into how plug-in risk is handled 

by the browser. Add-ons may be sandboxed to prevent compromised code from causing significant 

harm. (This helps in malicious add-on cases, as well). Another risk to consider is whether including add-

ons weakens the overall security posture of the browser by weakening exploit mitigation technologies 

such as ASLR or DEP. 

Yet another risk to consider is if the plug-ins can be silently activated or require user interaction. As 

stated previously, permitting add-on installation without user acknowledgment presents a scenario 

where unauthorized code can stealthy be installed on the system under the guise of a browser ‘add-on’. 

Lastly, we should take the concept of add-on management into consideration. If a vulnerability is 

discovered in a third party browser plug-in, then it should be easily remedied through an upgrade or 

patch release. Unmanageable add-ons can result in upgrade and patching neglect, leaving users with 

old, vulnerable plug-ins for extended periods. 

First, each browser’s extension methodology was identified. Then, the most critical ways to extend the 

browser were observed; how they were installed, what types of changes the add-ons could make, 

extension limitations and add-on review procedure. We next built custom plug-ins to test feature 

limitations by including in them the sandbox test harness used in the browser testing section. Lastly, we 

examined each add-on’s update and management mechanisms. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 68 of 102 
Version 0.0 Revision Date: 12/6/2011 

Browser Comparison 
 

Feature Chrome Internet Explorer Firefox 

Pre-install Warning    

Auto Updates    

Permission Model    

Sandbox    

Read Files    

Write Files    

Read Registry Keys    

Write Registry Keys    

Network Access    

Resource Monitoring    

Thread Access    

Process Access    

Process Creation    

Clipboard Access    

System Parameters    

Broadcast Messages    
Desktop & Windows 

Station Access    

Windows Hooks    

Named Pipes Access    
 

 Good 

 Acceptable 

 Bad 

Figure 79. Browser comparison 

As you can see from the table above, the capabilities of browser plug-ins/add-ons differ greatly from the 

browser itself, due to their demanding nature (i.e. interacting with the browser itself). A redeeming 

feature is that many of the plug-ins don’t come pre-installed and must be installed by the end user. The 

security of add-ons should be considered just as high a priority as the browser.   



 

Browser Security Comparison – A Quantitative Approach Page| 69 of 102 
Version 0.0 Revision Date: 12/6/2011 

Google Chrome 

Installation 

There are multiple ways to add code to Chrome, including installable web apps, themes, extensions and 

plug-ins. These are all referred to as apps for Chrome. An app can load DLLs by using the NPAPI interface 

used by Firefox plug-ins. All extensions come in a single .crx file, which is a cryptographically signed, zip 

file. 

A theme contains no dynamic content and therefore poses no real security concern. 

A hosted web app is a simple wrapper around an actual web site on the Internet. A packaged web app is 

a web application that comes in a .crx file and can use Chrome extension features. A packaged web app 

contains all the HTML, CSS, and other files needed to view the web application. They have almost all the 

functionality offered by extensions, except they cannot add buttons to the address bar. In addition, no 

native code can be included in installable web apps. 

Extensions have the most access to elements of the browser and may include native code. Instead of 

just centering on a single web site or application, extensions are designed to affect how all web sites 

function within the browser. 

Plug-ins includes any extension or other mechanism, such as a Firefox plug-in, that includes native code. 

User interaction is required when installing add-ons from the Chrome Web Store, see the figure below. 

Notice that the prompt includes information on what access the extension requires. 

 
Figure 80. Packaged extensions must declare permissions 

This information can be provided because, in order to use most of the APIs available to Chrome 

extensions, the extension must declare which API it needs to access in its manifest file. (The only 

exception is unpacked extensions, but these can only be installed in Developer mode). In the example 

above, the extension needs to access data from the site http://api.flickr.com, but that is the only site 

whose data it can access. This extension’s manifest file looked like: 

  

http://api.flickr.com/


 

Browser Security Comparison – A Quantitative Approach Page| 70 of 102 
Version 0.0 Revision Date: 12/6/2011 

{ 

  “name”: “My First Extension”, 

  “version”: “1.0”, 

  “description”: “The first extension that I made.”, 

  “browser_action”: { 

    “default_icon”: “icon.png” 

  }, 

  “permissions”: [ 

    “http://api.flickr.com/” 

  ] 

} 

Figure 81. File extension manifest 

A list of permissions that must be requested and approved before use is in the permissions section of 

the manifest. This list of permissions include things such as 

 Plug-ins 

 Bookmarks 

 History 

 Management 

 Geolocation 

 clipboardRead 

If the extension includes native code, it needs the “Plug-ins” manifest entry and the warning indicates 

that it can do just about anything. 

 
Figure 82. Chrome native code plug-in extensions throw a warning 

Extensions that are loaded from somewhere besides the Chrome Web Store display an additional 

dialogue, see the figure below 

 
Figure 83. Chrome unsigned apps require user interaction 

After this prompt, the extension then declares which API it needs in order to function. 

This additional prompt encourages developers to use the Chrome Web Store. Furthermore, in order to 

reduce the problem of extensions simply requesting access to everything, the Chrome Web Store 

requires extensions with the Plug-in permission to sign a contract with Google. 



 

Browser Security Comparison – A Quantitative Approach Page| 71 of 102 
Version 0.0 Revision Date: 12/6/2011 

Additionally, if an extension is found to be malicious or otherwise harmful, it can be removed from the 

Web Store and can also be remotely blacklisted and uninstalled from all Chrome browsers. 

Any native code runs in a separate Chrome process while other extensions run in the renderer process. 

Once installed, extensions and plug-ins can be activated without user interaction, with only a few 

exceptions. Some plug-ins, such as Java, requires user interaction before it can be run, see figure 90. 

Google indicates that plug-ins with a history of security problems that are not widely used are blocked in 

this manner by Chrome to prevent websites from loading the plug-in and exploiting it. 

 
Figure 84. Chrome java approval pre-instantiation 

Another interesting feature is that, while plug-ins and extensions are automatically updated, the 

underlying services, such as the Java runtime environment, may get out of date. When this happens, 

Chrome again warns you, giving you the option of updating or just running the out of date plug-in. 

 
Figure 85. Chrome plug-in out of data indicator 

Sandbox Results 

While most Chrome add-ons run in the renderer sandbox (see earlier section), plug-ins do not. 

Therefore, when examining sandboxing for Chrome add-ons, we look at the worst-case scenario and 

look at the restrictions on native code plug-ins. Plug-ins do not run in a sandbox or with any restrictions, 

besides those imposed due to not being run as administrator. This is revealed by running the sandboxing 

script. 

File System 

We attempted to access certain system directories and files via the sandboxed plug-in. 

Note: Permissions may overlap due to generic and specific permission checks. This is done to give an 

overview accompanied by precise security permissions. 

Permission %SystemRoot%, 
%ProgramFiles%, 
%SystemRoot%\System32 

%AllUsersProfile% 

ZERO GRANTED GRANTED 
GENERIC_READ GRANTED GRANTED 
GENERIC_WRITE BLOCKED GRANTED 
FILE_ADD_FILE BLOCKED GRANTED 
FILE_ADD_SUBDIRECTORY BLOCKED GRANTED 
FILE_APPEND_DATA BLOCKED GRANTED 
FILE_CREATE_PIPE_INSTANCE BLOCKED GRANTED 
FILE_DELETE_CHILD BLOCKED BLOCKED 
FILE_LIST_DIRECTORY GRANTED GRANTED 



 

Browser Security Comparison – A Quantitative Approach Page| 72 of 102 
Version 0.0 Revision Date: 12/6/2011 

Permission %SystemRoot%, 
%ProgramFiles%, 
%SystemRoot%\System32 

%AllUsersProfile% 

FILE_READ_ATTRIBUTES GRANTED GRANTED 
FILE_READ_DATA GRANTED GRANTED 
FILE_READ_EA GRANTED GRANTED 
FILE_TRAVERSE GRANTED GRANTED 
FILE_WRITE_ATTRIBUTES BLOCKED GRANTED 
FILE_WRITE_DATA BLOCKED GRANTED 
FILE_WRITE_EA BLOCKED GRANTED 
WRITE_DAC BLOCKED BLOCKED 

Figure 86. Chrome add-on directory permissions 

Permission %SystemDrive%, 
%UserProfile%, 
%Temp%, 
%AppData% 

%SystemRoot%\explorer.exe, 
%SystemRoot%\Cursors\arrow_i.cur 

ZERO GRANTED GRANTED 
GENERIC_READ GRANTED GRANTED 

GENERIC_WRITE GRANTED BLOCKED 

GENERIC_EXECUTE GRANTED GRANTED 
FILE_EXECUTE GRANTED GRANTED 
FILE_READ_ATTRIBUTES GRANTED GRANTED 
STANDARD_RIGHTS_EXECUTE GRANTED GRANTED 
SYNCHRONIZE GRANTED GRANTED 
FILE_READ_DATA GRANTED GRANTED 

FILE_READ_EA GRANTED GRANTED 
STANDARD_RIGHTS_READ GRANTED GRANTED 
FILE_APPEND_DATA GRANTED BLOCKED 
FILE_WRITE_ATTRIBUTES GRANTED BLOCKED 
FILE_WRITE_DATA GRANTED BLOCKED 
FILE_WRITE_EA GRANTED BLOCKED 
STANDARD_RIGHTS_WRITE GRANTED GRANTED 

WRITE_DAC GRANTED BLOCKED 
Figure 87. Chrome add-on file permissions 

Registry 

A select few registry hives/keys were accessed from inside the plug-in. These hives and keys represent 

locations that would be of interest to malware authors in an attempt to gain persistence. 

Hive Subkey Permission Result 

HKEY_LOCAL_MACHINE NULL MAXIMUM_ALLOWED GRANTED 
HKEY_CURRENT_USER NULL MAXIMUM_ALLOWED GRANTED 
HKEY_USERS NULL MAXIMUM_ALLOWED GRANTED 

HKEY_LOCAL_MACHINE 
Software\Microsoft\Windows 
NT\CurrentVersion\WinLogon 

MAXIMUM_ALLOWED GRANTED 



 

Browser Security Comparison – A Quantitative Approach Page| 73 of 102 
Version 0.0 Revision Date: 12/6/2011 

Figure 88. Chrome add-on registry permissions 

Network Access 

The ability for a browser to access the Internet is vital to its operation, but creating a new socket for 

reading, writing and listening could permit an attacker to communicate read-able information to the 

outside world. The ability to initiate, read, write and listen on Windows sockets are listed below. 

Action Result 

WSAStartup GRANTED 
Send() GRANTED 
Recv() GRANTED 
Listen() GRANTED 

Figure 89. Chrome add-on network accessibility 

Resource Monitoring 

Recording keystrokes, registering hotkeys and attempting to read screen data (i.e. screen captures) are 

widely employed amongst attackers and spyware authors in their attempts to intercept and read user’s 

confidential information. The sandbox test harness has three checks for methods that attempt to 

acquire this information (obviously, there are various other techniques). 

Action Result 

GetPixel() GRANTED 
RegisterHotKey() GRANTED 
GetAsyncKeyState() GRANTED 

Figure 90. Chrome add-on resource monitoring 

Process Creation 

An attacker might find it valuable to create a new process, even if that process has the same 

authorization as the compromised application. This could permit a plethora of other options that could 

be used for privilege escalation or data leakage. A simple example of calling the CreateProcess() API with 

“C:\Program Files\Internet Explorer\iexplore.exe” was used.  

Executable Permission Granted 

C:\Program Files\Internet Explorer\iexplore.exe GRANTED 
Figure 91. Chrome add-on CreateProcess() 

Note: We are aware that this is in a system directory and only presents one example, but deemed it 

appropriate for the limitations of this assessment. 

Handles 

Handles are used by the Windows operating system to keep track of content-specific identifiers. This 

permits applications to reference resources by handle, instead of, for example, process ID. Since handles 

are used to access resources, they must also contain security restrictions so that other applications, 

specifically those from the sandbox, may not use them gain privileges. 



 

Browser Security Comparison – A Quantitative Approach Page| 74 of 102 
Version 0.0 Revision Date: 12/6/2011 

For more granular information on handling test cases, please see ‘chrome-addons.txt’ in the 

attachment. 

Windows Clipboard 

The Windows clipboard enables different applications to share messages and data [Microsoft_Clip]. Not 

only could a compromised application read sensitive information from the clipboard, the attacker could 

also use flaws in the clipboard to gain further system access (i.e. sandbox escape) [Clip_Exploit]. During 

our tests, we attempted to GET and SET information to the clipboard. 

Action Permission Granted 

GetClipboardData(CF_TEXT) GRANTED 
SetClipboardData(CF_TEXT) GRANTED 

Figure 92. Chrome add-on Clipboard access 

Windows Desktop 

The Windows desktop not only provides a display surface for user interaction, but also contains objects 

such as windows, menus and hooks (it is also a securable object). Windows messages are limited to 

communicating with other processes that reside on the same desktop; inter-desktop process 

communication is not operational [Microsoft_Desktop]. The ability to create, switch and open other 

desktops with varying permissions may also lead to privilege escalation scenarios [CVE-2009-1123].  

Action Permission Granted 

CreateDesktop() GRANTED 
OpenWindowsStation(“winsta0”) GRANTED 
OpenDesktop(“Default”) GRANTED 

Figure 93. Chrome add-on Desktop/WindowStation permissions 

System Parameters 

It should be obvious that an attacker could use the system wide parameters to his advantage. These 

parameters can control screen saver parameters, menu parameters and many other options 

[Microsoft_SysParam]. By limiting the ability to set these parameters, the sandbox can ensure that no 

underhandedness can be achieved by someone attempting to escape the sandboxed environment. 

Note: Only a single system parameter was checked for brevity’s sake. 

Action Permission Granted 

SystemParametersInfo(SPI_GETMOUSE) [GET] GRANTED 
SystemParametersInfo(SPI_SETMOUSE) [SET] GRANTED 

Figure 94. Chrome add-on SystemParametersInfo() 

  



 

Browser Security Comparison – A Quantitative Approach Page| 75 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Message Broadcasts 

By sending a Windows message with the ‘HWND_BROADCAST’ option set, an application effectively 

sends the same message to every top-level window. Each of these windows could potentially interpret 

the broadcast message differently, each expecting a varying number of parameters [MSDN_Broad]. This 

could obviously cause operating system instability and exploitation scenarios by the handful. We sent an 

example broadcast message to determine if it was permitted from within the sandbox. A great example 

of exploiting the Windows messaging system for authoritative gain would be a shatter attack 

[Wiki_Shatter]. 

Action Permission Granted 

SendMessage(HWND_BROADCAST, WM_SETTEXT) GRANTED 
Figure 95. Chrome add-on send broadcast message 

Windows Hooks 

Windows hooks are a procedure used to monitor certain types of system events for a specific thread or 

all threads in the same desktop as the calling thread [Microsoft_Hooks]. These same hooks historically 

have been used by malware to do such things as monitor keyboard input and other nefarious tasks. We 

checked the ability to set system hooks.  

Action Permission Granted 

SetWindowsHookEx(WH_KEYBOARD) GRANTED 
Figure 96. Chrome add-on set Windows hooks 

  



 

Browser Security Comparison – A Quantitative Approach Page| 76 of 102 
Version 0.0 Revision Date: 12/6/2011 

Named Pipes 

Named pipes are used for one-way or two-way communications within the Windows operating system 

[Microsoft_Pipes]. While this ability to communication between client and server is an integral part of 

inter process communication, unbridled communications can be used to bypass sandbox protection 

mechanisms. For example, imagine an attacker has the ability to send data to a named pipe, which has a 

privilege and authorization level greater than the process that is sending data. We attempted to 

enumerate all the named pipes for a system for permissions testing. If that was not possible, we would 

iterate through a list of ‘well-known’ pipes for the Windows 7 (32-bit) operating system in an attempt to 

validate permissions.  

Named Pipe PIPE_ACCESS_INBOUND 
PIPE_ACCESS_OUTBOUND 

\\.\pipe\lsass GRANTED 

\\.\pipe\ntsvcs GRANTED 

\\.\pipe\scerpc GRANTED 

\\.\pipe\protected_storage GRANTED 

\\.\pipe\plugplay GRANTED 

\\.\pipe\epmapper GRANTED 

\\.\pipe\eventlog GRANTED 

\\.\pipe\atsvc GRANTED 

\\.\pipe\wkssvc GRANTED 

\\.\pipe\keysvc GRANTED 

\\.\pipe\trkwks GRANTED 

\\.\pipe\srvsvc GRANTED 
Figure 97. Chrome add-on named pipe access 

There are a couple of exceptions to the above sandbox tests. Most web browsers do not come with 

extensions or plug-ins by default. Chrome includes a plug-in for viewing PDFs and Flash content, two of 

the more popular formats on the web. As we mentioned above, Chrome cannot usually control the 

version of the underlying content parsers associated with a particular plug-in, but by including them 

within Chrome, they can control the versions of everything. In the case of the PDF viewer, it also allows 

Chrome to place it in the full sandbox, which it cannot typically do with plug-ins. 

So, Chrome includes more attack surface by including the aforementioned plug-ins, but is then able to 

use its auto updating feature to ensure they are always current. Furthermore, the PDF plug-in lives in 

the full Chrome sandbox and the Flash plug-in is in a weaker sandbox, both in an attempt to limit the 

damage that could be done by attackers. 

In the end, for the majority of users who would probably include the plug-ins anyway, this is a security 

win. For those few users who would not install both plug-ins this choice adds to the attack surface, 

which potentially decreases security. This second group of advanced users can manually disable those 

two plug-ins. 



 

Browser Security Comparison – A Quantitative Approach Page| 77 of 102 
Version 0.0 Revision Date: 12/6/2011 

Exploit Mitigations and Manageability 

As far as ASLR goes, the results are similar to Firefox, since Firefox plug-ins will load in Google Chrome. 

Chrome allows loading plug-ins with non-ASLR compatible DLLs, allowing attackers to know the location 

of executable code segments, hence defeating the exploit mitigation. 

There are two ways to review, disable or remove extensions or plug-ins. Extensions can be managed by 

going to the configuration wrench, then selecting Tools and Extensions. 

 
Figure 98. Chrome extensions may be disabled or allowed 

  



 

Browser Security Comparison – A Quantitative Approach Page| 78 of 102 
Version 0.0 Revision Date: 12/6/2011 

There is also a task manager, found under the wrench and Tools menu that indicates what tabs are 

open, what extensions are running, and what plug-ins are loaded. 

 
Figure 99. Chrome task manager 

The only problem is the lack of installed plug-in listing and configuration content in the management 

interface and wrench menu. The only way to get the information is to navigate to “chrome://plug-ins” in 

the address bar. This menu is nice and indicates version information, where DLLs are stored, MIME 

types, and numerous other content, see Figure 106. However, having this information accessible from 

the extensions configuration screen would be more intuitive. 

 
Figure 100. Chrome plug-in configuration menu 



 

Browser Security Comparison – A Quantitative Approach Page| 79 of 102 
Version 0.0 Revision Date: 12/6/2011 

Chrome Add-on summary 

 Installation requires user interaction 

 Extensions must declare in a manifest which API they need to access 

 Central location of extensions, more prompts if installed elsewhere 

 Auto updates 

 Extensions can be remotely uninstalled if malicious 

 No sandboxing of plug-ins, except PDF and Flash 

 Plug-ins can break ASLR 

 Plug-ins can be activated silently (there are some notable exceptions that cannot) 

 Plug-ins and extensions are managed separately 

  



 

Browser Security Comparison – A Quantitative Approach Page| 80 of 102 
Version 0.0 Revision Date: 12/6/2011 

Internet Explorer 

Installation 

Of the browsers assessed, IE has the greatest number of ways to customize and extend its functionality. 

These fall into two major categories, browser extensions and content extensions. There are many 

different browser extensions. One is the Shortcut Menu Extension, which permits script or native code 

to be executed upon a right-click menu choice by the user. Secondly, there are toolbars or Explorer Bars 

that allow native code to be loaded into the browser to add toolbar functionality. 

The final type of browser extension is the Browser Helper Object (BHO). BHOs let native code objects 

run in the same memory context as the browser and can perform any action on the available windows 

and modules. For example, a BHO could detect the browser’s typical events, such as GoBack, GoForward 

and DocumentComplete; accessing the browser’s menu and toolbar to make changes; creating windows 

to display additional information on the currently viewed page; and installing hooks to monitor 

messages and actions. 

The other broad category of add-ons is content extensions. These extensions are responsible for adding 

the ability to parse and display new types of content. An example of a content extension is an Active 

Document. These extensions run native code when encountering a particular document type. The most 

well-known type of extension, ActiveX controls, are another example of content extensions. ActiveX 

controls are native code and have access to the browser internals. Other content extensions include 

Behaviors, Windows Forms Controls and Pluggable Protocol Handlers. 

As you can see, there are numerous ways to extend Internet Explorer. In this section, we’ll focus mainly 

on ActiveX, although most of the findings are valid for other types of extensions as well. 

Installation of ActiveX controls requires user input and interaction. If an ActiveX control is not installed, 

Internet Explorer will display a bar that requires the user to click and select ‘Install’ to run the ActiveX 

control. 

 
Figure 101. Internet Explorer page requires ActiveX control 

  



 

Browser Security Comparison – A Quantitative Approach Page| 81 of 102 
Version 0.0 Revision Date: 12/6/2011 

After permission is granted, a second dialogue is presented which presents information about the 

control’s digital signature. 

 
Figure 102. Internet Explorer control requesting installation 

If the signature is invalid or missing, Internet Explorer will not continue the installation process. 

 
Figure 103. Internet Explorer bad signature 

Automatic updates are possible with ActiveX controls. Whenever content that calls upon an ActiveX 

control is accessed, Internet Explorer checks with the site to see if a newer version is available. If an 

update is available, it will offer the ability to install the new version. 

Sandbox Results 

ActiveX controls run within the Internet Explorer process. The control runs in a permissive sandbox. 

There are some restrictions to what it can do, but not enough to stop the activities of an attacker 

significantly. The results of the sandbox testing script are detailed below. 



 

Browser Security Comparison – A Quantitative Approach Page| 82 of 102 
Version 0.0 Revision Date: 12/6/2011 

File System 

We attempted to access certain system directories and files via the sandboxed plug-in. 

Note: Permissions may overlap due to generic and specific permission checks. This is done to give an 

overview accompanied by precise security permissions. 

Permission %SystemDrive%, 
%SystemRoot%, 
%ProgramFiles%, 
%SystemRoot%\System32 

%AllUsersProfile% 

ZERO GRANTED GRANTED 
GENERIC_READ GRANTED GRANTED 
GENERIC_WRITE BLOCKED GRANTED 
FILE_ADD_FILE BLOCKED GRANTED 
FILE_ADD_SUBDIRECTORY BLOCKED GRANTED 
FILE_APPEND_DATA BLOCKED GRANTED 
FILE_CREATE_PIPE_INSTANCE BLOCKED GRANTED 
FILE_DELETE_CHILD BLOCKED BLOCKED 
FILE_LIST_DIRECTORY GRANTED GRANTED 
FILE_READ_ATTRIBUTES GRANTED GRANTED 
FILE_READ_DATA GRANTED GRANTED 
FILE_READ_EA GRANTED GRANTED 
FILE_TRAVERSE GRANTED GRANTED 
FILE_WRITE_ATTRIBUTES BLOCKED GRANTED 
FILE_WRITE_DATA BLOCKED GRANTED 
FILE_WRITE_EA BLOCKED GRANTED 
WRITE_DAC BLOCKED BLOCKED 

Figure 104. Internet Explorer add-on directory permissions 

  



 

Browser Security Comparison – A Quantitative Approach Page| 83 of 102 
Version 0.0 Revision Date: 12/6/2011 

Permission %UserProfile%, 
%Temp%, 
%AppData%, 
%AllUsersProfile% 

%SystemRoot%\explorer.exe, 
%SystemRoot%\Cursors\arrow_i.cur 

ZERO GRANTED GRANTED 
GENERIC_READ GRANTED GRANTED 
GENERIC_WRITE GRANTED BLOCKED 
GENERIC_EXECUTE GRANTED GRANTED 
FILE_EXECUTE GRANTED GRANTED 
FILE_READ_ATTRIBUTES GRANTED GRANTED 

STANDARD_RIGHTS_EXECUTE GRANTED GRANTED 

SYNCHRONIZE GRANTED GRANTED 
FILE_READ_DATA GRANTED GRANTED 
FILE_READ_EA GRANTED GRANTED 
STANDARD_RIGHTS_READ GRANTED GRANTED 
FILE_APPEND_DATA GRANTED BLOCKED 
FILE_WRITE_ATTRIBUTES GRANTED BLOCKED 
FILE_WRITE_DATA GRANTED BLOCKED 
FILE_WRITE_EA GRANTED BLOCKED 
STANDARD_RIGHTS_WRITE GRANTED GRANTED 

WRITE_DAC GRANTED BLOCKED 
Figure 105. Internet Explorer add-on file permissions 

Registry 

A select few registry hives/keys were accessed from inside the add-on. These hives and keys represent 

locations that would be of interest to malware authors in an attempt to gain persistence. 

Hive Subkey Permission Result 
HKEY_LOCAL_MACHINE NULL MAXIMUM_ALLOWED GRANTED 
HKEY_CURRENT_USER NULL MAXIMUM_ALLOWED GRANTED 
HKEY_USERS NULL MAXIMUM_ALLOWED GRANTED 
HKEY_LOCAL_MACHINE Software\Microsoft\Windows 

NT\CurrentVersion\WinLogon 

MAXIMUM_ALLOWED GRANTED 

Figure 106. Internet Explorer add-on registry permissions 

Network Access 

The ability for a browser to access the internet is vital to its operation, but creating a new socket for 

reading, writing, listening could permit an attacker to communicate read-able information to the outside 

world. The ability to initiate, read, write and listen on Windows sockets are listed below. 

Action Result 

WSAStartup GRANTED 
Send() GRANTED 
Recv() GRANTED 
Listen() GRANTED 

Figure 107. Internet Explorer add-on network accessibility 



 

Browser Security Comparison – A Quantitative Approach Page| 84 of 102 
Version 0.0 Revision Date: 12/6/2011 

Resource Monitoring 

Recording keystrokes, registering hotkeys and attempting to read screen data (i.e. screen captures) are 

widely employed amongst attackers and spyware authors in their attempts to intercept and read user’s 

confidential information. The sandbox test harness has three checks for methods that attempt to 

acquire user information (obviously, there are various other techniques). 

Action Result 

GetPixel() GRANTED 
RegisterHotKey() GRANTED 
GetAsyncKeyState() BLOCKED 

Figure 108. Internet Explorer add-on resource monitoring 

Process Creation 

An attacker might find it valuable to create a new process, even if that process has the same 

authorization as the compromised application. This could permit a plethora of other options that could 

be used for privilege escalation or data leakage. A simple example of calling the CreateProcess() API with 

“C:\Program Files\Internet Explorer\iexplore.exe” was used.  

Executable Permission Granted 

C:\Program Files\Internet Explorer\iexplore.exe GRANTED 
Figure 109. Internet Explorer add-on CreateProcess() 

Note: We are aware that this is in a system directory and only presents one example, but deemed it 

appropriate for the limitations of this assessment. 

Handles 

Handles are used by the Windows operating system to keep track of content-specific identifiers. This 

permits applications to reference resources by handle, instead of, for example, process ID. Since handles 

are used to access resources, they must also contain security restrictions so that other applications, 

specifically those from the sandbox, may not use them gain privileges. 

For more granular information on handling test cases, please see ‘ie-addons.txt’ in the attachment. 

Windows Clipboard 

The Windows clipboard enables different applications to share messages and data [Microsoft_Clip]. Not 

only could a compromised application read potentially sensitive information from the clipboard, the 

attacker could also use flaws in the clipboard to gain further system access (i.e. sandbox escape) 

[Clip_Exploit]. During our tests, we attempted to GET and SET information to the clipboard. 

Action Permission Granted 

GetClipboardData(CF_TEXT) BLOCKED 
SetClipboardData(CF_TEXT) BLOCKED 

Figure 110. Internet Explorer add-on Clipboard access 

  



 

Browser Security Comparison – A Quantitative Approach Page| 85 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Desktop 

The Windows desktop not only provides a display surface for user interaction, but also contains objects 

such as windows, menus and hooks (it is also a securable object). Windows messages are limited to 

communicating with other processes that reside on the same desktop; inter-desktop process 

communication is not operational [Microsoft_Desktop]. The ability to create, switch and open other 

desktops with varying permissions may also lead to privilege escalation scenarios [CVE-2009-1123].  

Action Permission Granted 

CreateDesktop() GRANTED 
OpenWindowsStation(“winsta0”) GRANTED 
OpenDesktop(“Default”) GRANTED 

Figure 111. Internet Explorer add-on Desktop/WindowStation permissions 

System Parameters 

It should be obvious that an attacker could use the system wide parameters to his advantage. These 

parameters can control screen savers, menus and many other options [Microsoft_SysParam]. By limiting 

the ability to set these parameters, the sandbox can ensure that no underhandedness can be achieved 

by someone attempting to escape the sandboxed environment.  

*Note: Only a single system parameter was checked for brevity’s sake. 

Action Permission Granted 

SystemParametersInfo(SPI_GETMOUSE) [GET] GRANTED 
SystemParametersInfo(SPI_SETMOUSE) [SET] BLOCKED 

Figure 112. Internet Explorer add-on SystemParametersInfo() 

Windows Message Broadcasts 

By sending a Windows message with the ‘HWND_BROADCAST’ option set, an application effectively 

sends the same message to every top-level window. Each of these windows could interpret the 

broadcast message differently; due to expecting a varying number of parameters [MSDN_Broad]. This 

could cause many operating system instability and exploitation scenarios. We sent an example 

broadcast message to determine if it was permitted from within the sandbox. A great example of 

exploiting the Windows messaging system for authoritative gain would be a shatter attack 

[Wiki_Shatter]. 

Action Permission Granted 

SendMessage(HWND_BROADCAST, WM_TIMER) GRANTED 
Figure 113. Internet Explorer add-on sends broadcast message 

  



 

Browser Security Comparison – A Quantitative Approach Page| 86 of 102 
Version 0.0 Revision Date: 12/6/2011 

Windows Hooks 

Windows hooks are a procedure used to monitor certain types of system events on the same desktop as 

the calling thread [Microsoft_Hooks]. These same hooks historically have been used by malware to do 

such things as monitor keyboard input and other nefarious tasks. We have checked the ability to set 

system hooks. 

Action Permission Granted 

SetWindowsHookEx(WH_KEYBOARD) GRANTED 
Figure 114. Internet Explorer add-on set Windows  hooks 

Named Pipes 

Named pipes are used for one-way or two-way communications within the Windows operating system 

[Microsoft_Pipes]. While this ability to communicate between client and server is an integral part of 

inter process communication, unbridled communications can be used to bypass sandbox protection 

mechanisms. For example, imagine an attacker has the ability to send data to a named pipe, which has a 

privilege and authorization level greater than the process that is sending data. We attempted to 

enumerate all the named pipes for a system for permissions testing. If that were not possible, we would 

iterate through a list of ‘well-known’ pipes for the Windows 7 (32-bit) operating system attempting to 

validate permissions. 

Named Pipe PIPE_ACCESS_INBOUND PIPE_ACCESS_OUTBOUND 

\\.\pipe\lsass GRANTED GRANTED 

\\.\pipe\ntsvcs GRANTED BLOCKED 

\\.\pipe\scerpc GRANTED BLOCKED 

\\.\pipe\protected_storage GRANTED GRANTED 

\\.\pipe\plugplay GRANTED BLOCKED 

\\.\pipe\epmapper GRANTED BLOCKED 

\\.\pipe\eventlog GRANTED BLOCKED 

\\.\pipe\atsvc GRANTED BLOCKED 

\\.\pipe\wkssvc GRANTED GRANTED 

\\.\pipe\keysvc GRANTED BLOCKED 

\\.\pipe\trkwks GRANTED BLOCKED 

\\.\pipe\srvsvc GRANTED GRANTED 
Figure 115. Internet Explorer add-on named pipe access 

  



 

Browser Security Comparison – A Quantitative Approach Page| 87 of 102 
Version 0.0 Revision Date: 12/6/2011 

Exploitation Mitigations and Manageability 

ActiveX controls do not have to have ASLR enabled. Therefore, they can weaken the exploit mitigation 

strategies used by the browser. However, by default Visual Studio builds ActiveX controls with ASLR 

enabled. Even with this, some common plug-ins ship with non-ASLR compatible DLLs. 

Examples include DLLs from the following plug-ins: 

 Java 

 DivX 

Web pages can silently load and use ActiveX controls that are already installed in Internet Explorer. 

Microsoft does offer ActiveX filtering, which can be found under the Tools->Safety menu, as shown 

below: 

 
Figure 116. Internet Explorer enable ActiveX filtering 

This feature is NOT on by default. ActiveX filtering blocks controls from being launched by sites unless 

explicitly given permission to do so. 

 
Figure 117. Internet Explorer ActiveX filtering permissions dialog 

 
Luckily, there exists a central location to manage all add-ons for Internet Explorer; residing in Tools-

>Manage add-ons, see Figure 124. This interface provides all the functionality needed to manage add-

ons for Internet Explorer. 



 

Browser Security Comparison – A Quantitative Approach Page| 88 of 102 
Version 0.0 Revision Date: 12/6/2011 

 
Figure 118. Internet Explorer add-ons 

Internet Explorer Add-On Summary 

 Installation requires user interaction 

 No review of add-ons 

 Auto updating available 

 No sandboxing 

 Can break ASLR 

 Plug-ins can be activated silently 

 Good manageability 

  



 

Browser Security Comparison – A Quantitative Approach Page| 89 of 102 
Version 0.0 Revision Date: 12/6/2011 

Firefox 

Installation 

Firefox has a few ways to customize or extend the functionality of the browser. These include personas, 

themes, extensions and plug-ins. Personas are simply images that the browser displays; which present 

no apparent security implications. Themes, sometimes called skins, consist of a .jar file containing a 

collection of .css, .xml and image files. Again, these have no dynamic content, so are relatively benign. 

Things start to get a little more interesting with extensions. 

Firefox extensions come in an .xpi file. An xpi file is really a zip file containing files of the following types: 

css, xml, image files, JavaScript and other types. Extensions can also include XPCOM typelibs (type 

libraries), which are binary interface description files. Extensions are intended to extend existing 

functionality in the browser. Firefox extensions are installed entirely within the browser. Normally, they 

present a dialogue to the user before installation and make the user wait five seconds before accepting 

the risk, see Figure 125. Note that if you install an extension from the “Search” screen, it does not ask 

for confirmation. 

Firefox extensions are able to run arbitrary JavaScript code, but do not include native code. From a 

security perspective, in the worst case, it is like enabling a cross-site scripting vulnerability on every page 

you visit. That is, the attacker could change arbitrary HTML, read cookies, see form data, etc. 

 
Figure 119. Firefox installing an extension 

The final way to extend Firefox is through plug-ins. While extensions extend existing browser 

functionality, plug-ins introduces completely new behavior and is the mechanism used to extend the 

browser using native code. This has the highest potential security risk. Plug-ins can potentially access 

any files on the system, install software and make network connections. They can perform or install any 

of the things done by traditional malware. Due to the insecurities inherent in compiled code, plug-ins 

could introduce new security vulnerabilities, including new memory corruption problems, to the 



 

Browser Security Comparison – A Quantitative Approach Page| 90 of 102 
Version 0.0 Revision Date: 12/6/2011 

browser. In addition, since they consist of entirely new code, they must include at least one library (DLL) 

to be installed either manually or by way of an installer outside of Firefox, see Figure 126. Firefox plug-

ins run in a separate process from the main browser called plug-in-container.exe. 

 
Figure 120. Firefox installing plug-ins resemble software installations 

Installation of extensions and plug-ins normally comes from the official Mozilla site, addons.mozilla.org. 

If the extension is installed through the Mozilla site, updates will be pushed down to the browser when 

available. The browser, by default, is set to “Update Add-ons Automatically”, see Figure 127. 

In order for add-ons to be hosted on addons.mozilla.org, they must pass a review process. For 

extensions not reviewed or hosted on addons.mozilla.org, the installation dialogue adds “Author not 

verified,” see Figure 128. There are still ways to allow automatic updating even if the add-on is not 

hosted on the Mozilla site. Once installed, a plug-in can be activated silently by web pages visited. 

 
Figure 121. Firefox automatic add-on updates 

 
Figure 122. Firefox custom extension (Author not verified) 



 

Browser Security Comparison – A Quantitative Approach Page| 91 of 102 
Version 0.0 Revision Date: 12/6/2011 

Sandbox Results 

The results of running the sandbox test harness showed the script could perform whatever actions it 

wished to perform at the permissions the browser had, which is running with medium integrity level by 

default (Windows 7 32-bit). 

File System 

We attempted to access certain system directories and files via the sandboxed add-on. 

Note: Permissions may overlap due to generic and specific permission checks. This is done to give an 

overview accompanied by precise security permissions. 

Permission %SystemDrive%, 
%SystemRoot%, 
%ProgramFiles%, 
%SystemRoot%\System32 

%AllUsersProfile% 

ZERO GRANTED GRANTED 
GENERIC_READ GRANTED GRANTED 
GENERIC_WRITE BLOCKED GRANTED 
FILE_ADD_FILE BLOCKED GRANTED 
FILE_ADD_SUBDIRECTORY BLOCKED GRANTED 
FILE_APPEND_DATA BLOCKED GRANTED 
FILE_CREATE_PIPE_INSTANCE BLOCKED GRANTED 
FILE_DELETE_CHILD BLOCKED BLOCKED 
FILE_LIST_DIRECTORY GRANTED GRANTED 
FILE_READ_ATTRIBUTES GRANTED GRANTED 
FILE_READ_DATA GRANTED GRANTED 
FILE_READ_EA GRANTED GRANTED 
FILE_TRAVERSE GRANTED GRANTED 
FILE_WRITE_ATTRIBUTES BLOCKED GRANTED 
FILE_WRITE_DATA BLOCKED GRANTED 
FILE_WRITE_EA BLOCKED GRANTED 
WRITE_DAC BLOCKED BLOCKED 

Figure 123. Firefox add-on directory permissions 

Permission %UserProfile%, 
%Temp%, 
%AppData% 

%SystemRoot%\explorer.exe, 
%SystemRoot%\Cursors\arrow_i.cur 

ZERO GRANTED GRANTED 
GENERIC_READ GRANTED GRANTED 
GENERIC_WRITE GRANTED BLOCKED 
GENERIC_EXECUTE GRANTED GRANTED 
FILE_EXECUTE GRANTED GRANTED 

FILE_READ_ATTRIBUTES GRANTED GRANTED 

STANDARD_RIGHTS_EXECUTE GRANTED GRANTED 
SYNCHRONIZE GRANTED GRANTED 



 

Browser Security Comparison – A Quantitative Approach Page| 92 of 102 
Version 0.0 Revision Date: 12/6/2011 

FILE_READ_DATA GRANTED GRANTED 
FILE_READ_EA GRANTED GRANTED 
STANDARD_RIGHTS_READ GRANTED GRANTED 
FILE_APPEND_DATA GRANTED BLOCKED 
FILE_WRITE_ATTRIBUTES GRANTED BLOCKED 
FILE_WRITE_DATA GRANTED BLOCKED 
FILE_WRITE_EA GRANTED BLOCKED 
STANDARD_RIGHTS_WRITE GRANTED GRANTED 
WRITE_DAC GRANTED BLOCKED 

Figure 124. Firefox add-on directory/file permissions 

Registry 

A select few registry hives/keys were accessed from inside the add-on. These hives and keys represent 

locations that would be of interest to malware authors in an attempt to gain persistence. 

Hive Subkey Permission Result 
HKEY_LOCAL_MACHINE NULL MAXIMUM_ALLOWED GRANTED 
HKEY_CURRENT_USER NULL MAXIMUM_ALLOWED GRANTED 
HKEY_USERS NULL MAXIMUM_ALLOWED GRANTED 
HKEY_LOCAL_MACHINE Software\Microsoft\Windows 

NT\CurrentVersion\WinLogon 

MAXIMUM_ALLOWED GRANTED 

Figure 125. Firefox add-on registry permissions 

Network Access 

The ability for a browser to access the Internet is vital to its operation, but creating a new socket for 

reading, writing and listening could permit an attacker to communicate read-able information to the 

outside world. The ability to initiate, read, write and listen on Windows sockets are listed below. 

Action Result 

WSAStartup GRANTED 
Send() GRANTED 
Recv() GRANTED 
Listen() GRANTED 

Figure 126. Firefox add-on network accessibility 

Resource Monitoring 

Recording keystrokes, registering hotkeys and attempting to read screen data (i.e. screen captures) are 

widely employed amongst attackers and spyware authors in their attempts to intercept and read user’s 

confidential information. The sandbox test harness has three checks for methods that attempt to 

acquire user information (obviously, there are various other techniques).  

Action Result 

GetPixel() GRANTED 
RegisterHotKey() GRANTED 
GetAsyncKeyState() GRANTED 

Figure 127. Firefox add-on resource monitoring 



 

Browser Security Comparison – A Quantitative Approach Page| 93 of 102 
Version 0.0 Revision Date: 12/6/2011 

Process Creation 

An attacker might find it valuable to create a new process, even if that process has the same 

authorization and privilege level as the compromised application. This could permit a plethora of other 

opportunities that could be used for privilege escalation or data leakage. A simple example of calling the 

CreateProcess() API with “C:\Program Files\Internet Explorer\iexplore.exe” was used.  

Executable Permission Granted 

C:\Program Files\Internet Explorer\iexplore.exe GRANTED 
Figure 128. Firefox add-on CreateProcess() 

Note: We are aware that this is in a system directory and only presents one example, but deemed it 

appropriate for the limitations of this assessment. 

Handles 

Handles are used by the Windows operating system to keep track of content-specific identifiers. This 

permits applications to reference resources by handle, instead of, for example, process ID. Since handles 

are used to access resources, they must also contain security restrictions so that other applications, 

specifically those from the sandbox, may not use them gain privileges. 

For more granular information on handling test cases, please see ‘ff-addons.txt’. 

Windows Clipboard 

The Windows clipboard enables different applications to share messages and data [Microsoft_Clip]. Not 

only could a compromised application read sensitive information from the clipboard, the attacker could 

also use flaws in the clipboard to gain further system access (i.e. sandbox escape) [Clip_Exploit]. During 

our tests, we attempted to GET and SET information to the clipboard. 

Action Permission Granted 

GetClipboardData(CF_TEXT) GRANTED 
SetClipboardData(CF_TEXT) GRANTED 

Figure 129. Firefox add-on Clipboard access 

Windows Desktop 

The Windows desktop not only provides a display surface for user interaction, but also contains objects 

such as windows, menus and hooks (it is also a securable object). Windows messages are limited to 

communicating with other processes that reside on the same desktop; inter-desktop process 

communication is not operational [Microsoft_Desktop]. The ability to create, switch and open other 

desktops with varying permissions may also lead to privilege escalation scenarios [CVE-2009-1123]. 

Action Permission Granted 

CreateDesktop() GRANTED 
OpenWindowsStation(“winsta0”) GRANTED 
OpenDesktop(“Default”) GRANTED 

Figure 130. Firefox add-on Desktop/WindowStation permissions 



 

Browser Security Comparison – A Quantitative Approach Page| 94 of 102 
Version 0.0 Revision Date: 12/6/2011 

System Parameters 

It should be obvious that an attacker could use the system wide parameters to his advantage. These 

parameters can control screen savers, menus and many other options [Microsoft_SysParam]. By limiting 

the ability to set these parameters, the sandbox can ensure that no underhandedness can be achieved 

by someone attempting to escape the sandboxed environment. 

Action Permission Granted 

SystemParametersInfo(SPI_GETMOUSE) [GET] GRANTED 
SystemParametersInfo(SPI_SETMOUSE) [SET] GRANTED 

Figure 131. Firefox add-on SystemParametersInfo() 

Note: Only a single system parameter was checked for brevity’s sake. 

Windows Message Broadcasts 

By sending a Windows message with the ‘HWND_BROADCAST’ option set, an application effectively 

sends the same message to every top-level window. Each of these windows could interpret the 

broadcast message differently; due to expecting a varying number of parameters [MSDN_Broad]. This 

could cause many operating system instability and exploitation scenarios. We sent an example 

broadcast message to determine if it was permitted from within the sandbox. A great example of 

exploiting the Windows messaging system for authoritative gain would be a shatter attack 

[Wiki_Shatter]. 

Action Permission Granted 
SendMessage(HWND_BROADCAST, WM_TIMER) GRANTED 

Figure 132. Firefox add-on  send broadcast message 

Windows Hooks 

Windows hooks are a procedure used to monitor certain types of system events on the same desktop as 

the calling thread [Microsoft_Hooks]. These same hooks historically have been used by malware to do 

such things as monitor keyboard input and other nefarious tasks. We have checked the ability to set 

system hooks. 

Action Permission Granted 
SetWindowsHookEx(WH_KEYBOARD) GRANTED 

Figure 133. Firefox add-on set Windows hooks 

  



 

Browser Security Comparison – A Quantitative Approach Page| 95 of 102 
Version 0.0 Revision Date: 12/6/2011 

Named Pipes 

Named pipes are used for one-way or two-way communications within the Windows Operating System 

[Microsoft_Pipes]. While this ability to communication between client and server is an integral part of 

inter process communication, unbridled communications can be used to bypass sandbox protection 

mechanisms. For example, imagine an attacker has the ability to send data to a named pipe, which has a 

privilege and authorization level greater than the process that is sending data. We have attempted to 

enumerate all the named pipes for a system for permissions testing. If that was not possible, we iterate 

through a list of ‘well-known’ pipes for the Windows 7 (32-bit) operating system in an attempt to 

validate permissions.  

Named Pipe PIPE_ACCESS_INBOUND 
PIPE_ACCESS_OUTBOUND 

\\.\pipe\lsass GRANTED 

\\.\pipe\ntsvcs GRANTED 

\\.\pipe\scerpc GRANTED 

\\.\pipe\protected_storage GRANTED 

\\.\pipe\plugplay GRANTED 

\\.\pipe\epmapper GRANTED 

\\.\pipe\eventlog GRANTED 

\\.\pipe\atsvc GRANTED 

\\.\pipe\wkssvc GRANTED 

\\.\pipe\keysvc GRANTED 

\\.\pipe\trkwks GRANTED 

\\.\pipe\srvsvc GRANTED 
Figure 134. Firefox add-on named pipe access 

Exploit mitigations and manageability 

Plug-ins have the potential for circumventing exploit mitigation technologies. Since plug-ins are DLLs, it 

is possible they are not compatible with ASLR, which will make this mitigation ineffective, since any non-

randomized code segments can be utilized by an attacker. In Firefox’s case, it is possible for non-ASLR 

compatible plug-ins to exist. Furthermore, some common plug-ins ship with non-ASLR compatible DLLs. 

Examples include DLLs from the following plug-ins: 

 Java 

 DivX 

 Windows Media Player 

Firefox provides an easy interface to manage add-ons in the Tools->Add-ons menu, see Figure 141. It 

allows the user to see all installed add-ons, disable or remove any extension, and disable any plug-in. It 

also allows the user to manually check for add-on updates, as well as view recent updates to any add-

ons, see Figure 141. Finally, it allows the user to configure the extensions, when applicable. 



 

Browser Security Comparison – A Quantitative Approach Page| 96 of 102 
Version 0.0 Revision Date: 12/6/2011 

 
Figure 135. Firefox managing plug-ins 

 
Figure 136. Firefox recent add-on updates 

Firefox Add-on summary 

 Installation requires user interaction 

 Add-ons hosted at addon.mozilla.org are reviewed 

 Auto update 

 No sandboxing 

 Can break ASLR 

 Plug-ins can be activated silently 

 Good manageability 



 

Browser Security Comparison – A Quantitative Approach Page| 97 of 102 
Version 0.0 Revision Date: 12/6/2011 

Add-on summary 

Chrome IE Firefox 

 Installation requires user 
interaction 

 Extensions can be 
remotely removed 

 Extensions restricted to 
which API they require 
and are approved to use 

 Central location of 
extensions encouraged 

 Auto updates 

 No sandboxing, except 
PDF and Flash 

 Can break ASLR 

 Plug-ins can be activated 
silently, except some 
specifically 

 Plug-ins and extensions 

are managed separately. 

 Installation requires user 
interaction 

 No review of add-ons 

 Auto updating available 

 Limited sandboxing 

 Can break ASLR 

 Plug-ins can be activated 
silently 

 Good manageability 

 Installation requires user 
interaction 

 Add-ons hosted at 
addon.mozilla.org are 
reviewed 

 Auto update 

 No sandboxing 

 Can break ASLR 

 Plug-ins can be activated 
silently 

 Good manageability 

Figure 137. Firefox add-on overview 

None of the browsers allows non-reviewed add-ons to be silently installed. All of the browsers have 

some methods that allow add-ons updates. With the exception of Flash and PDF on Chrome, none of the 

browsers has significant sandboxing of add-ons or requires them to be ASLR compatible. With a few 

exceptions, add-ons can be activated silently by web pages on all browsers. Chrome’s management 

interface requires some extra work, but all the browsers have reasonable management interfaces. 

Chrome made a couple of choices concerning specific plug-ins that adds to the overall security of the 

browser. Plug-ins such as Java cannot be used without user interaction. Others, like their PDF viewer or 

Flash, are included with the browser; they are able to ensure they are up to date with security patches 

and provide a limited sandbox. 

Chrome is the only browser that supports a security model that restricts extension’s API use. Extensions 

must declare which API they plan to use, the user is shown this information and must approve it. Also, 

Chrome allows for the remote uninstallation of malicious extensions. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 98 of 102 
Version 0.0 Revision Date: 12/6/2011 

Conclusions 
Browsers have become complicated, multi-content, multi-purpose applications in recent times. They are 

no longer primitive HTML parsers. New functionality has brought on new security concerns, which are 

currently being addressed by the iterative process of updates to each browser’s codebase, as well as 

deterrent technologies such as exploit mitigation and URL blacklisting. 

We have shown that there are various methods for collecting vulnerability statistics, many of which are 

plagued by abstractions such as multi-vulnerability CVEs, silent fixes and inconsistent data. While 

tracking vulnerabilities is useful for vendors and end users as a means to apply security fixes in a timely 

manner, the data currently available lacks sufficient consistency to be truly useful for evaluating browser 

security. There will always be browser vulnerabilities, but browser appraisal must be derived from 

metrics that can be accurately correlated. A move toward greater transparency in the security update 

process would likely benefit consumers, and create a level playing field if metrics such as vulnerability 

severity and timelines from discovery to release date of security fixes were openly disclosed. Were these 

timelines widely available, the data might open the floor for an unambiguous debate about each 

browser project’s true response time. 

At the time of this writing, sandboxes are quickly becoming standard best practice within many popular 

applications. They prevent certain applications and process from accessing functionality deemed 

inappropriate. We have shown that Google Chrome provided the most restrictive sandbox, limiting 

almost all interaction with the operating system to the broker process; leaving the rendering process to 

handle strictly rendering. Internet Explorer has made valiant first steps at a sandbox by using the low 

integrity functionality to restrict IE tabs’ persistence abilities on the system in the event of a 

compromise. Unfortunately, the low integrity mechanism permits read access to most resources, 

unrestricted network accessibility and a multitude of ways to alter the system state. Lastly, Firefox has 

yet to implement any formal sandbox, relying solely upon the process running as medium integrity; 

giving it the ability to perform any action of a non-administrator. 

Add-ons and plug-ins provide manufacturers and third parties with the ability to develop additional 

functionality for the browser. Additional functionality also brings on security risk, which can undermine 

overall browser security posture. While each browser has the ability to accurately manage plug-ins, 

auto-update of add-ons still require user interaction before installation, and Google Chrome is the only 

browser to partially sandbox any of its plug-ins. That said, all three of the major browsers provided 

exploit writers with a number of ways to circumvent exploit mitigation technologies, such as ASLR, by 

neglecting to ensure all add-ons adhere to the appropriate policies. Add-ons provide integral 

functionality to a browser, and will likely be commonplace for years to come, but strong default security 

restrictions will need to be put in place to ensure that these add-ons don’t undermine the overall 

browser security model. 

In the case of URL blacklisting services, gathering a realtime, comprehensive picture of all live malware 

propagated via websites on any given hour, day, or week may be Sisyphean task.  This is not to say URL 

blacklisting services aren’t useful, and providing these services is valuable as part of an overall browser 

security approach, but it’s fairly clear it’s neither an ironclad defense nor a particularly valuable criterion 



 

Browser Security Comparison – A Quantitative Approach Page| 99 of 102 
Version 0.0 Revision Date: 12/6/2011 

of overall browser security posture. As with vulnerability statistics, it’s likely that more transparency 

would benefit consumers and the community as a whole.  If URS integrated the SBL, and vice versa, 

average users would benefit greatly, and the net benefit of that collaboration would be a safer userbase 

for both browsers, and a benefit to the Internet at large, which presumably is the stated intent of 

services of this type in the first place. We have shown that browsers tend to detect a majority of the 

items in their sample set, yet cross-sample detection varies quite drastically. We feel the only way to get 

the best results would be for all browser manufacturers to share their sample data. 

In conclusion, overall browser security needs to be considered when attempting to compare browsers 

from a security standpoint. Drawing conclusions based solely on one category of protection, such as 

blacklisted URL statistics, doesn’t give a valid perspective on which browser is most secure. Instead, they 

should be considered in the context of other mechanisms such as anti-exploitation technologies and 

malicious plug-in protection, which play a more important role in protecting end users from exploits and 

persistent malware. By these measures, we believe Google Chrome to be the web browser that is most 

secured against attack. 

  



 

Browser Security Comparison – A Quantitative Approach Page| 100 of 102 
Version 0.0 Revision Date: 12/6/2011 

Bibliography 
 Autoupdate – Why Silent Updates Boost Security  

(http://www.techzoom.net/publications/silent-updates/) 

 Autoupdate_No – Welcome to the era of auto update  

(http://www.zdnet.com.au/welcome-to-the-era-of-auto-update-339308123.htm) 

 Blackhat_Smith09 – The Language of Trust: Exploiting Trust Relationships in Active Content  

(https://www.blackhat.com/html/bh-usa-09/bh-usa-09-speakers.html#Dowd) 

 Chrome_AutoUpdate – Autoupdating  

(http://code.google.com/chrome/extensions/autoupdate.html) 

 Chrome_Blocked – Blocked plug-ins  

(http://www.google.com/support/chrome/bin/answer.py?hl=en&answer=1247383) 

 Chrome_ExtOverview—Google Chrome Extension Overview  

(http://code.google.com/chrome/extensions/overview.html) 

 Chrome_FAQ – Chrome Extension FAQ  

(http://code.google.com/chrome/extensions/faq.html) 

 Chrome_NPAPI – NPAPI Plug-ins  

(http://code.google.com/chrome/extensions/npapi.html) 

 Chrome_OutofDate – Out of date plug-ins  

(http://www.google.com/support/chrome/bin/answer.py?answer=1181003) 

 Chrome_PermWarn – Permission Warning  

(https://code.google.com/chrome/extensions/permission_warnings.html) 

 Chrome_Sandbox – Sandbox – The Chromium Project 

(http://www.chromium.org/developers/design-documents/sandbox) 

 Chromium_Finish – Extensions: One Step Closer to the Finish Line  

(http://blog.chromium.org/2009/11/extensions-one-step-closer-to-finish.html) 

 Chromium_Release – Release Notes  

(http://dev.chromium.org/getting-involved/dev-channel/release-notes?offset=0) 

 Clip_Exploit – Zero-Day Kernel Flaw Linked to Clipboard  

(http://mcpmag.com/articles/2010/08/09/zero-day-windows-kernel-flaw-linked-to-

clipboard.aspx) 

 CVE-2009-1123—Microsoft Windows ‘win32k.sys’ Local Privilege Escalation Vulnerability  

(http://www.securityfocus.com/bid/35121/info) 

 Immunity_Exploitibility_Index -- A Bounds Check on the Microsoft Exploitability Index 

(http://download.microsoft.com/download/3/E/B/3EBDB81C-DF2F-470B-8A64-

981DC8D9265C/A%20Bounds%20Check%20on%20the%20Microsoft%20Exploitability%20Index

%20-%20final.pdf) 

 Microsoft_BHO—Browser Help Objects: The Browser the Way You Want It  

(http://msdn.microsoft.com/en-us/library/ms976373.aspx) 

 Microsoft_Clip – About the Clipboard 

 (http://msdn.microsoft.com/en-us/library/ms649012%28v=vs.85%29.aspx) 

http://www.techzoom.net/publications/silent-updates/
http://www.zdnet.com.au/welcome-to-the-era-of-auto-update-339308123.htm
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-speakers.html#Dowd
http://code.google.com/chrome/extensions/autoupdate.html
http://www.google.com/support/chrome/bin/answer.py?hl=en&answer=1247383
http://code.google.com/chrome/extensions/overview.html
http://code.google.com/chrome/extensions/faq.html
http://code.google.com/chrome/extensions/npapi.html
http://www.google.com/support/chrome/bin/answer.py?answer=1181003
https://code.google.com/chrome/extensions/permission_warnings.html
http://www.chromium.org/developers/design-documents/sandbox
http://blog.chromium.org/2009/11/extensions-one-step-closer-to-finish.html
http://dev.chromium.org/getting-involved/dev-channel/release-notes?offset=0
http://mcpmag.com/articles/2010/08/09/zero-day-windows-kernel-flaw-linked-to-clipboard.aspx
http://mcpmag.com/articles/2010/08/09/zero-day-windows-kernel-flaw-linked-to-clipboard.aspx
http://www.securityfocus.com/bid/35121/info
http://download.microsoft.com/download/3/E/B/3EBDB81C-DF2F-470B-8A64-981DC8D9265C/A%20Bounds%20Check%20on%20the%20Microsoft%20Exploitability%20Index%20-%20final.pdf
http://download.microsoft.com/download/3/E/B/3EBDB81C-DF2F-470B-8A64-981DC8D9265C/A%20Bounds%20Check%20on%20the%20Microsoft%20Exploitability%20Index%20-%20final.pdf
http://download.microsoft.com/download/3/E/B/3EBDB81C-DF2F-470B-8A64-981DC8D9265C/A%20Bounds%20Check%20on%20the%20Microsoft%20Exploitability%20Index%20-%20final.pdf
http://msdn.microsoft.com/en-us/library/ms976373.aspx
http://msdn.microsoft.com/en-us/library/ms649012%28v=vs.85%29.aspx


 

Browser Security Comparison – A Quantitative Approach Page| 101 of 102 
Version 0.0 Revision Date: 12/6/2011 

 Microsoft_DEP – DEP on Vista exposed!  

(http://blogs.technet.com/b/robert_hensing/archive/2007/04/04/dep-on-vista-explained.aspx) 

 Microsoft_Desktop – Desktops  

(http://msdn.microsoft.com/en-us/library/ms682573%28v=vs.85%29.aspx) 

 Microsoft_GS – GS cookie protection – effectiveness and limitations 

(http://blogs.technet.com/b/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-and-

limitations.aspx) 

 Microsoft_Hooks – SetWindowsHookEx function  

(http://msdn.microsoft.com/en-us/library/ms644990%28v=vs.85%29.aspx) 

 Microsoft_IEArch – Internet Explorer Architecture  

(http://msdn.microsoft.com/en-us/library/aa741312%28v=vs.85%29.aspx) 

 Microsoft_Pipes – Named Pipes 

 (http://msdn.microsoft.com/en-us/library/aa365590%28v=VS.85%29.aspx) 

 Microsoft_ExtSecurity – Verified Security for Browser Extensions  

(https://code.google.com/chrome/extensions/permission_warnings.html) 

 Microsoft_SEHOP – Preventing the Exploitation of Structured Exception Handler (SHE) 

Overwrites with SEHOP  

(http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-exploitation-of-seh-

overwrites-with-sehop.aspx) 

 Microsoft_SEHOP_KB -- How to enable Structured Exception Handling Overwrite Protection 

(SEHOP) in Windows operating systems  

(http://support.microsoft.com/kb/956607) 

 Microsoft_SPDEP – SetProcessDEPPolicy Function  

(http://msdn.microsoft.com/en-us/library/bb736299%28v=vs.85%29.aspx) 

 Microsoft_SWH – SetWindowsHookEx()  

(http://msdn.microsoft.com/en-us/library/ms644990%28VS.85%29.aspx) 

 Microsoft_SysParam – SystemParametersInfo Function  

(http://msdn.microsoft.com/en-us/library/ms724947%28v=VS.85%29.aspx) 

 MSDN_Broad – Remember what happens when you broadcast a message  

(http://blogs.msdn.com/b/oldnewthing/archive/2006/06/12/628193.aspx) 

 MSDN_LCIE – IE8 and Loosley-Coupled IE (LCIE)  

(http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx) 

 MSDN_MS08001 – The case of the IGMP Critical  

(http://blogs.technet.com/b/srd/archive/2008/01/08/ms08-001-part-3-the-case-of-the-igmp-

network-critical.aspx) 

 MSDN_SilentPatches – Additional Fixes in Microsoft Security Bulleins  

(http://blogs.technet.com/b/srd/archive/2011/02/14/additional-fixes-in-microsoft-security-

bulletins.aspx) 

 Mozilla_Add-on – Add-on (Mozilla)  

(http://en.wikipedia.org/wiki/Add-on_%28Mozilla%29) 

http://blogs.technet.com/b/robert_hensing/archive/2007/04/04/dep-on-vista-explained.aspx
http://msdn.microsoft.com/en-us/library/ms682573%28v=vs.85%29.aspx
http://blogs.technet.com/b/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-and-limitations.aspx
http://blogs.technet.com/b/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-and-limitations.aspx
http://msdn.microsoft.com/en-us/library/ms644990%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa741312%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa365590%28v=VS.85%29.aspx
https://code.google.com/chrome/extensions/permission_warnings.html
http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx
http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx
http://support.microsoft.com/kb/956607
http://msdn.microsoft.com/en-us/library/bb736299%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms644990%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms724947%28v=VS.85%29.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/06/12/628193.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.technet.com/b/srd/archive/2008/01/08/ms08-001-part-3-the-case-of-the-igmp-network-critical.aspx
http://blogs.technet.com/b/srd/archive/2008/01/08/ms08-001-part-3-the-case-of-the-igmp-network-critical.aspx
http://blogs.technet.com/b/srd/archive/2011/02/14/additional-fixes-in-microsoft-security-bulletins.aspx
http://blogs.technet.com/b/srd/archive/2011/02/14/additional-fixes-in-microsoft-security-bulletins.aspx
http://en.wikipedia.org/wiki/Add-on_%28Mozilla%29


 

Browser Security Comparison – A Quantitative Approach Page| 102 of 102 
Version 0.0 Revision Date: 12/6/2011 

 Mozilla_Crashes_Evidence -- Mozilla Foundation Security Advisory 2008-15  

(http://www.mozilla.org/security/announce/2008/mfsa2008-15.html) 

 Mozilla_Extensions – Extensions  

(https://developer.mozilla.org/en/Extensions) 

 Mozilla_Policies – Add-on Policies  

(https://addons.mozilla.org/en-US/developers/docs/policies) 

 Mozilla_Wraps – Mozilla takes wraps off Firefox 1.5  

(http://www.zdnet.com/news/mozilla-takes-wraps-off-firefox-15/145817) 

 Uninformed_DEP – Bypassing Windows Hardware-enforced Data Execution Prevention  

(http://www.uninformed.org/?v=2&a=4) 

 W3_Schools_Market_Penetration – Browser Statistics  

(http://www.w3schools.com/browsers/browsers_stats.asp) 

 Wiki_Aurora – Operation Aurora  

(http://en.wikipedia.org/wiki/Operation_Aurora) 

 Wiki_Shatter – Shatter Attack  

(http://en.wikipedia.org/wiki/Shatter_attack) 

http://www.mozilla.org/security/announce/2008/mfsa2008-15.html
https://developer.mozilla.org/en/Extensions
https://addons.mozilla.org/en-US/developers/docs/policies
http://www.zdnet.com/news/mozilla-takes-wraps-off-firefox-15/145817
http://www.uninformed.org/?v=2&a=4
http://www.w3schools.com/browsers/browsers_stats.asp
http://en.wikipedia.org/wiki/Operation_Aurora
http://en.wikipedia.org/wiki/Shatter_attack


 

Browser Security Comparison – A Quantitative Approach Page| I of VI 
Version 0.0 Revision Date: 12/6/2011 

Appendix A – Chrome Frame 

Overview 
Web pages began with static content delivered with very little structure. Over time, this basic structure 

has given way to incredibly complex, interactive and disparate structures. Many technologies that were 

devised to make the web more engaging have been conceived, flourished and disappeared within the 

relatively short time that the web has been around. Standards bodies have drafted large documents to 

detail the intricacies of the structure with the hope of being unambiguous; however, the results have 

proven less than perfect. A single web page rendered in both Microsoft Internet Explorer and Google 

Chrome can appear wildly different. 

Beyond mere asymmetrical renderings, there are several other features of a browser that can differ. 

Visual Basic Script is a proprietary Internet Explorer technology; Google Chrome supports different Java 

Script constructs. One browser may offer more security features, another may already be integrated 

with the user’s operating system. These nuances and more lead individuals to prefer one browser over 

another one. Sometimes the task of switching browsers is involved and requires switching browsers for 

different web sites in order to use the most compatible browser with a particular website. Google 

created Chrome Frame to open advancing web technologies to legacy browser users by allowing 

websites to be interpreted by either Google Chrome code or Internet Explorer code depending on the 

requirements. 

Google’s Chrome Frame is a browser plug-in that allows a Microsoft Internet Explorer user to take 

advantage of parts of the Google Chrome web browser. Once a user has installed Chrome Frame, they 

can replace parts of Internet Explorer with Google Chrome to leverage advantages in the Google 

Chrome browser, while still using Internet Explorer when a web page requires its use. 

Chrome Frame may be the first browser plug-in that attempts to replace the web browser core. 

Generally, plug-ins are meant to add functionality beyond what a standard web browser offers. Given 

that the concept behind this plug-in is so unique, the security implications of using the Chrome Frame 

plug-in are not well studied. This paper attempts to address the security implications behind the Chrome 

Frame browser, first by providing a decomposition of the plug-in that outlines its mechanics; second, by 

mapping out the attack surface in order to illustrate what risks increase for users of this plug-in. Finally, 

this attack surface will be compared to that of other plug-ins in order to provide an idea of relative risk. 

  



 

Browser Security Comparison – A Quantitative Approach Page| II of VI 
Version 0.0 Revision Date: 12/6/2011 

Decomposition 
The following diagram illustrates how Microsoft Internet Explorer functions with Google’s Chrome 

Frame installed. 

 

The IExplorer process displays the traditional Internet Explorer frame that supports all of the controls 

within Internet Explorer that are not part of a web site or a third party add-on. Additionally, it hosts the 

SHDocVw active document container, also known as the WebBrowser control. SHDocVw, in turn, hosts 

Active Document controls. 

Active Document controls are a part of the windows UI architecture that allows viewing and editing 

documents using the same controls within various active document containers. First, SHDocVw uses 

URLMon to determine the MIME type for the current URL. Next, SHDocVw uses that MIME type to 

determine the appropriate Active Document Control for displaying the URL. 

Chrome Frame modifies how IExplorer works using application hooking techniques. The 

NPChrome_frame component is loaded either as a browser helper object using normal methods or by 

injection. Once loaded, it hooks various functions within URLMon. The hooking points serve a dual 

purpose, allowing Chrome Frame to detect when it is appropriate to use Chrome instead of MSHtml and 

to swap out the use of MSHtml for parsing text/HTML mime types and replace it with Chrome. 

The Chrome and MSHtml components both serve the same purposes. They both parse HTML and render 

the result for the end user. They both can host controls to view non-HTML content and run JavaScript 



 

Browser Security Comparison – A Quantitative Approach Page| III of VI 
Version 0.0 Revision Date: 12/6/2011 

using their own JavaScript engines. The differentiator between the two is the code they use to parse and 

render HTML, and the code they use to run JavaScript. When the Chrome component is used, the results 

exhibit symmetry with how the Google Chrome browser interprets a web page and runs scripts. When 

the MSHtml component is used, sites will run as if Chrome Frame was never installed. 

Security Implications 
A common term used to describe security implications is attack surface. This term originates from 

physical combat where it is used to describe the surface area one combatant is exposing to another that 

could potentially be vulnerable to attack. Within the computer security domain, it describes the amount 

of code an attacker can supply with input. The theory being, if you reduce the amount of code an 

attacker can interact with, you reduce the population size of code that could present an exploitable 

condition. 

If an end user adds a new component to a web browser, it increases the attack surface of that browser. 

This maxim is true for Adobe Flash, Apple QuickTime, Oracle’s Java and Chrome Frame. The key tradeoff 

to consider is the increase in functionality versus the increase in attack surface. Adobe Flash allows the 

end user to consume flash-based content, Java allows the end user to consume Java-based content. The 

standard web browser already handles the majority of features in Google Chrome Frame. However, the 

features that aren’t offered by the standard web browser may be compelling enough to accept the 

additional risk. 

While the benefits are well understood by people considering deploying Chrome Frame, the increase in 

attack surface is not as well understood. Microsoft is quoted [Microsoft_NetworkWorld] as saying, 

“Google Chrome Frame running as a plug-in has doubled the attach[sic] area for malware and malicious 

scripts.” Assuming that this can be rewritten as, “Google Chrome Frame running as a plug-in has 

doubled the attack surface for vulnerabilities” without losing any of the intended meaning, it shows that 

even Microsoft has a difficult time understanding the security implications of Chrome Frame. Given the 

assumption that an attack surface is calculated by the number of lines of code an attacker can interact 

with, Chrome Frame would have to have the same number of lines of code that can be interacted with 

by an attacker as Internet Explorer, which is clearly incorrect. In order to understand the issue more 

clearly, consider the following diagram. 



 

Browser Security Comparison – A Quantitative Approach Page| IV of VI 
Version 0.0 Revision Date: 12/6/2011 

 

The red components represent additional code with which an attacker can interact. Specifically, the two 

areas an attacker is most able to influence are the Chrome rendering engine and the V8 JavaScript 

engine. These components have had vulnerabilities in the past, and will continue to have vulnerabilities. 

However, consider the following diagram. 

 

An attacker may interact with these additional components if Adobe’s Flash product is installed. 

Qualitatively, they are not much different from Chrome. The Flash Engine supports layouts and object 

placement much like the Chrome rendering engine. The ActionScript component supports an 

interpreted language much like the V8 JavaScript Engine. The only real difference between the 

additional attack surface Chrome yields is the fact that the browser already has an HTML rendering 

engine and a JavaScript engine. Although the overlapped attack surface exists, it should be noted that 

Chrome Frame is run in a sandboxed environment, leaving the person deploying Chrome Frame to 

decide if deployment is worth the additional security risk. 



 

Browser Security Comparison – A Quantitative Approach Page| V of VI 
Version 0.0 Revision Date: 12/6/2011 

Risk Mitigation Strategies 
In the default configuration, Chrome Frame increases the risk to a browser in order to provide increased 

functionality much like other plugins. The reason for this increased risk is, in the default configuration, 

an attacker can choose which engine will render the HTML. However, this behavior can be changed with 

Group Policy settings. The following registry script shows an example: 

Windows Registry Editor Version 5.00 

 

[HKEY_CURRENT_USER\Software\Policies\Google] 
 
[HKEY_CURRENT_USER\Software\Policies\Google\Chrome] 
“ChromeFrameRendererSettings”=dword:00000001 
 
[HKEY_CURRENT_USER\Software\Policies\Google\Chrome\RenderInHostList] 
“1”=“http://www.RenderInIE.com*” 
“2”=“http://www.AlsoRenderInIE.com*” 

 

With these settings defined, everything will render in Chrome rather than MSHtml unless a specific 

exception is made in the above white list. In the example above, pages matching the URLs 

http://www.RenderInIE.com* and http://www.AlsoRenderInIE.com* will render in IE. With this 

configuration scheme, the attacker can no longer choose which renderer will be used and therefore the 

attack surface is isolated to one HTML rendering engine or another. By isolating the rendering engine in 

this manner, additional attack surface is eliminated. The result of this elimination is that the attack 

surface will be equivalent to a standard user running IE or a standard user running Google Chrome 

depending on your configuration. Thus, any additional security concerns will be mitigated. 

Conclusion 
Installing Google’s Chrome Frame with default permissions can increase your browser’s attack surface 

using default settings, though the overall increase in attack surface is equivalent to other common 

browser plug-ins. Although there is duplicated attack surface from a browser rendering perspective, the 

sandbox that is integrated into Chrome Frame mitigates the security risk in certain situations.   Users 

concerned by the increase in attack surface can mitigate their risk through judicious group policy 

settings. 

  

http://www.renderinie.com*/
http://www.alsorenderinie.com*/


 

Browser Security Comparison – A Quantitative Approach Page| VI of VI 
Version 0.0 Revision Date: 12/6/2011 

Bibliography 
 Microsoft_NetworkWorld – Microsoft says Chrome Frame Doubles Attack Surface 

(http://www.networkworld.com/community/blog/microsoft-says-google-chrome-frame-

doubles-at) 

 Chrome Frame Administrator’s Guide 

(http://www.chromium.org/developers/how-tos/chrome-frame-getting-started/chrome-frame-

administrator-s-guide#TOC-Default-renderer) 

 Chrome Frame Policy List 

(http://www.chromium.org/administrators/policy-list-3) 

 Chrome Frame Source Code 

(http://src.chromium.org/viewvc/chrome/trunk/src/chrome_frame/) 

 Internet Explorer Architecture 

(http://msdn.microsoft.com/en-us/library/aa741312%28v=vs.85%29.aspx) 

 About The Browser (Internet Explorer) 

(http://msdn.microsoft.com/en-us/library/aa741313%28v=vs.85%29.aspx) 

 Active Documents 

(http://msdn.microsoft.com/en-us/library/bx9c54kf%28v=VS.71%29.aspx) 

 Active Document Container 

(http://msdn.microsoft.com/en-us/library/644x1yy6%28VS.71%29.aspx) 

 

http://www.networkworld.com/community/blog/microsoft-says-google-chrome-frame-doubles-at
http://www.networkworld.com/community/blog/microsoft-says-google-chrome-frame-doubles-at
http://www.chromium.org/developers/how-tos/chrome-frame-getting-started/chrome-frame-administrator-s-guide#TOC-Default-renderer
http://www.chromium.org/developers/how-tos/chrome-frame-getting-started/chrome-frame-administrator-s-guide#TOC-Default-renderer
http://www.chromium.org/administrators/policy-list-3
http://src.chromium.org/viewvc/chrome/trunk/src/chrome_frame/
http://msdn.microsoft.com/en-us/library/aa741312%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa741313%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/bx9c54kf%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/644x1yy6%28VS.71%29.aspx


 

Browser Security Comparison – A Quantitative Approach Page| I of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Appendix B 

Google Chrome 

ASLR Results 

Module ASLR 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\chrome.exe Enabled 

C:\Windows\SYSTEM32\ntdll.dll Enabled 

C:\Windows\system32\kernel32.dll Enabled 

C:\Windows\system32\KERNELBASE.dll Enabled 

C:\Windows\system32\USER32.dll Enabled 

C:\Windows\system32\GDI32.dll Enabled 

C:\Windows\system32\LPK.dll Enabled 

C:\Windows\system32\USP10.dll Enabled 

C:\Windows\system32\msvcrt.dll Enabled 

C:\Windows\system32\SHELL32.dll Enabled 

C:\Windows\system32\SHLWAPI.dll Enabled 

C:\Windows\system32\USERENV.dll Enabled 

C:\Windows\system32\RPCRT4.dll Enabled 

C:\Windows\system32\profapi.dll Enabled 

C:\Windows\system32\WTSAPI32.dll Enabled 

C:\Windows\system32\VERSION.dll Enabled 

C:\Windows\system32\ADVAPI32.dll Enabled 

C:\Windows\SYSTEM32\sechost.dll Enabled 

C:\Windows\system32\IMM32.DLL Enabled 

C:\Windows\system32\MSCTF.dll Enabled 

C:\Windows\system32\ole32.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\chrome.dll Enabled 

C:\Windows\system32\OLEAUT32.dll Enabled 

C:\Windows\WinSxS\x86_microsoft.windows.common-
controls_6595b64144ccf1df_6.0.7601.17514_none_41e6975e2bd6f2b2\COMCTL32.dll 

Enabled 

C:\Windows\system32\OLEACC.dll Enabled 

C:\Windows\system32\RICHED20.dll Enabled 

C:\Windows\system32\PSAPI.DLL Enabled 

C:\Windows\system32\WINMM.dll Enabled 

C:\Windows\system32\DNSAPI.dll Enabled 

C:\Windows\system32\WS2_32.dll Enabled 

C:\Windows\system32\NSI.dll Enabled 

C:\Windows\system32\MSIMG32.dll Enabled 

C:\Windows\system32\Secur32.dll Enabled 

C:\Windows\system32\SSPICLI.DLL Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\icudt.dll Enabled 

C:\Windows\system32\CRYPTBASE.dll Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| II of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

C:\Windows\system32\IPHLPAPI.DLL Enabled 

C:\Windows\system32\WINNSI.DLL Enabled 

C:\Windows\system32\ntmarta.dll Enabled 

C:\Windows\system32\WLDAP32.dll Enabled 

C:\Windows\system32\GPAPI.dll Enabled 

C:\Windows\system32\mswsock.dll Enabled 

C:\Windows\System32\wship6.dll Enabled 

C:\Windows\system32\dhcpcsvc6.DLL Enabled 

C:\Windows\system32\dhcpcsvc.DLL Enabled 

C:\Windows\system32\mscms.dll Enabled 

C:\Windows\System32\wshtcpip.dll Enabled 

C:\Windows\system32\rasadhlp.dll Enabled 

C:\Windows\system32\WINTRUST.dll Enabled 

C:\Windows\system32\CRYPT32.dll Enabled 

C:\Windows\system32\MSASN1.dll Enabled 

C:\Windows\system32\dwmapi.dll Enabled 

C:\Windows\system32\UxTheme.dll Enabled 

C:\Windows\system32\SXS.DLL Enabled 

C:\Windows\system32\CLBCatQ.DLL Enabled 

C:\Windows\System32\fwpuclnt.dll Enabled 

C:\Windows\system32\PROPSYS.dll Enabled 

C:\Windows\system32\LINKINFO.dll Enabled 

C:\Windows\system32\apphelp.dll Enabled 

C:\Windows\System32\shdocvw.dll Enabled 

C:\Windows\system32\SETUPAPI.dll Enabled 

C:\Windows\system32\CFGMGR32.dll Enabled 

C:\Windows\system32\DEVOBJ.dll Enabled 

C:\Windows\system32\WINHTTP.dll Enabled 

C:\Windows\system32\webio.dll Enabled 

C:\Windows\system32\credssp.dll Enabled 

C:\Windows\system32\CRYPTSP.dll Enabled 

C:\Windows\system32\rsaenh.dll Enabled 

C:\Windows\system32\cryptnet.dll Enabled 

C:\Windows\system32\SensApi.dll Enabled 

C:\Windows\system32\Cabinet.dll Enabled 

C:\Windows\system32\DEVRTL.dll Enabled 

C:\Windows\system32\ncrypt.dll Enabled 

C:\Windows\system32\bcrypt.dll Enabled 

C:\Windows\system32\bcryptprimitives.dll Enabled 

C:\Windows\system32\NLAapi.dll Enabled 

%USERPROFILE%\AppData\Local\Apps\2.0\TH279LXB.K2W\H5KXY3PX.NLL\clic...exe_f8
4b370c827b5c7a_0001.0003_none_f6c591a8ff607af3\GoogleUpdateSetup.exe 

Enabled 

%USERPROFILE%\AppData\Local\Apps\2.0\TH279LXB.K2W\H5KXY3PX.NLL\goog...app_ Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| III of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

f84b370c827b5c7a_0001.0003_5cbb67db0893f7c4\clickonce_bootstrap.exe 

%USERPROFILE%\AppData\Local\Apps\2.0\TH279LXB.K2W\H5KXY3PX.NLL\goog...app_
f84b370c827b5c7a_0001.0003_5cbb67db0893f7c4\GoogleUpdateSetup.exe 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\avcodec-
52.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\avformat-
52.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\avutil-
50.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\chrome_fr
ame_helper.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\chrome_fr
ame_helper.exe 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\chrome_la
uncher.exe 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\d3dcompil
er_43.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\d3dx9_43.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\flashplaye
rcplapp.cpl 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\gcswf32.dl
l 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\libegl.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\libglesv2.d
ll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\nacl64.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\nacl64.exe Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\npchrome
_frame.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\pdf.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\ppgooglen
aclplug-inchrome.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Installer\s
etup.exe 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\a
m.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\ar
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\bg
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\b
n.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\ca
.dll 

Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| IV of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\cs
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\da
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\de
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\el.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\en
-GB.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\en
-US.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\es
-419.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\es
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\et
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\fa
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\fi.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\fil
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\fr.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\gu
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\he
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\hi.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\hr
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\h
u.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\id.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\it.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\ja.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\L`ocales\k
n.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\ko Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| V of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

.dll 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\lt.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\lv.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\ml
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\m
r.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\n
b.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\nl.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\pl.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\pt
-BR.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\pt
-PT.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\ro
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\ru
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\sk
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\sl.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\sr.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\sv
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\s
w.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\ta
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\te
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\th
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\tr.
dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\uk
.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\vi.
dll 

Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| VI of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\zh
-CN.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales\zh
-TW.dll 

Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\GoogleCrashHandler.exe Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\GoogleUpdate.exe Disabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\GoogleUpdateBroker.exe Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\GoogleUpdateOnDemand.
exe 

Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdate.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_am.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ar.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_bg.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_bn.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ca.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_cs.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_da.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_de.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_el.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_en-GB.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_en.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_es-419.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_es.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_et.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_fa.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_fi.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_fil.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_fr.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_gu.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_hi.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_hr.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_hu.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_id.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_is.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_it.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_iw.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ja.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_kn.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ko.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_lt.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_lv.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ml.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_mr.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ms.dll Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| VII of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_nl.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_no.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_pl.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_pt-BR.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_pt-PT.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ro.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ru.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_sk.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_sl.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_sr.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_sv.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_sw.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ta.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_te.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_th.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_tr.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_uk.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_ur.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_vi.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_zh-CN.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\goopdateres_zh-TW.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\npGoogleUpdate3.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\psmachine.dll Enabled 

%USERPROFILE%\AppData\Local\Google\Update\1.3.21.57\psuser.dll Enabled 
  



 

Browser Security Comparison – A Quantitative Approach Page| VIII of XXIII 
Version 0.0 Revision Date: 12/6/2011 

GS Results 

The follow IDA Pro databases were derived from file installed or used by Google Chrome. The original 

files can be found in the following directories: 

Any items labeled INDETERMINATE consist of libraries from which debugging symbols were not 

acquired. 

 %USERPROFILE%\AppData\Local\Google\Update\1.3.21.57 

 %USERPROFILE%\AppData\Local\Google\Chrome\Application 

 %USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122 

 %USERPROFILE%\AppData\Local\Google\Chrome\Application\12.0.742.122\Locales 

 C:\Windows\System32 

Module Found /GS 

ADVAPI32.idb TRUE 

am.idb INDETERMINATE 

apphelp.idb TRUE 

ar.idb INDETERMINATE 

avcodec-52.idb INDETERMINATE 

avformat-52.idb INDETERMINATE 

avutil-50.idb INDETERMINATE 

bcrypt.idb TRUE 

bcryptprimitives.idb TRUE 

bg.idb INDETERMINATE 

bn.idb INDETERMINATE 

ca.idb INDETERMINATE 

Cabinet.idb TRUE 

CFGMGR32.idb TRUE 

chrome_dll.idb TRUE 

chrome_exe.idb TRUE 

chrome_frame_helper.idb TRUE 

chrome_launcher.idb TRUE 

CLBCatQ.idb TRUE 

clickonce_bootstrap.idb INDETERMINATE 

COMCTL32.idb TRUE 

credssp.idb TRUE 

CRYPT32.idb TRUE 

CRYPTBASE.idb TRUE 

cryptnet.idb TRUE 

CRYPTSP.idb TRUE 

cs.idb INDETERMINATE 

d3dcompiler_43.idb TRUE 

d3dx9_43.idb TRUE 

da.idb INDETERMINATE 



 

Browser Security Comparison – A Quantitative Approach Page| IX of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

de.idb INDETERMINATE 

DEVOBJ.idb TRUE 

DEVRTL.idb TRUE 

dhcpcsvc.idb TRUE 

dhcpcsvc6.idb TRUE 

DNSAPI.idb TRUE 

dwmapi.idb TRUE 

el.idb INDETERMINATE 

en-GB.idb INDETERMINATE 

en-US.idb INDETERMINATE 

es-419.idb INDETERMINATE 

es.idb INDETERMINATE 

et.idb INDETERMINATE 

fa.idb INDETERMINATE 

fi.idb INDETERMINATE 

fil.idb INDETERMINATE 

fr.idb INDETERMINATE 

fwpuclnt.idb TRUE 

gcswf32.idb TRUE 

GDI32.idb TRUE 

GoogleCrashHandler.idb TRUE 

GoogleUpdate.idb TRUE 

GoogleUpdateBroker.idb TRUE 

GoogleUpdateOnDemand.idb TRUE 

GoogleUpdateSetup.idb INDETERMINATE 

goopdate.idb TRUE 

goopdateres_am.idb INDETERMINATE 

goopdateres_ar.idb INDETERMINATE 

goopdateres_bg.idb INDETERMINATE 

goopdateres_bn.idb INDETERMINATE 

goopdateres_ca.idb INDETERMINATE 

goopdateres_cs.idb INDETERMINATE 

goopdateres_da.idb INDETERMINATE 

goopdateres_de.idb INDETERMINATE 

goopdateres_el.idb INDETERMINATE 

goopdateres_en-GB.idb INDETERMINATE 

goopdateres_en.idb INDETERMINATE 

goopdateres_es-419.idb INDETERMINATE 

goopdateres_es.idb INDETERMINATE 

goopdateres_et.idb INDETERMINATE 

goopdateres_fa.idb INDETERMINATE 

goopdateres_fi.idb INDETERMINATE 

goopdateres_fil.idb INDETERMINATE 



 

Browser Security Comparison – A Quantitative Approach Page| X of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

goopdateres_fr.idb INDETERMINATE 

goopdateres_gu.idb INDETERMINATE 

goopdateres_hi.idb INDETERMINATE 

goopdateres_hr.idb INDETERMINATE 

goopdateres_hu.idb INDETERMINATE 

goopdateres_id.idb INDETERMINATE 

goopdateres_is.idb INDETERMINATE 

goopdateres_it.idb INDETERMINATE 

goopdateres_iw.idb INDETERMINATE 

goopdateres_ja.idb INDETERMINATE 

goopdateres_kn.idb INDETERMINATE 

goopdateres_ko.idb INDETERMINATE 

goopdateres_lt.idb INDETERMINATE 

goopdateres_lv.idb INDETERMINATE 

goopdateres_ml.idb INDETERMINATE 

goopdateres_mr.idb INDETERMINATE 

goopdateres_ms.idb INDETERMINATE 

goopdateres_nl.idb INDETERMINATE 

goopdateres_no.idb INDETERMINATE 

goopdateres_pl.idb INDETERMINATE 

goopdateres_pt-BR.idb INDETERMINATE 

goopdateres_pt-PT.idb INDETERMINATE 

goopdateres_ro.idb INDETERMINATE 

goopdateres_ru.idb INDETERMINATE 

goopdateres_sk.idb INDETERMINATE 

goopdateres_sl.idb INDETERMINATE 

goopdateres_sr.idb INDETERMINATE 

goopdateres_sv.idb INDETERMINATE 

goopdateres_sw.idb INDETERMINATE 

goopdateres_ta.idb INDETERMINATE 

goopdateres_te.idb INDETERMINATE 

goopdateres_th.idb INDETERMINATE 

goopdateres_tr.idb INDETERMINATE 

goopdateres_uk.idb INDETERMINATE 

goopdateres_ur.idb INDETERMINATE 

goopdateres_vi.idb INDETERMINATE 

goopdateres_zh-CN.idb INDETERMINATE 

goopdateres_zh-TW.idb INDETERMINATE 

GPAPI.idb TRUE 

gu.idb INDETERMINATE 

he.idb INDETERMINATE 

hi.idb INDETERMINATE 

hr.idb INDETERMINATE 



 

Browser Security Comparison – A Quantitative Approach Page| XI of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

hu.idb INDETERMINATE 

icudt.idb INDETERMINATE 

id.idb INDETERMINATE 

IMM32.idb TRUE 

IPHLPAPI.idb TRUE 

it.idb INDETERMINATE 

ja.idb INDETERMINATE 

kernel32.idb TRUE 

KERNELBASE.idb TRUE 

kn.idb INDETERMINATE 

ko.idb INDETERMINATE 

libegl.idb TRUE 

libglesv2.idb TRUE 

LINKINFO.idb TRUE 

LPK.idb TRUE 

lt.idb INDETERMINATE 

lv.idb INDETERMINATE 

ml.idb INDETERMINATE 

mr.idb INDETERMINATE 

MSASN1.idb TRUE 

mscms.idb TRUE 

MSCTF.idb TRUE 

MSIMG32.idb TRUE 

msvcrt.idb TRUE 

mswsock.idb TRUE 

nb.idb INDETERMINATE 

ncrypt.idb TRUE 

nl.idb INDETERMINATE 

NLAapi.idb TRUE 

npchrome_frame.idb TRUE 

npGoogleUpdate3.idb TRUE 

NSI.idb TRUE 

ntdll.idb TRUE 

ntmarta.idb TRUE 

ole32.idb TRUE 

OLEACC.idb TRUE 

OLEAUT32.idb TRUE 

pdf.idb TRUE 

pl.idb INDETERMINATE 

ppgooglenaclplug-inchrome.idb TRUE 

profapi.idb TRUE 

PROPSYS.idb TRUE 

PSAPI.idb TRUE 



 

Browser Security Comparison – A Quantitative Approach Page| XII of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

psmachine.idb TRUE 

psuser.idb TRUE 

pt-BR.idb INDETERMINATE 

pt-PT.idb INDETERMINATE 

rasadhlp.idb TRUE 

RICHED20.idb TRUE 

ro.idb INDETERMINATE 

RPCRT4.idb TRUE 

rsaenh.idb TRUE 

ru.idb INDETERMINATE 

sechost.idb TRUE 

Secur32.idb TRUE 

SensApi.idb TRUE 

setup.idb TRUE 

SETUPAPI.idb TRUE 

shdocvw.idb TRUE 

SHELL32.idb TRUE 

SHLWAPI.idb TRUE 

sk.idb INDETERMINATE 

sl.idb INDETERMINATE 

sr.idb INDETERMINATE 

SSPICLI.idb TRUE 

sv.idb INDETERMINATE 

sw.idb INDETERMINATE 

SXS.idb TRUE 

ta.idb INDETERMINATE 

te.idb INDETERMINATE 

th.idb INDETERMINATE 

tr.idb INDETERMINATE 

uk.idb INDETERMINATE 

USER32.idb TRUE 

USERENV.idb TRUE 

USP10.idb TRUE 

UxTheme.idb TRUE 

VERSION.idb TRUE 

vi.idb INDETERMINATE 

webio.idb TRUE 

WINHTTP.idb TRUE 

WINMM.idb TRUE 

WINNSI.idb TRUE 

WINTRUST.idb TRUE 

WLDAP32.idb TRUE 

WS2_32.idb TRUE 



 

Browser Security Comparison – A Quantitative Approach Page| XIII of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

wship6.idb TRUE 

wshtcpip.idb TRUE 

WTSAPI32.idb TRUE 

zh-CN.idb INDETERMINATE 

zh-TW.idb INDETERMINATE 

Internet Explorer 

ASLR Results 

Module ASLR 

C:\Program Files\Internet Explorer\iexplore.exe Enabled 

C:\Windows\SYSTEM32\ntdll.dll Enabled 

C:\Windows\system32\kernel32.dll Enabled 

C:\Windows\system32\KERNELBASE.dll Enabled 

C:\Windows\system32\ADVAPI32.dll Enabled 

C:\Windows\system32\msvcrt.dll Enabled 

C:\Windows\SYSTEM32\sechost.dll Enabled 

C:\Windows\system32\RPCRT4.dll Enabled 

C:\Windows\system32\USER32.dll Enabled 

C:\Windows\system32\GDI32.dll Enabled 

C:\Windows\system32\LPK.dll Enabled 

C:\Windows\system32\USP10.dll Enabled 

C:\Windows\system32\SHLWAPI.dll Enabled 

C:\Windows\system32\SHELL32.dll Enabled 

C:\Windows\system32\ole32.dll Enabled 

C:\Windows\system32\urlmon.dll Enabled 

C:\Windows\system32\OLEAUT32.dll Enabled 

C:\Windows\system32\iertutil.dll Enabled 

C:\Windows\system32\WININET.dll Enabled 

C:\Windows\system32\Normaliz.dll Enabled 

C:\Windows\system32\IMM32.DLL Enabled 

C:\Windows\system32\MSCTF.dll Enabled 

C:\Windows\system32\IEFRAME.dll Enabled 

C:\Windows\system32\PSAPI.DLL Enabled 

C:\Windows\system32\OLEACC.dll Enabled 

C:\Windows\WinSxS\x86_microsoft.windows.common-
controls_6595b64144ccf1df_6.0.7601.17514_none_41e6975e2bd6f2b2\comctl32.dll 

Enabled 

C:\Windows\system32\comdlg32.dll Enabled 

C:\Windows\system32\CRYPTBASE.dll Enabled 

C:\Windows\system32\Secur32.dll Enabled 

C:\Windows\system32\SSPICLI.DLL Enabled 

C:\Windows\system32\profapi.dll Enabled 

C:\Windows\system32\ntmarta.dll Enabled 

C:\Windows\system32\WLDAP32.dll Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| XIV of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

C:\Windows\system32\WS2_32.dll Enabled 

C:\Windows\system32\NSI.dll Enabled 

C:\Windows\system32\dnsapi.DLL Enabled 

C:\Windows\system32\iphlpapi.DLL Enabled 

C:\Windows\system32\WINNSI.DLL Enabled 

C:\Windows\system32\CLBCatQ.DLL Enabled 

C:\Windows\System32\netprofm.dll Enabled 

C:\Windows\System32\nlaapi.dll Enabled 

C:\Windows\system32\CRYPTSP.dll Enabled 

C:\Windows\system32\rsaenh.dll Enabled 

C:\Windows\system32\RpcRtRemote.dll Enabled 

C:\Windows\System32\npmproxy.dll Enabled 

C:\Windows\system32\mswsock.dll Enabled 

C:\Windows\System32\wshtcpip.dll Enabled 

C:\Windows\System32\wship6.dll Enabled 

C:\Windows\system32\rasadhlp.dll Enabled 

C:\Program Files\Internet Explorer\ieproxy.dll Enabled 

C:\Windows\system32\RASAPI32.dll Enabled 

C:\Windows\system32\rasman.dll Enabled 

C:\Windows\System32\fwpuclnt.dll Enabled 

C:\Windows\system32\rtutils.dll Enabled 

C:\Windows\system32\sensapi.dll Enabled 

C:\Windows\system32\IEUI.dll Enabled 

C:\Windows\system32\MSIMG32.dll Enabled 

C:\Windows\system32\UxTheme.dll Enabled 

C:\Windows\system32\apphelp.dll Enabled 

C:\Windows\system32\xmllite.dll Enabled 

C:\Windows\system32\explorerframe.dll Enabled 

C:\Windows\system32\DUser.dll Enabled 

C:\Windows\system32\DUI70.dll Enabled 

C:\Windows\system32\PROPSYS.dll Enabled 

C:\Windows\system32\mssprxy.dll Enabled 

C:\Windows\system32\SXS.DLL Enabled 

C:\Windows\system32\MLANG.dll Enabled 

C:\Windows\system32\SETUPAPI.dll Enabled 

C:\Windows\system32\CFGMGR32.dll Enabled 

C:\Windows\system32\DEVOBJ.dll Enabled 

C:\Windows\system32\CRYPT32.dll Enabled 

C:\Windows\system32\MSASN1.dll Enabled 

C:\Program Files\Internet Explorer\ExtExport.exe Enabled 

C:\Program Files\Internet Explorer\iecleanup.exe Enabled 

C:\Program Files\Internet Explorer\iediagcmd.exe Enabled 

C:\Program Files\Internet Explorer\iedvtool.dll Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| XV of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

C:\Program Files\Internet Explorer\ieinstal.exe Enabled 

C:\Program Files\Internet Explorer\ielowutil.exe Enabled 

C:\Program Files\Internet Explorer\ieproxy.dll_old0 Enabled 

C:\Program Files\Internet Explorer\IEShims.dll Enabled 

C:\Program Files\Internet Explorer\iessetup.dll Enabled 

C:\Program Files\Internet Explorer\jsdbgui.dll Enabled 

C:\Program Files\Internet Explorer\jsdebuggeride.dll Enabled 

C:\Program Files\Internet Explorer\JSProfilerCore.dll Enabled 

C:\Program Files\Internet Explorer\jsprofilerui.dll Enabled 

C:\Program Files\Internet Explorer\msdbg2.dll Enabled 

C:\Program Files\Internet Explorer\networkinspection.dll Enabled 

C:\Program Files\Internet Explorer\pdm.dll Enabled 

C:\Program Files\Internet Explorer\sqmapi.dll Enabled 

C:\Program Files\Internet Explorer\sqmapi.dll_old0 Enabled 

GS Results 

The follow IDA Pro databases were derived from files installed or used by Internet Explorer. The original 

files can be found in the following directories: 

 C:\Windows\System32 

 C:\Program Files\Internet Explorer 

 C:\Windows\WinSxS\x86_microsoft.windows.common-
controls_6595b64144ccf1df_6.0.7601.17514_none_41e6975e2bd6f2b2 

 

Module Found /GS 

ADVAPI32.idb TRUE 

apphelp.idb TRUE 

CFGMGR32.idb TRUE 

CLBCatQ.idb TRUE 

comctl32.idb TRUE 

comdlg32.idb TRUE 

CRYPT32.idb TRUE 

CRYPTBASE.idb TRUE 

CRYPTSP.idb TRUE 

DEVOBJ.idb TRUE 

dnsapi.idb TRUE 

DUI70.idb TRUE 

DUser.idb TRUE 

explorerframe.idb TRUE 

ExtExport.idb TRUE 

fwpuclnt.idb TRUE 

GDI32.idb TRUE 

iecleanup.idb TRUE 

iediagcmd.idb FALSE 



 

Browser Security Comparison – A Quantitative Approach Page| XVI of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

iedvtool.idb TRUE 

IEFRAME.idb TRUE 

ieinstal.idb TRUE 

ielowutil.idb TRUE 

ieproxy.idb TRUE 

iertutil.idb TRUE 

IEShims.idb TRUE 

iessetup.idb TRUE 

IEUI.idb TRUE 

iexplore.idb TRUE 

IMM32.idb TRUE 

iphlpapi.idb TRUE 

jsdbgui.idb TRUE 

jsdebuggeride.idb TRUE 

JSProfilerCore.idb TRUE 

jsprofilerui.idb TRUE 

kernel32.idb TRUE 

KERNELBASE.idb TRUE 

LPK.idb TRUE 

MLANG.idb TRUE 

MSASN1.idb TRUE 

MSCTF.idb TRUE 

msdbg2.idb TRUE 

MSIMG32.idb TRUE 

mssprxy.idb TRUE 

msvcrt.idb TRUE 

mswsock.idb TRUE 

netprofm.idb TRUE 

networkinspection.idb TRUE 

nlaapi.idb TRUE 

Normaliz.idb FALSE 

npmproxy.idb TRUE 

NSI.idb TRUE 

ntdll.idb TRUE 

ntmarta.idb TRUE 

ole32.idb TRUE 

OLEACC.idb TRUE 

OLEAUT32.idb TRUE 

pdm.idb TRUE 

profapi.idb TRUE 

PROPSYS.idb TRUE 

PSAPI.idb TRUE 

rasadhlp.idb TRUE 



 

Browser Security Comparison – A Quantitative Approach Page| XVII of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

RASAPI32.idb TRUE 

rasman.idb TRUE 

RPCRT4.idb TRUE 

RpcRtRemote.idb TRUE 

rsaenh.idb TRUE 

rtutils.idb TRUE 

sechost.idb TRUE 

Secur32.idb TRUE 

sensapi.idb TRUE 

SETUPAPI.idb TRUE 

SHELL32.idb TRUE 

SHLWAPI.idb TRUE 

sqmapi.idb TRUE 

SSPICLI.idb TRUE 

SXS.idb TRUE 

urlmon.idb TRUE 

USER32.idb TRUE 

USP10.idb TRUE 

UxTheme.idb TRUE 

WININET.idb TRUE 

WINNSI.idb TRUE 

WLDAP32.idb TRUE 

WS2_32.idb TRUE 

wship6.idb TRUE 

wshtcpip.idb TRUE 

xmllite.idb TRUE 

  



 

Browser Security Comparison – A Quantitative Approach Page| XVIII of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Mozilla Firefox 

ASLR Results 

Module ASLR 

C:\Program Files\Mozilla Firefox\firefox.exe Enabled 

C:\Windows\SYSTEM32\ntdll.dll Enabled 

C:\Windows\system32\kernel32.dll Enabled 

C:\Windows\system32\KERNELBASE.dll Enabled 

C:\Program Files\Mozilla Firefox\xul.dll Enabled 

C:\Program Files\Mozilla Firefox\mozsqlite3.dll Enabled 

C:\Program Files\Mozilla Firefox\MOZCRT19.dll Enabled 

C:\Windows\system32\msvcrt.dll Enabled 

C:\Program Files\Mozilla Firefox\mozjs.dll Enabled 

C:\Program Files\Mozilla Firefox\nspr4.dll Enabled 

C:\Windows\system32\ADVAPI32.dll Enabled 

C:\Windows\SYSTEM32\sechost.dll Enabled 

C:\Windows\system32\RPCRT4.dll Enabled 

C:\Windows\system32\WSOCK32.dll Enabled 

C:\Windows\system32\WS2_32.dll Enabled 

C:\Windows\system32\NSI.dll Enabled 

C:\Windows\system32\WINMM.dll Enabled 

C:\Windows\system32\USER32.dll Enabled 

C:\Windows\system32\GDI32.dll Enabled 

C:\Windows\system32\LPK.dll Enabled 

C:\Windows\system32\USP10.dll Enabled 

C:\Program Files\Mozilla Firefox\smime3.dll Enabled 

C:\Program Files\Mozilla Firefox\nss3.dll Enabled 

C:\Program Files\Mozilla Firefox\nssutil3.dll Enabled 

C:\Program Files\Mozilla Firefox\plc4.dll Enabled 

C:\Program Files\Mozilla Firefox\plds4.dll Enabled 

C:\Program Files\Mozilla Firefox\ssl3.dll Enabled 

C:\Program Files\Mozilla Firefox\mozalloc.dll Enabled 

C:\Windows\system32\SHELL32.dll Enabled 

C:\Windows\system32\SHLWAPI.dll Enabled 

C:\Windows\system32\ole32.dll Enabled 

C:\Windows\system32\VERSION.dll Enabled 

C:\Windows\system32\WINSPOOL.DRV Enabled 

C:\Windows\system32\COMDLG32.dll Enabled 

C:\Windows\WinSxS\x86_microsoft.windows.common-
controls_6595b64144ccf1df_6.0.7601.17514_none_41e6975e2bd6f2b2\COMCTL32.dll 

Enabled 

C:\Windows\system32\IMM32.dll Enabled 

C:\Windows\system32\MSCTF.dll Enabled 

C:\Windows\system32\MSIMG32.dll Enabled 

C:\Windows\system32\PSAPI.DLL Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| XIX of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

C:\Windows\system32\OLEAUT32.dll Enabled 

C:\Program Files\Mozilla Firefox\MOZCPP19.dll Enabled 

C:\Program Files\Mozilla Firefox\xpcom.dll Enabled 

C:\Windows\system32\uxtheme.dll Enabled 

C:\Windows\system32\dwmapi.dll Enabled 

C:\Windows\system32\dbghelp.dll Enabled 

C:\Windows\system32\CRYPTBASE.dll Enabled 

C:\Windows\system32\CLBCatQ.DLL Enabled 

C:\Windows\system32\propsys.dll Enabled 

C:\Windows\system32\SETUPAPI.dll Enabled 

C:\Windows\system32\CFGMGR32.dll Enabled 

C:\Windows\system32\DEVOBJ.dll Enabled 

C:\Windows\system32\mswsock.dll Enabled 

C:\Windows\System32\wshtcpip.dll Enabled 

C:\Windows\system32\iphlpapi.dll Enabled 

C:\Windows\system32\WINNSI.DLL Enabled 

C:\Program Files\Mozilla Firefox\components\browsercomps.dll Enabled 

C:\Windows\system32\WINTRUST.dll Enabled 

C:\Windows\system32\CRYPT32.dll Enabled 

C:\Windows\system32\MSASN1.dll Enabled 

C:\Windows\system32\t2embed.dll Enabled 

C:\Windows\system32\WindowsCodecs.dll Enabled 

C:\Windows\system32\apphelp.dll Enabled 

C:\Windows\system32\EhStorShell.dll Enabled 

C:\Windows\System32\cscui.dll Enabled 

C:\Windows\System32\CSCDLL.dll Enabled 

C:\Windows\system32\CSCAPI.dll Enabled 

C:\Windows\system32\ntshrui.dll Enabled 

C:\Windows\system32\srvcli.dll Enabled 

C:\Windows\system32\slc.dll Enabled 

C:\Windows\system32\CRYPTSP.dll Enabled 

C:\Windows\system32\rsaenh.dll Enabled 

C:\Windows\system32\RpcRtRemote.dll Enabled 

C:\Windows\system32\profapi.dll Enabled 

C:\Windows\system32\dwrite.dll Enabled 

C:\Windows\system32\feclient.dll Enabled 

C:\Windows\system32\ntmarta.dll Enabled 

C:\Windows\system32\WLDAP32.dll Enabled 

C:\Windows\system32\NLAapi.dll Enabled 

C:\Windows\system32\napinsp.dll Enabled 

C:\Windows\system32\pnrpnsp.dll Enabled 

C:\Windows\system32\DNSAPI.dll Enabled 

C:\Windows\System32\winrnr.dll Enabled 



 

Browser Security Comparison – A Quantitative Approach Page| XX of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module ASLR 

C:\Windows\system32\mscms.dll Enabled 

C:\Windows\system32\USERENV.dll Enabled 

C:\Windows\System32\wship6.dll Enabled 

C:\Windows\system32\rasadhlp.dll Enabled 

C:\Windows\System32\fwpuclnt.dll Enabled 

C:\Program Files\Mozilla Firefox\softokn3.dll Enabled 

C:\Program Files\Mozilla Firefox\nssdbm3.dll Enabled 

C:\Program Files\Mozilla Firefox\freebl3.dll Enabled 

C:\Program Files\Mozilla Firefox\nssckbi.dll Enabled 

C:\Windows\system32\explorerframe.dll Enabled 

C:\Windows\system32\DUser.dll Enabled 

C:\Windows\system32\DUI70.dll Enabled 

C:\Windows\system32\shdocvw.dll Enabled 

C:\Program Files\Mozilla Firefox\AccessibleMarshal.dll Enabled 

C:\Program Files\Mozilla Firefox\crashreporter.exe Enabled 

C:\Program Files\Mozilla Firefox\D3DCompiler_43.dll Enabled 

C:\Program Files\Mozilla Firefox\d3dx9_43.dll Enabled 

C:\Program Files\Mozilla Firefox\libEGL.dll Enabled 

C:\Program Files\Mozilla Firefox\libGLESv2.dll Enabled 

C:\Program Files\Mozilla Firefox\mozcpp19.dll Enabled 

C:\Program Files\Mozilla Firefox\mozcrt19.dll Enabled 

C:\Program Files\Mozilla Firefox\plug-in-container.exe Enabled 

C:\Program Files\Mozilla Firefox\updater.exe Enabled 

GS Results 

The follow IDA Pro databases were derived from file installed or used by Mozilla Firefox. The original 

files can be found in the following directories: 

 C:\Windows\System32 

 C:\Program Files\Mozilla Firefox 

 C:\Program Files\Mozilla Firefox\components 

 C:\Windows\WinSxS\x86_microsoft.windows.common-
controls_6595b64144ccf1df_6.0.7601.17514_none_41e6975e2bd6f2b2 

 

Module Found /GS 

AccessibleMarshal.idb TRUE 

ADVAPI32.idb TRUE 

apphelp.idb TRUE 

browsercomps.idb TRUE 

CFGMGR32.idb TRUE 

CLBCatQ.idb TRUE 

COMCTL32.idb TRUE 

COMDLG32.idb TRUE 

crashreporter.idb TRUE 



 

Browser Security Comparison – A Quantitative Approach Page| XXI of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

CRYPT32.idb TRUE 

CRYPTBASE.idb TRUE 

CRYPTSP.idb TRUE 

CSCAPI.idb TRUE 

CSCDLL.idb TRUE 

cscui.idb TRUE 

D3DCompiler_43.idb TRUE 

d3dx9_43.idb TRUE 

dbghelp.idb TRUE 

DEVOBJ.idb TRUE 

DNSAPI.idb TRUE 

DUI70.idb TRUE 

DUser.idb TRUE 

dwmapi.idb TRUE 

dwrite.idb TRUE 

EhStorShell.idb TRUE 

explorerframe.idb TRUE 

feclient.idb TRUE 

firefox.idb TRUE 

freebl3.idb TRUE 

fwpuclnt.idb TRUE 

GDI32.idb TRUE 

IMM32.idb TRUE 

iphlpapi.idb TRUE 

kernel32.idb TRUE 

KERNELBASE.idb TRUE 

libEGL.idb TRUE 

libGLESv2.idb TRUE 

LPK.idb TRUE 

mozalloc.idb TRUE 

MOZCPP19.idb TRUE 

MOZCRT19.idb TRUE 

mozjs.idb TRUE 

mozsqlite3.idb TRUE 

MSASN1.idb TRUE 

mscms.idb TRUE 

MSCTF.idb TRUE 

MSIMG32.idb TRUE 

msvcrt.idb TRUE 

mswsock.idb TRUE 

napinsp.idb TRUE 

NLAapi.idb TRUE 

NSI.idb TRUE 



 

Browser Security Comparison – A Quantitative Approach Page| XXII of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

nspr4.idb TRUE 

nss3.idb TRUE 

nssckbi.idb TRUE 

nssdbm3.idb TRUE 

nssutil3.idb TRUE 

ntdll.idb TRUE 

ntmarta.idb TRUE 

ntshrui.idb TRUE 

ole32.idb TRUE 

OLEAUT32.idb TRUE 

plc4.idb TRUE 

plds4.idb TRUE 

plug-in-container.idb TRUE 

pnrpnsp.idb TRUE 

profapi.idb TRUE 

propsys.idb TRUE 

PSAPI.idb TRUE 

rasadhlp.idb TRUE 

RPCRT4.idb TRUE 

RpcRtRemote.idb TRUE 

rsaenh.idb TRUE 

sechost.idb TRUE 

SETUPAPI.idb TRUE 

shdocvw.idb TRUE 

SHELL32.idb TRUE 

SHLWAPI.idb TRUE 

slc.idb TRUE 

smime3.idb TRUE 

softokn3.idb TRUE 

srvcli.idb TRUE 

ssl3.idb TRUE 

t2embed.idb TRUE 

updater.idb TRUE 

USER32.idb TRUE 

USERENV.idb TRUE 

USP10.idb TRUE 

uxtheme.idb TRUE 

VERSION.idb TRUE 

WindowsCodecs.idb TRUE 

WINMM.idb TRUE 

WINNSI.idb TRUE 

winrnr.idb TRUE 

WINTRUST.idb TRUE 



 

Browser Security Comparison – A Quantitative Approach Page| XXIII of XXIII 
Version 0.0 Revision Date: 12/6/2011 

Module Found /GS 

WLDAP32.idb TRUE 

WS2_32.idb TRUE 

wship6.idb TRUE 

wshtcpip.idb TRUE 

WSOCK32.idb TRUE 

xpcom.idb TRUE 

xul.idb TRUE 



 

Browser Security Comparison – A Quantitative Approach Page| I of III 
Version 0.0 Revision Date: 12/6/2011 

Tools 
 URL Blacklist Services 

o BrowserAutomation - A directory containing a number of supporting utilities used in 

automating Internet Explorer via the Watir framework. 

o getmalwareURLS.sh - A utility to harvest malware URLs from public sources, 

concatenate, and remove duplicates, writing a time stamped linefeed-delimited output. 

o IEURL.rb - A wrapper for the Watir browser automation framework to automate URL 

requests in Internet Explorer and record results. 

o malwareurls – A directory containing the daily malware URLs used in testing SBL and 

URS. 

o Results – A directory containing the raw data output per-day, and other sorted data 

used in generating the blacklist reporting. 

 Historical Vulnerability Statistics 

o chrome-private-augment.zip –Google-provided data that includes timeline data for 

non-publicly-accessible Chrome security bugs. This was used to augment timeline data 

coverage to include all publicly disclosed Chrome vulnerabilities. 

o chrome-public-scraper.zip – Two HTML scrapers that process the publicly accessible 

Chrome Stable Release blog. One scrapes the blog itself into one file per release. The 

other scrapes the resulting files to produce SQL data. The input datasets are included. 

o datadump-sql.zip – The SQL database that was ultimately used for querying historical 

vulnerability statistics. This is the result of running all scrapers and conducting a manual 

verification pass. 

o firefox-bugzilla-scraper.zip – An HTML scraper used to extract timeline information 

from Mozilla Bugzilla entries. The resulting data is used to update the SQL database. The 

input dataset is included. 

o firefox-mfsa-scraper.zip – An HTML scraper used to extract vulnerability information 

from Mozilla Foundation Security Advisories and insert it into an SQL database. The 

input dataset is included. 

o general-scripts.zip – “csv_query.rb” was used to generate CSV files for use when 

creating the graphs included in this paper. “regen.sh” is a wrapper script used to create 

a clean copy of the SQL database. 

o ie-scraper.zip – An HTML scraper used to extract vulnerability information from 

Microsoft Security Bulletins and insert it into an SQL database. The input dataset is 

included. 

o migrations.zip – The “schema.rb” and migrations required to generate an empty copy of 

SQL database. 

 Anti-Exploitation Technologies 

o acquire_symbols.py – A script to acquire the public debugging symbols for each 

browser and its libraries. 



 

Browser Security Comparison – A Quantitative Approach Page| II of III 
Version 0.0 Revision Date: 12/6/2011 

o AnotherActiveXTry.zip – A small Active X Visual Studio Project which incorporates the 

sandbox tests 

o aslr_check.py – A script to iterate through a list of modules, examining the 

OPTIONAL_HEADER.DllCharacteristics header (see pefile) to ascertain support for ASLR. 

o detect_gs.py – A script to look for cross-references in IDA Pro for the security_cookie. A 

reference to this piece of data will imply that the /GS compiler option was used during 

compilation.  

Note: We chose to look for the security_cookie variable because we had the ability to 

get debugging symbols for most of the images used by each browser. This gave us the 

ability to skip code heuristic checks for stack-cookie functionality. 

o file_grabber_<browser>.py – A script was generated for each browser to parse the 

modules from the !dlls –v output along with any other executables placed on the system 

upon installation (acquired from Spyme Tools logs). 

o gs_check.py – A script to iterate through a list of files and run “detect_gs.py” on each 

file after it is loaded into IDA Pro. 

o Ida-fy.py – A script to iterate through a list of Windows executables, loading each into 

IDA Pro then subsequently running “load_symbols.py” on the IDA Pro database. 

o load_symbols.py – A very small script that uses IDA Pro’s built-in functionality to load 

the pre-acquired debugging symbols from the current working directory. 

o LowIntegrityShim.bat – A very small batch script that sets an executable’s priority to 

Low Integrity. 

o npapi.zip – A Visual Studio project, based on the winless GeckoPluginSDK sample, which 

is a NPAPI based plug-in which incorporates the sandbox test suites. 

 Third Party 

o Windbg – Window Debugger (Windbg) is a user-land and kernel debugger for the 

Windows Operating System. Specifically the “!dlls –v” command was used to get a list of 

the loaded executables for each browser in this study. 

(http://msdn.microsoft.com/en-us/windows/hardware/gg463009) 

o Symchk.exe – A utility to obtain debugging symbols from a symbol server. Symchk was 

used to acquire symbols from Microsoft, Google and Mozilla symbol servers for their 

respective browsers. 

http://support.microsoft.com/kb/311503 

o IDA Pro -- IDA Pro is a Windows or Linux or Mac OS X hosted multi-processor 

disassembler and debugger that offers so many features it is hard to describe them all. It 

was used for various tasks throughout this project. 

http://www.hex-rays.com/idapro/ 

o Pefile -- pefile is a multi-platform Python module to read and work with Portable 

Executable (aka PE) files. 

http://code.google.com/p/pefile/ 

o Spyme Tools -- SpyMe Tools is very useful in detecting Registry and Disk changes. 

http://www.lcibrossolutions.com/spyme_tools.htm 

http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://support.microsoft.com/kb/311503
http://www.hex-rays.com/idapro/
http://code.google.com/p/pefile/
http://www.lcibrossolutions.com/spyme_tools.htm


 

Browser Security Comparison – A Quantitative Approach Page| III of III 
Version 0.0 Revision Date: 12/6/2011 

o Sysinternals Suite – A suite of tools to help with a variety of tasks on the Windows 

Operating system. 

http://technet.microsoft.com/en-us/sysinternals/bb842062 

 

 

http://technet.microsoft.com/en-us/sysinternals/bb842062

