
Database Security Brief
David Litchfield
18th November 2005

Q: Why should I never logon to a Windows database server if I've got admin privileges?

A: It is generally accepted as good security practice that database servers, or any server for that
matter, should be configured to run in the security context of a low privileged user. This way, if the
server is vulnerable to an arbitrary code execution flaw which is then subsequently exploited by
an attacker, any code will run with this user's privileges thus helping to mitigate the risk and
protect the system. Indeed, it doesn't even have to be a flaw: most database servers have some
kind of functionality where arbitrary code can be introduced; for example an extended stored
procedure. All the effort of configuring the server to run as a low privileged user could be for
naught though if a Windows administrator ever connects to the server. Let's examine the reason
why.

Most database servers when using operating system authentication either use LogonUser()
function or the AcceptSecurityContext() function. When the user is successfully authenticated
both of these functions create a security token. This security token is then used for authorization
purposes. A security token can be thought of as a bunch of keys and an administrator's token has
the full set - they can get into every "door" on the system. There are different kinds of tokens such
as a primary token and an impersonation token. Calling LogonUser() with the
LOGON32_LOGON_NETWORK flag, as a network server would do, creates an impersonation
token as does AcceptSecurityContext(). Whilst an authenticated user remains connected to the
database server their token remains in the server process' address space. If that database server
is vulnerable to an arbitrary code flaw then an attacker could launch a Sleeper exploit. A Sleeper
exploit does exactly what it sounds like it does - it sleeps until the conditions are right before it
delivers its final payload. In this case the Sleeper exploit would awaken, scan memory for security
tokens, either by looping from 0 to 0xFFFFand testing handles to see if they’re tokens or by
detouring the relevant logon functions, and test them to see if they're admin tokens. If not it
sleeps again; but if one of the tokens belongs to an administrator then the exploit snags it. Going
back briefly to our discussion on tokens, a primary token can be used to create processes as
another user whereas an impersonation token cannot. However it is possible to create a primary
token from an impersonation token using the DuplicateTokenEx() function. Once the exploit has
snagged the administrator's impersonation token it would then duplicate it to create a primary
token. Once armed with a primary token the exploit can then create new processes on the
database server with administrator privileges.

As can be seen, even if you run your database server as a low privileged user it is still possible
for an attacker to gain administrator privileges if you allow administrators to connect to the server.
It should be a matter of security policy that no-one is allowed to connect to a database server or
any network based server that requires OS authentication with Windows administrator privileges.
In the absence of any kind of technological solution this is the best way to help mitigate the risk.

References:

DuplicateTokenEx:
http://msdn.microsoft.com/library/en-us/secauthz/security/duplicatetokenex.asp
AcceptSecurityContext:
http://msdn.microsoft.com/library/en-us/secauthn/security/acceptsecuritycontext__ntlm_.asp
LogonUser:
http://msdn.microsoft.com/library/en-us/secauthn/security/logonuser.asp

http://msdn.microsoft.com/library/en-us/secauthz/security/duplicatetokenex.asp
http://msdn.microsoft.com/library/en-us/secauthn/security/acceptsecuritycontext__ntlm_.asp
http://msdn.microsoft.com/library/en-us/secauthn/security/logonuser.asp

