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ABSTRACT
We demonstrate that a passive network attacker can opportunisti-

cally obtain private RSA host keys from an SSH server that expe-

riences a naturally arising fault during signature computation. In

prior work, this was not believed to be possible for the SSH protocol

because the signature included information like the shared Diffie-

Hellman secret that would not be available to a passive network

observer. We show that for the signature parameters commonly in

use for SSH, there is an efficient lattice attack to recover the private

key in case of a signature fault. We provide a security analysis of

the SSH, IKEv1, and IKEv2 protocols in this scenario, and use our

attack to discover hundreds of compromised keys in the wild from

several independently vulnerable implementations.
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1 INTRODUCTION
RSA digital signatures can reveal a signer’s secret key if a computa-

tional or hardware fault occurs during signing with an unprotected

implementation using the Chinese Remainder Theorem and a de-

terministic padding scheme like PKCS#1 v1.5. This attack (due to

Boneh, Lipton, and DeMillo [11] and Lenstra [35]) requires only a

single faulty signature, the public key, and a single GCD compu-

tation, and it has been exploited extensively in the cryptographic

side channel literature on active fault attacks.
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In a 2015 technical report, Weimer observed that this same vul-

nerability could be exploited in the context of TLS by an attacker

without physical access to a machine, simply by connecting to ma-

chines and waiting for a fault to occur during computation [54]. He

traced several of the failures he observed to failing hardware.

In 2022, Sullivan et al. [50] observed that this flaw remained

exploitable on the open internet, and used passive network mea-

surement to compute TLS private keys from vulnerable implemen-

tations that appeared to experience hardware failure.

However, this vulnerability was not believed to be realistically

exploitable in the context of other popular network protocols like

IPsec or SSH because the signature hash includes a Diffie-Hellman

shared secret that a passive eavesdropper would be unable to com-

pute, thus ruling out the single-signature GCD attack [54]. Because

a passive adversary can typically collect significantly more data

than an active adversary who must participate in every Diffie-

Hellman exchange, this belief represented a significant underesti-

mate of the cryptanalytic capabilities of such passive adversaries

against SSH and IPsec compared to TLSv1.2.

In this paper, we show that passive RSA key recovery from a

single PKCS#1 v1.5-padded faulty signature is possible in the SSH

and IPsec protocols using a lattice attack described by Coron et

al. [16]. In this context, a passive adversary can quietly monitor

legitimate connections without risking detection until they observe

a faulty signature that exposes the private key. The attacker can

then actively and undetectably impersonate the compromised host

to intercept sensitive data. We cast the key recovery problem as a

variant of the partial approximate common divisor problem, and

we show that this problem is efficient to solve for the key sizes and

hash functions used for SSH and IPsec. For parameter settings that

are near the asymptotic limits of these algorithms, we show how

to balance the lattice attack parameters with an optimal amount of

brute forcing to produce feasible running times.

We then carry out internet-wide scans for SSH and IPsec to

measure the prevalence of vulnerable signatures in the wild. We

find multiple vulnerable implementations that appear to be due to

different classes of hardware flaws.We also carry out a retrospective

analysis of historical SSH scan data collected over the course of

seven years, and find that these invalid signatures and vulnerable

devices are surprisingly common over time. Our combined dataset

of around 5.2 billion SSH records contained more than 590,000

invalid RSA signatures. We used our lattice attack to find that more
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than 4,900 revealed the factorization of the corresponding RSA

public key, giving us the private keys to 189 unique RSA public

keys. We also analyze passively collected SSH network data.

In addition to the signature vulnerabilities we were searching for,

our analysis gives us a window into the state of the SSH, IKEv1, and

IKEv2 deployment landscape. We observed a number of vulnerable

and non-conformant behaviors among IPsec hosts in particular.

1.1 Contributions
• We observe that RSA host key signatures as used in the SSH

protocol are vulnerable to a rarely applied lattice-based key

recovery fault attack.

• We extensively analyze the feasibility and optimize this at-

tack for the RSA key sizes and hash functions we observe in

the wild.

• We identify several vulnerable SSH implementations.

• We also give current and historical measurements of SSH

and IPsec hosts on the visible IPv4 space.

1.2 Ethics
We carried out our active network scans following best practices

for network scanning. In particular, we identified ourselves and the

purpose of the scan and provided an opt-out mechanism. We did

not use compromised keys or forge protocol authentication. Since

our active scans are connecting to visible hosts on the open internet,

they do not involve any personally identifiable information that

would merit approval or exemption by our institutional review

board (IRB).

Our passive data collection came from two network taps at the

University of California, San Diego. The location of the taps and our

procedures for protecting sensitive information were developed

with assistance from our IRB and our networking systems and

security offices. Our data collection infrastructure and methodology

has been deemed to be exempt by our IRB.

We took a number of steps to protect end users. We anonymized

both IP addresses and MAC addresses for passively collected net-

work traffic before storing it. Also, since we are observing SSH

traffic, all content payloads are encrypted, and we merely parsed

the initial SSH handshake data that set up the secure channel. Fi-

nally, the network tap machines and the data storage machines

have restricted access both in terms of users and machines that

have access and require multifactor authentication to access them.

1.3 Disclosure
Our research identified four manufacturers of devices susceptible to

this key recovery attack.We disclosed the issue to Cisco on February

7, 2023 and to Zyxel on March 1, 2023. Both teams investigated

promptly, although limitations in the historical scan data made it

challenging to identify the software versions that generated the

vulnerable signatures and reproduce the issue. Cisco concluded that

Cisco ASA and FTD Software had introduced a suitable mitigation

in 2022, and was investigating mitigations for Cisco IOS and IOS XE

Software. Zyxel concluded that the issue had affected ZLD firmware

versions V3.30 and earlier, which have been end-of-life for years.

By the time of our disclosure, the ZLD firmware had begun using

OpenSSL, which mitigates this issue.

Our attempts to contact Hillstone Networks and Mocana were

unsuccessful, and we submitted the issue to the CERT Coordination

Center on May 18, 2023 for assistance with disclosure. We received

no additional information from CERT/CC during the 45-day disclo-

sure period.

We considered notifying operators of affected devices whose

keys we had recovered, but we determined this would be infeasible.

Even after combining publicly available data with the historical

scanning data, we were unable to determine which organization

was responsible for a particular device, whether the device was

still in use today, or up-to-date contact information for the device’s

current operator. We also lacked practical and actionable advice for

owners of affected devices until the manufacturers completed their

investigation.

2 BACKGROUND AND RELATEDWORK
There is a decade-long history of related work in applied cryptog-

raphy that examines large datasets from internet-connected hosts

for vulnerable implementations [9, 12, 19, 27, 41, 51, 52, 54].

2.1 RSA Signing
An RSA public key consists of a public exponent 𝑒 and a modulus

𝑁 = 𝑝𝑞 that is the product of two primes. The private key consists

of the private exponent 𝑑 = 𝑒−1 mod 𝜙 (𝑁 ) and 𝑁 .

A textbook RSA signature on a message 𝑚 is the value 𝑠 =

𝑚𝑑
mod 𝑁 . To verify the signature, a user checks if 𝑠𝑒 mod 𝑁 =𝑚.

This naïve textbook approach is insecure [10], so in practice a

padding function 𝑓 is applied to𝑚 before signing. The signature of

𝑚 is then 𝑠 = 𝑓 (𝑚)𝑑 .

2.1.1 PKCS#1 v1.5 Padding. Themost commonly used RSA padding

scheme in the protocols we consider is PKCS#1 v1.5, which hashes

the message and then deterministically pads the resulting output

to match the length of the RSA modulus. PKCS#1 v1.5 is described

in RFC 2313 [31]. For a message𝑚, the padded message is given by

pad(m) = 00 || 01||FF ... FF || 00 || ASN.1 || H(m). The
value ASN.1 is a string identifying the hash function 𝐻 and H(m) is

the message hash. Since the padding is deterministic, an observer

who knows𝑚 and 𝐻 can recover the full padded message.

RSA PKCS#1 v1.5 signature padding has been proven secure in

the randomoraclemodel [30]. The PSS and FDHpadding schemes [5]

are also sometimes used with RSA signatures, but they are not used

in the context of SSH or IPsec. Unlike with PKCS#1 v1.5 padding,

uncertainty in the message leads to uncertainty in most or all of the

bytes of the padded message. Because of this, it is unlikely that the

lattice attacks in this work extend to these other padding schemes.

2.1.2 CRT-RSA. A common RSA optimization is to use the Chi-

nese Remainder Theorem (CRT) for modular exponentiation. Given

private key values 𝑑𝑝 = 𝑑 mod (𝑝 − 1) and 𝑑𝑞 = 𝑑 mod (𝑞 − 1),
the signature can be computed in parts 𝑠𝑝 = 𝑚𝑑𝑝

mod 𝑝 and

𝑠𝑞 =𝑚𝑑𝑞
mod 𝑞, and then the complete signature, 𝑠 mod 𝑁 , can be

reconstructed using the CRT.

2.2 RSA Fault Attacks
If a signing implementation using CRT-RSA has a fault during

signature computation, an attacker who observes this signature
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may be able to compute the signer’s private key. These attacks

exploit the fact that if an error is made while computing modulo

one prime, say 𝑞, then the resulting invalid signature 𝑠 is equivalent

to the correct signature modulo one prime factor 𝑝 , but not 𝑞.

2.2.1 GCD attack on fully known messages. Boneh, DeMillo, and

Lipton noted [11] that if an attacker had a correct signature 𝑠 and

an incorrect signature 𝑠 of this form then the attacker could com-

pute gcd(𝑁, 𝑠 − 𝑠) = 𝑝 . In an extension to this attack, Lenstra [35]

observed that a single incorrect signature was sufficient as long as

the attacker also knows the message that was signed. In this case

the attacker can compute gcd(𝑁, 𝑠𝑒 −𝑚) = 𝑝 to factor 𝑁 .

There has been extensive work in the side channel community

applying this attack to situations in which an attacker had access to

the hardware doing the signing. In this situation the attacker would

induce faults in hardware to recover faulty signatures [2, 8, 33, 46].

Weissman et al. [55] demonstrated a remote, active RSA fault attack

using Rowhammer to induce faults in the signature computation.

There aremany other works that consider fault attacks on RSA [3,

4, 13, 22]. Many of these have stricter requirements on the exact

nature of the fault, and it is unlikely that a spontaneous fault in

a given implementation results in the correct attack conditions.

We focus on attacks exploiting arbitrary corruptions in CRT-RSA

shares, since these attacks work for a broad range of faults.

Spontaneous faults in TLS. In 2015, Weimer [54] found naturally

occurring faults in remote servers could also produce observable

invalid signatures, and was able to compute TLS private keys in

the wild by scanning network hosts and applying Lenstra’s GCD

attack. He traced some faults to hardware failures in cryptographic

accelerator hardware.

The attack takes advantage of the fact that in TLS versions

1.2 [18] and below, a server’s RSA signature is sent in the clear

along with all of the handshake values necessary to validate it

(client and server random nonces and server Diffie-Hellman pa-

rameters). Thus, a fully passive network observer has all of the

information necessary to carry out the GCD attack against an ob-

served invalid signature. In 2022, Sullivan et al. [50] demonstrated

that vulnerable implementations continued to exist in the wild,

and demonstrated fully passive key recovery from spontaneous

computational faults.

In the current version 1.3 of TLS [47], the handshakemessages oc-

curring after the initial Diffie-Hellman key exchange are encrypted,

and thus the server certificate and handshake signature are not

visible to a fully passive attacker. An attacker who wishes to exploit

this flaw would need to carry out an active attack by connecting to

a server themselves to collect signatures.

2.2.2 Lattice attacks on partially unknown messages. In order to

carry out Lenstra’s GCD attack described in Section 2.2.1, the at-

tacker needs to know the message that was signed. Coron et al. [16]

study fault attacks against RSA signatures where the message is

partially unknown. They primarily consider the message encoding

specified in the ISO/IEC 9796-2 standard, which allows them to

express the padded message as 𝑎 + 𝑏𝑥 + 𝑐𝑦 where 𝑎, 𝑏, and 𝑐 are

known, and 𝑥 and 𝑦 are unknown and bounded. When a fault leads

to an RSA signature 𝑠 that is incorrectly computed modulo 𝑞 but

correctly computed modulo 𝑝 , one has the equation

𝑠𝑒 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 mod 𝑝.

This is a linear equation in two variableswith a small rootmodulo

an unknown divisor of public modulus𝑁 , which can be solved using

the Coppersmith-based techniques of Herrmann and May [28].

These methods reveal the unknown divisor 𝑝 and thus recover

the RSA private key. Coron et al. describe practical key recovery

experiments in this setting and variants where the padded message

can be written as a linear expression with more than two unknowns.

Han, Wei, and Liu [23] analyzed the algorithm of [16] under the

specific context of ISO/IEC 9796-2 padding where only the least

significant bits of the message are unknown.

In the full version of the paper of Coron et al. posted to ePrint [17],

the authors observe that PKCS#1 v1.5-padded messages are linear

expressions 𝑎 + 𝑥 in a single unknown variable where the size

of 𝑥 is bounded by the output length of the hash function. They

conclude that private key recovery from an invalid PKCS#1 v1.5-

padded signature is theoretically possible when the output length

of the hash function is at most 1/4 of the length of the public

modulus, but they report no practical experiments in this setting.

Our work identifies a real-world setting for this attack, explores

their observation in greater detail, and details several experiments

to contextualize the behavior of this attack in practice.

2.3 Lattices and lattice-based cryptanalysis
A lattice is a discrete additive subgroup of R𝑛 . Concretely, a lattice
is specified by a basis matrix of values to some precision. The main

computational problemwe need to solve over lattices in this work is

to compute a relatively short vector given such an input basis. The

Lenstra Lenstra Lovasz (LLL) algorithm [36] can be used to compute

a vector of length |𝑣 | ≤ 2
(𝑛−1)/4

det𝐿1/𝑛 for a lattice 𝐿 of dimension

𝑛 in polynomial time; current fast implementations can easily run

on lattices of hundreds or even a few thousand dimensions [34, 48].

Coppersmith gave a lattice-based algorithm for factoring an RSA

modulus given at least half of the bits of one of the factors [14].

Howgrave-Graham reformulated this problem as the approximate

common divisor problem [29].

2.4 SSH Protocol
The Secure Shell (SSH) Protocol creates a cryptographically pro-

tected channel between a client and a remote server machine. Com-

mon applications include running commands on remote machines,

port forwarding, and file transfer via SFTP or SCP. SSHv2 is speci-

fied by a number of RFCs, but our research focuses on RFC 4253 [57],

which specifies the SSH transport layer protocol and RFC 8332 [7],

which specifies the use of RSA with SHA-2 for client authentication.

SSH handshake and server authentication. SSH servers are identi-

fied by their public host keys. An SSH handshake begins with a ci-

pher negotiation in which the client and server mutually agree upon

a set of cryptographic algorithms, followed by a Diffie-Hellman key

exchange. At this point, both client and server are able to compute a

value known as the session identifier, which is a hash over the client

and server identifiers, client and server key exchange messages, and

the shared Diffie-Hellman secret. The server authenticates itself to

the client by signing the session identifier with its host key; the
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client verifies the public host key fingerprint (hash) out of band and

validates the signature with the host public key. Further messages

are encrypted using the shared secret.

Client authentication. Client authentication to the server hap-

pens after the initial SSH handshake, inside of the encrypted chan-

nel. With password-based authentication, the client sends the pass-

word in plaintext inside of the encrypted channel. With public key

or host-based authentication, the client generates a digital signa-

ture with its client authentication key and sends it inside of the

encrypted channel; the signature is bound to the session because

it includes the session identifier hash. Since these methods occur

within the encrypted channel, and the contents of their messages

are not visible to a passive observer, our focus in this paper is on

the server authentication keys.

A passive adversary monitoring the SSH connection would able

to observe the cipher algorithms negotiated by the host and client,

the public Diffie-Hellman key shares, and the host’s signature over

the handshake Diffie-Hellman shared secret. Because such a passive

adversary is cryptographically unable to compute the shared secret,

they cannot compute the message signed by the host and fully

validate the signature themselves.

Algorithm choices. A number of cryptographic algorithms can be

used in the SSH protocol. The key exchange may use Diffie-Hellman

(RFC 4253 [57]), Elliptic Curve Diffie-Hellman (RFC 5656 [49]), or

RSA (RFC 4432 [25]). In our data set, (Elliptic Curve) Diffie-Hellman

key exchanges are by far the most common For host keys used to

sign the key exchange material, the SSH protocol supports DSA,

RSA, ECDSA, and Ed25519 (RFCs 4253, 5656, 7479 [43]). Although

ECDSA and Ed25519 signatures are more modern, RSA signatures

are still commonly used. Our research examines and exploits SSH

host keys that are used to create RSA signatures.

RSA-based host keys are identified by the identifiers ssh-rsa,
rsa-sha2-256, and rsa-sha2-512. Keysmarkedwith ssh-rsa use
the PKCS#1 v1.5 padding scheme with the SHA-1 hash function

(RFC 4253), and thosemarkedwith rsa-sha2-256 or rsa-sha2-512
use the PKCS#1 v1.5 padding scheme with the SHA-256 and SHA-

512 hash functions, respectively (RFC 8332). The SSH protocol does

not prescribe any particular length for RSA host keys. With the

September 2021 release of software version 8.8, OpenSSH has dis-

abled support for ssh-rsa keys by default out of concerns about

the use of SHA-1, but it continues to support rsa-sha2-256 and

rsa-sha2-512.

2.4.1 Security implications of compromised host keys. If an adver-

sary is able to recover a server’s private host signing key, this does

not give the adversary the ability to decrypt passively collected SSH

connections to the compromised host, but an active attacker may

still mount an active attack impersonating the host. As a legitimate

client attempts to initiate an SSH connection to the host with a

compromised key, an active adversary in a network man-in-the-

middle (MITM) position can respond to the client, complete the key

exchange and sign the handshake with the recovered key. To the

client, the public key matches the out-of-band fingerprint, and the

signature verifies, so the client establishes an encrypted channel

with the adversary. What happens next depends on the specific

configuration expected by the legitimate host and client.

Password authentication. If the legitimate server and client use

the “password” authentication method (RFC 4252 [56]), the adver-

sary can offer this authentication method to the client. The client,

believing it is connected to the legitimate server, responds with the

plaintext password inside of the encrypted channel. The adversary

can then initiate a new SSH connection with the true server, present

the plaintext password when challenged by the true server, and

relay messages between the client and server. To the client, the

responses it sees match what it expects from the legitimate server,

but the adversary can inject its own commands, modify responses,

or connect to the server at a later date under this configuration.

Public key authentication. If the server and client use “publickey”
or “hostbased” authentication, the attacker cannot relay messages

in the same way. With these authentication methods, the legitimate

client generates a digital signature over a value that includes the

session identifier of the connection it believes it has established.

At this point, an active attacker could simply act as an endpoint

and attempt to impersonate the server by receiving the client’s

messages and fabricating the server’s responses. Such an adversary

could accept files uploaded by the client via SFTP or SCP, or receive

a password from a client’s attempt to run commands as root.

However, this attack alone does not immediately allow a true

man-in-the-middle attack without a further cryptographic vulnera-

bility. This is because if the man-in-the-middle attempts to connect

to the host it wishes to impersonate, it will not be able to simply

relay the client’s authentication signature to the legitimate server,

because the session identifier in the signature hash is bound to the

connection by including both Diffie-Hellman key shares and the

negotiated secret.

SSH agent forwarding. If the client has enabled SSH agent for-

warding, even more malicious actions are possible. Although dis-

abled by default, SSH agent forwarding is frequently used in con-

junction with public key authentication methods and allows a client

to initiate SSH connections from one remote host to a second with-

out the client’s private keys leaving the client’s local machine. This

uses the SSH agent, a program containing the client’s private keys

that runs on the client machine and can be queried to request an

authentication signature for a server the client has access to. When

SSH agent forwarding is enabled, a UNIX-domain socket is created

on the remote host and connected to the client’s local SSH agent.

Access to this socket via the remote server, and therefore to the

SSH agent, can be used as a signing oracle when attempting to

authenticate to the second server. In the context of our attack, the

client connects to the adversarial host, believing it is legitimate, and

creates the SSH agent forwarding socket. The adversary can then

attempt to connect to legitimate hosts, using the forwarded agent

as a signing oracle to pass public key authentication challenges as

if it were the client. This scenario is particularly dangerous, as the

final host compromised by the adversary may be totally unrelated

to the host that first generated the vulnerable signature. OpenSSH

8.9 introduced mechanisms to restrict how keys in the local agent

can be used and mitigate this type of attack in February 2022 [42],

but adoption is limited.
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2.5 IPsec protocol suite
IPsec is a protocol suite defined by RFC 2408 [39] (ISAKMP), RFC

2409 [24] (IKE), RFC 7296 [32] (IKEv2). IPsec aims to provide confi-

dentiality, data integrity, and source authentication to traditional

IP datagrams. IPsec is often used to implement Virtual Private Net-

work (VPN) solutions. A crucial part of IPsec is the Internet Key

Exchange (IKE) protocol, which performs cipher suite agreement,

key exchange, and authentication between two hosts, called the

initiator and responder.

There are two versions of the IKE protocol: IKEv1 and IKEv2. Al-

though IKEv1 is a legacy protocol, both protocols are still commonly

deployed. In both versions, the protocol begins by establishing a

security association (SA) — agreeing on a set of cipher suites and

performing an initial Diffie-Hellman key exchange. Then the two

parties each authenticate themselves and the handshake. Both pro-

tocol versions offer a complex set of options for authentication.

The details depend on the protocol version as well as the multiple

symmetric and asymmetric authentication modes available in each

version. The IKE handshake authenticates both the initiator and

the responder. Which one authenticates first differs based on the

version and mode.

2.5.1 IKEv1. The legacy IKEv1 protocol is the original version

of IKE. There are multiple ways to authenticate an initiator in

IKEv1: digital signatures, public key encryption, and pre-shared

key (PSK). There are also two modes that can be combined with any

authentication mode: Main mode and Aggressive mode. Aggressive

mode is designed to exchange fewer messages.

A fully passive RSA fault attack is not possible in Main mode be-

cause all communications, including authentication, are encrypted

between the initiator and responder once they have completed the

key exchange. Thus in Main mode, a passive adversary would be

able to see the public Diffie-Hellman values and the cipher suites,

but the initiator and responder authentication is encrypted and

thus would not be visible to a passive eavesdropper. An adversary

would have to actively connect to a server to receive signatures.

However, a passive fault attack is possible in Aggressive mode.

Aggressive mode reduces the number of round trips by doing cipher

negotiation, key exchange, and authentication in a single round trip.

In IKEv1 aggressive mode authenticated with digital signatures,

both the initiator and responder signatures are sent in plaintext

during the first round trip exchange, which is not yet encrypted.

These digital signatures are visible to a passive adversary.

The relevant exchange in Aggressive mode is outlined below

(From section 5.1 of RFC 2409 [24]):

Initiator: SA, KE, Ni, IDii
Responder: SA, KE, Nr, IDir, [ CERT, ] SIG_R

In this exchange, the initiator chooses the preferred cipher suites

in the Security Association (SA) payload, and then put the Diffie-

Hellman public values in the Key Exchange (KE) payload. It provides

its identity (IDii) to the responder.

Our attacks require knowledge of both the signature and public

key. The former is present in the responder’s SIG payload, and the

latter is in certificates transmitted by CERT payloads. Some respon-

ders are configured to only send a CERT payload if the initiator

explicitly requests it by sending a Certificate Request (CERTREQ)

payload in its first message, which could be sent in any message

(RFC 2408).

The initiator and responder compute HASH_I and HASH_R respec-
tively, which are hashes that depend on the Diffie-Hellman shared

secret. These hashes are signed over these hashes to achieve mu-

tual authentication. For a passive adversary that observes an IKEv1

Aggressive mode handshake, only the responder’s signature is sent

in plaintext, and it signs an unknown message.

Nonstandard signature padding. Interestingly, the format of the

responder’s SIG payload subtly differs from the standard PKCS#1

v1.5 padding for RSA signatures as described in Section 2.1.1. RFC

2409 includes the following comment about padding in signatures:

“RSA signatures MUST be encoded as a private key encryption in

PKCS #1 format and not as a signature in PKCS #1 format (which

includes the OID of the hash algorithm).”

According to RFC 2313 [31] (PKCS#1 v1.5 padding) Section 8.1,

for “private-key operations”, the block type (second octet of padded

message) is either 00 or 01. RFC 2409’s remark on using “encryp-

tion” rather than “signature” format appears to be intended to mean

that the ASN.1 OID is not prepended to the hash unlike the stan-

dard PKCS#1 v1.5 padding. The apparent reason is that HASH_R is
computed from a negotiated PRF so the algorithm does not need

to be identified by an OID, but the full security implications of

specifically excluding the OID from the signature is unclear.

In summary, the format of the padded message to be signed in

the IKEv1’s AUTH payload is

00 || 01 || FF ... FF || 00 || HASH_R

Security implications of compromised signing keys in IKEv1. An
adversary who is able to compute the secret signing key for a host

would be able to cryptographically impersonate that host (either

initiator or responder) to another party by forging valid signatures

during an IKEv1 handshake using digital signature authentication.

However, because IKEv1 involves mutual signature-based authenti-

cation of the negotiated Diffie-Hellman secret by both the initiator

and responder, a true man-in-the-middle attack seems difficult for

such an adversary to carry out. Such an attack seems to require com-

promising both initiator and responder signing keys or exploiting

a further cryptographic vulnerability.

2.5.2 IKEv2. IKEv2 was introduced in 2005 and is not backward

compatible with IKEv1.

IKEv2 allows a wider variety of authentication modes than we

have space to fully describe here. From the perspective of the secu-

rity analysis in our paper, digital signatures in IKEv2 are always

embedded in authentication payloads (AUTH), and in all authenti-

cation modes, the AUTH payload is sent in encrypted form after the

establishment of a security association. Thus a passive adversary

cannot observe signatures in IKEv2. In addition, for most modes,

the initiator always authenticates before the responder.

The exception to this is the Extensible Authentication Protocol

(EAP) authentication method in IKEv2. EAP is of interest to our

work because an active adversary performing a scan for IKEv2 hosts

does not need to authenticate itself as a legitimate client before it

obtains a potentially faulty signature from the responder.

The EAP mode exchanges from [32] relevant to our data collec-

tion described in Section 4.4.2 are shown below.
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Initiator: SAi1, KEi, Ni
Responder: SAr1, KEr, Nr
Initiator (encrypted): IDi, [CERTREQ,] SAi2, TSi, TSr
Responder (encrypted): IDr, [CERT,] AUTH, EAP

The first exchange is similar to that of IKEv1. The second ex-

change is encrypted using the shared Diffie-Hellman secret estab-

lished during the first exchange. During the second exchange, the

initiator sends an identity payload (IDi) and the responder responds

with its own identity (IDr), an authentication payload (AUTH) that

authenticates the prior IKE exchanges (including cipher suites and

nonces) and IDr. Note that IKEv2 allows multiple ways to authenti-

cate data in an AUTH payload. The most common one (and the one

we are most interested in) is an RSA digital signature in PKCS#1

v1.5 format.

PSK authentication. In addition to using signatures, the respon-

der might also authenticate using a MAC derived from a pre-shared

key. For the responder, it is computed as follows [32, Section 2.15]:

AUTH = prf( prf(Shared Secret, "Key Pad for IKEv2"),
<ResponderSignedOctets>)

It is well known that this allows an offline dictionary attack

if the the pre-shared key (Shared secret) has low entropy, like

a user-chosen password. RFC 7296 specifically notes that “it is a

common but typically insecure practice to have a shared key derived

solely from a user-chosen password without incorporating another

source of randomness”. An adversary can obtain the MAC from

the responder, brute force low-entropy passwords, and verify if the

responder’s MAC authenticates with the guessed payload.

2.5.3 Security implications of signing key compromise in IKEv2. In
IKEv2 authentication, the authentication messages are bound to

the connection by including all of the packet payloads. Thus an

adversary who obtains the secret signing key for only one side of

the connection may be able to cryptographically impersonate that

host. If, as in IKEv1, both the IKEv2 initiator and responder mutually

authenticate via signatures, a true man-in-the-middle attack may

not be possible, as signatures are bound to the individual connection

and cannot simply be forwarded. Unlike IKEv1, however, IKEv2

also allows for the signature-based authentication to be one-sided,

meaning other attack models can be considered.

PSK authentication. A man-in-the-middle attack may be possible

if one side is using pre-shared key authentication with a password

that the adversary is able to guess. Unlike IKEv1, which specifies

the same authentication algorithms for both initiator and responder,

RFC 7296 states that “there is no requirement that the initiator and

responder sign with the same cryptographic algorithms. The choice

of cryptographic algorithms depends on the type of key each has.

In particular, the initiator may be using a shared key while the

responder may have a public signature key and certificate. It will

commonly be the case (but it is not required) that, if a shared secret

is used for authentication, the same key is used in both directions.”

Thus in a key compromise scenario where an initiator is using

pre-shared key authentication and the adversary has compromised

the responder’s signing key, the adversary may be able to forge

authentication messages for both sides, and carry out a man-in-the-

middle attack.

EAP. EAP authentication methods can allow a full man-in-the-

middle attack if the initiator is authenticated with EAP, especially

for EAP methods that do not establish a shared key. RFC 7296

specifically states that “EAP methods that do not establish a shared

key SHOULD NOT be used, as they are subject to a number of

man-in-the-middle attacks [1] if these EAP methods are used in

other protocols that do not use a server-authenticated tunnel.” If

an adversary compromises the responder’s key, then the IKEv2

encryption tunnel is no longer considered “server-authenticated”,

and the adversary can relay EAP messages as described in [1].

An example of a particularly vulnerable EAP method in the con-

text of this attack scenario is EAP-MS-CHAPv2. EAP-MS-CHAPv2

is supported by a broad range of platforms (including Windows,

macOS, and Android). If the initiator is authenticated with EAP-MS-

CHAPv2, an attacker who carries out a man-in-the-middle attack

will be able to obtain the full MD4 hash of the initiator’s password

due to an attack by Marlinspike et al. [38] with complexity 2
56

(the

security level of single DES). This is true regardless of the entropy

content of the password. In MS-CHAPv2, the MD4 hash of the pass-

word is a password-equivalent: an attacker with the knowledge of

the hash can successfully authenticate to the responder as the ini-

tiator. An attacker that obtains such a hash may then authenticate

to the responder without the initiator’s participation at all.

While the exact security implications of host key compromise

in IKEv1 and IKEv2 depend on the particular configurations of the

initiator and responder, the potential impact of host impersonation

due to a faulty signature exposing an RSA signing key is large.

3 LATTICE ATTACK
In this section, we show how to use Coppersmith-like techniques

to determine the factorization of the RSA modulus 𝑁 = 𝑝𝑞 from a

faulty signature whose message is only partially known.

Our method, like that of Coron et al. [16], uses a lattice approach

for solving linear equations modulo unknown divisors of integers.

However, their work is specialized to the case of the ISO/IEC 9796-

2 standard, in which there are two unknowns. They apply the

approach of Herrmann and May [28] to this case.

In our specific setting of PKCS#1 v1.5 padding with unknown

hash value, the linear equation only has a single unknown. Al-

though Coron et al. observe that this easier problem should be

solvable asymptotically, they do not explore this idea in depth. The

restriction to a single unknown simplifies their original attack, and

we remark how the problem of key recovery from a single faulty

RSA signature is best understood as an instance of the partial ap-

proximate common divisor problem. In this section, we analyze this

case in detail, providing theoretical recovery bounds and profiling

the performance of the attack for the parameters used in SSH.

Problem setup. Recall that a PKCS#1 v1.5 signature-padded mes-

sage, when interpreted as a big-endian integer, has the hexadecimal

representation 0001ffffff...ff00yy...yyzz...zz.
Here, yy...yy are the known digits from the ASN.1 string identi-

fying the hash function, and zz...zz are the unknown digits from

the hash function output. For an ℓ-bit hash function, this means

that the unknown padded message is represented by an integer𝑚

in a range of size 2
ℓ
. Let 𝑎 be the midpoint of this range and write
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𝑚 = 𝑎 + ℎ so |ℎ | ≤ 2
ℓ−1

. In a faulty signature 𝑠 that is correctly

computed modulo 𝑝 , we have 𝑠𝑒 =𝑚 = 𝑎 + ℎ mod 𝑝 .

Because 𝑠𝑒 = 𝑎 + ℎ mod 𝑝 and 𝑠𝑒 ≠ 𝑎 + ℎ mod 𝑞, then

𝑠𝑒 = 𝑘𝑝 + 𝑎 + ℎ mod 𝑁

for some 𝑘 ∈ [1, 𝑞). In other words, (𝑠𝑒 − 𝑎 mod 𝑁 ) = 𝑘𝑝 + ℎ

is approximately a multiple of 𝑝 and is a sample of the Partial

Approximate Common Divisors (PACD) problem. This problem

is often defined for arbitrarily many samples, but because faulty

signatures are rare, we focus on the minimal case of knowing one

noisy PACD sample. Here, log is the base-2 logarithm, rounded up

to the nearest integer.

Definition 1 (Partial Approximate CommonDivisors (PACD)

[29]). An instance of the PACD problem with two samples is parame-
terized by the bit lengths of the following inputs. Let 𝑝 be an unknown
log 𝑝-bit secret, and 𝑁0, 𝑁1 be log𝑁 -bit samples of the form

𝑁0 = 𝑝𝑞0

𝑁1 = 𝑝𝑞1 + 𝑟1 for |𝑟1 | ≤ 2
log 𝑟 .

The goal of the adversary is to recover 𝑝 from 𝑁0, 𝑁1.

In the context of a 𝑏-bit RSA public key 𝑁 = 𝑝𝑞, an ℓ-bit hash

function, and a single faulty signature 𝑠 , we construct the PACD

instance

𝑁0 = 𝑁 = 𝑝𝑞

𝑁1 = (𝑠𝑒 − 𝑎 mod 𝑁 ) = 𝑘𝑝 + ℎ

with parameters log𝑁 = 𝑏, log𝑝 = 𝑏/2, and log 𝑟 = ℓ − 1. Different

combinations of modulus length and hash length lead to different

parametrizations, and so different methods may be used to solve

the PACD instance.

3.1 Solving PACD
There are a number of lattice constructions for solving the PACD

problem and variants in the literature [53]. The simplest lattice

constructions apply in the case when one has many noisy samples,

and they predict that at least log𝑁 /(log 𝑝 − log 𝑟 ) samples are

needed. For our application, this would require collecting more

than one faulty signature for each public key that has a fault in the

same share of the CRT calculation. In order to solve this problem

with a single sample, one can use a Coppersmith [15]/Howgrave-

Graham [29]-type approach. May [40] gives a concise introduction

to this method.

Concretely, this approach considers the function 𝑓 (𝑥) = 𝑁1 −
𝑥 which has a small root modulo 𝑝 at 𝑥 = 𝑟1. The approach is

parameterized by integers (𝑡, 𝑘) with 1 ≤ 𝑘 ≤ 𝑡 , and considers the

constructed polynomials

𝑄 𝑗 (𝑥) = 𝑁max(𝑘− 𝑗,0) 𝑓 (𝑥)min( 𝑗,𝑘 )𝑥max( 𝑗−𝑘,0)
for 0 ≤ 𝑗 ≤ 𝑡 .

These polynomials, as well as any integer linear combination of the

polynomials, have a small root modulo 𝑝𝑘 at 𝑥 = 𝑟1.

As is standard in Coppersmith-style attacks, we construct the

Euclidean lattice where the basis vectors are the coefficient vectors

of 𝑄 𝑗 (2log 𝑟𝑥). For the parameters (𝑡, 𝑘) = (2, 1), this is the lattice

spanned by the rows of matrix

𝐵 =


−22 log 𝑟 2

log 𝑟𝑁1 0

0 −2log 𝑟 𝑁1

0 0 𝑁0

 .
This lattice is reduced using the LLL algorithm to find a short vector

®𝑣 which is interpreted as the coefficients of polynomial 𝑔(2log 𝑟𝑥).
If the coefficients are suitably small, we may bound |𝑔(𝑦) | < 𝑝𝑘 for

|𝑦 | ≤ 2
log 𝑟

and use 𝑔(𝑟1) = 0 mod 𝑝 to conclude 𝑔(𝑟1) = 0. Finding

the rational roots of 𝑔 is tractable, allows recovery of 𝑟1, and then

𝑝 = gcd(𝑁0, 𝑁1 − 𝑟1).
With one PACD sample, [40] gives the sufficient condition√︁

dim(𝐵)2dim(𝐵)/4
det(𝐵)1/dim(𝐵) < 2

log𝑝𝑘

where dim(𝐵) = 𝑡 + 1 and det(𝐵) = 2

𝑡 (𝑡+1)
2

log 𝑟𝑁
𝑘 (𝑘+1)

2

0
for recover-

ing a suitable polynomial𝑔. The following theorem gives asymptotic

bounds for recovering the root 𝑟1 in polynomial time.

Theorem 3.1. [40, Theorem 1, 𝛿 = 1] Given positive integers 𝑁0,
𝑁1 and bounds log𝑝/log𝑁 ≫ 1/

√︁
log𝑁 and 2log 𝑟 , we can find 𝑟1

such that
gcd(𝑁0, 𝑁1 − 𝑟1) ≥ 2

log𝑝

and |𝑟1 | ≤ 2
log 𝑟 , provided that

2
log 𝑟 < 𝑐𝑁

(log𝑝/log𝑁 )2
0

.

The algorithm runs in polynomial time in 𝑐 and log𝑁𝑖 .

For RSA keys in SSHwhere log 𝑝 = log𝑁 /2, recovery is therefore
possible for log 𝑟 < log𝑁 /4, which corresponds to faulty signa-

tures where the hash length is up to 1/4 the RSA modulus length.

This matches the bounds in [17], showing that representing faulty

signatures as PACD samples is as effective as representing them as

linear equations modulo unknown divisors.

These feasibility results are typically stated in terms of asymp-

totic polynomial-time bounds, but in practice smaller parameters

suffice for successful recovery in practice. This translates to lat-

tice bases of smaller dimension and entry size, and so our actual

implementation differs from the described attack in a few ways.

3.2 Experimental Parameter Selection
We wish to determine the smallest parameters for which the lattice

attack is expected to successfully recover the RSA private key from

a faulty SSH PKCS#1 v1.5 signature. In particular, we primarily wish

to minimize 𝑡 (and therefore the lattice dimension) and secondarily

wish to minimize 𝑘 (and therefore the size of elements in the lattice

basis) such that the attack succeeds with high probability.

We implemented the Coppersmith/Howgrave-Graham algorithm,

as well as our reduction from the faulty signature problem to PACD,

using a combination of Python and SageMath. We also used a fast

lattice reduction implementation written in C++ that is capable of

reducing lattice bases with large entries [48]. We ran our experi-

ments on individual cores of Intel Xeon E5-2699 v4 CPUs running

at 2.20GHz.

We create synthetic faulty signatures and perform the attack

with a range of small parameters. We generate faulty signatures

by generating a correct signature and corrupting one of the shares
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Table 1: Minimal parameters achieving ≥ 99% recovery rate in
the lattice attack for an assortment of hash lengths (log 𝑟 ). We
set log𝑁 = 1024 and log 𝑝 = 512. Running times are averaged
over 100 randomly generated samples.

log 𝑟 (𝑡, 𝑘) Dimension Entry size (bits) Avg. Time (s)

169 (2,1) 3 1193 0.51

203 (4,2) 5 2454 0.49

218 (6,3) 7 3726 0.56

226 (8,4) 9 5000 0.60

231 (10,5) 11 6275 0.99

. . . . . . . . . . . . . . .

247 (32,16) 33 20335 26.74

248 (38,19) 39 24167 29.24

249 (44,22) 45 28005 40.10

250 (52,26) 53 33123 69.18

251 (66,33) 67 42073 157.66

252 (88,44) 89 56141 496.44

253 (134,67) 135 85555 2787.66

modulo 𝑝 or 𝑞 uniformly at random. Our implementation empir-

ically reveals that 𝑘 = ⌊𝑡/2⌋ is the optimal choice for 𝑘 , as it is

capable of successfully recovering the factorization for the largest

error size log 𝑟 . To reduce the size of the search space, we fix 𝑘 to

this value in future runs. This means that for each problem instance

with log𝑝 = log𝑁 /2, there is a minimal value of 𝑡 such that the

Coppersmith parameters (𝑡, ⌊𝑡/2⌋) succeed with high probability.

We report the results for log𝑁 = 1024, corresponding to a 1024-bit

RSA modulus, in Table 1.

Two features are immediately clear from the data. First, a small

lattice of dimension 3 suffices to solve PACD for relatively large

errors. Second, the running time of the attack increases dramatically

as log 𝑟 approaches the theoretical bound log𝑁 /4. This becomes

problematic when we attempt to run the attack for certain SSH

parameters, such as RSA-1024 with the SHA-256 hash function. To

mitigate this issue, we perform a hybrid attack where we brute force

the leading bits of the error and attempt the lattice attack for each

guess; if the lattice attack succeeds, we have guessed correctly. This

makes the value of log 𝑟 used in the lattice attack slightly smaller,

but it makes the dimension of the lattice significantly smaller. The

exponential cost of brute forcing a few bits is less expensive than

the polynomial cost of reducing a large lattice. We introduce an

aditional parameter 𝜈 to represent the number of bits we attempt to

brute force. We could have alternatively explored using a chaining

approach as developed by Bi et al. [6], but signatures that required

brute forcing bits and large dimension lattices were rare, and it was

not worth optimizing this case further.

Table 2 lists the chosen attack parameters for common SSH

configurations. We observe that this Coppersmith-style attack is ex-

tremely fast to recover an unknown 160-bit SHA-1 hash for any RSA

modulus size, and so it is efficient to determine if a non-validating

signature reveals the secret key. Although the cost of attacking a

faulty RSA-2048 signature using SHA-512 is large, these signatures

are rare in our dataset. The largest share these parameters had in

our measurements was 6% (as 2048-bit keys constitute the majority

Table 2: Selected parameters and running time of the attack
on various parameter sizes found in SSH host keys.We do not
report parameters for RSA-1024,SHA512 because the number
of unknown bits in the hash is well beyondwhat we can brute
force or solve with lattices. Overall, we see that the lattice
attack is quite efficient, and the lattices (with dimension 𝑡 + 1)
are usually quite small, enabling fast reduction. Running
time of the attack is averaged over 100 trials, and our attacks
had 100% success rate.

Host key type (log𝑁, log𝑝, log 𝑟, 𝜈) (𝑡, 𝑘) Time (s)

RSA-1024,SHA1 (1024,512,159,0) (2,1) 0.131

RSA-2048,SHA1 (2048,1024,159,0) (2,1) 0.130

RSA-3072,SHA1 (3072,1536,159,0) (2,1) 0.133

RSA-4096,SHA1 (4096,2048,159,0) (2,1) 0.135

RSA-1024,SHA256 (1024,512,249,6) (44,22) 835.219

RSA-2048,SHA256 (2048,1024,255,0) (2,1) 0.130

RSA-3072,SHA256 (3072,1536,255,0) (2,1) 0.133

RSA-4096,SHA256 (4096,2048,255,0) (2,1) 0.134

RSA-1024,SHA512 - - -

RSA-2048,SHA512 (2048,1024,505,6) (86,43) 35485.211

RSA-3072,SHA512 (3072,1536,511,0) (4,2) 0.156

RSA-4096,SHA512 (4096,2048,511,0) (2,1) 0.171

of the SHA-512 use reported in Table 5); even with the strong as-

sumption that this is representative of the internet as a whole, we

estimate that a single one of our servers could comfortably process

over 3000 invalid signatures per day. We observed that 3.2 billion

total signatures contained approximately 590,000 invalid RSA signa-

tures, so we estimate that a single unoptimized server could process

tens of millions of passively observed SSH connections per day.

Among these realistic parameter settings, only the case of SHA-

512 with a 1024-bit RSA modulus is infeasible for this algorithm to

recover in practice, because a 512-bit hash length is well beyond

the theoretical limit of log𝑁 /4 bits.

4 DATA COLLECTION AND ANALYSIS
In order to search for vulnerable signatures, we collected network

data from a number of sources, including active internet-wide scans,

historical scan data, and passive network taps.

4.1 Active SSH Data Collection
We performed active SSH scans and supplemented our data with

historical internet-wide scans made available by Censys [20].

4.1.1 Contemporary scans. For this paper, we carried out weekly

scans of the IPv4 space between the dates of October 26, 2022 and

August 22, 2023. We first used the ZMap [21] scanning tool to scan

for hosts with port 22 open, and then used the ZGrab2 ssh mod-

ule to perform a SSH handshake up to the server authentication

step. With ZGrab2, we used the –host-key-algorithms=ssh-rsa
command line argument to offer only ssh-rsa as an authentica-

tion option. ZGrab2 does not currently support rsa-sha2-256 or
rsa-sha2-512 as host key algorithms, so these types of host keys

are not represented in our scan data. While this is a limitation of
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our data, our passive data collection reveals that ssh-rsa is more

common than rsa-sha2-256 and rsa-sha2-512 combined, so this

implies our contemporary scans still capture the majority of SSH

hosts and can be compared with the historical scans, which also

lacked these host key types. In these contemporary scans, ZGrab2

saves the hash of this message to be signed by the server host key.

In a typical scan, we saw around 22 million hosts with port 22

open, completed around 16 million SSH handshakes, and saw 3 to 5

million RSA host key signatures. Of those RSA signatures, around

3,000 failed to validate per scan.

4.1.2 Historical ZMap scan data. We supplemented our current

scans with a collection of historical SSH internet-wide scan data

collected at the University of Michigan and Censys at various time

periods beginning in April 2015 and ending in June of 2020 made

available by Censys. Although Censys still collects data on SSH,

their updated scanner no longer collects signature data. These

historical datasets were collected using various versions of ZMap

and ZGrab, with a variety of different SSH configuration and cipher

offerings, not all of which are documented.

Scans beginning April 3, 2018 included the hash used to validate

the server signature; the others did not. While we ran the lattice

attack on invalid signatures regardless of whether the hash was

known or unknown, wewere able to use the known server hashes to

additionally attempt the GCD attack and investigate other reasons

why some RSA signatures did not validate.

Figure 1 shows the proportion of host keys using RSA, ECDSA, or

DSA algorithms. Over the course of our historical scan dataset, the

number of hosts responding on port 22 rose from around 20 million

hosts in 2015 to 26 million in 2020. This corresponds to approxi-

mately 0.6% of IPv4 space. The number of completed connections

per scan increased from 10 million to 16 million, and 99.99% of the

successful connections in our dataset included a public key and

signature.

4.2 Active SSH Key Recovery and Analysis
4.2.1 Attempting RSA Key Recovery. In total, our combined data

set of contemporary and historical SSH scan records consisted

of 5,202,311,657 SSH records, of which 3,189,469,782 included the

host public key and signature used during the SSH key exchange

step. Of these 3.2 billion signatures, 1,248,108,063 (39.1%) were RSA.

593,671 (0.048%) of the RSA signatures failed to validate. Of the

invalid signatures, 4,962 allowed us to recover the corresponding

RSA private key using our lattice attack. This corresponded to 189

unique RSA key pairs, since many hosts either shared the same

keys or generated multiple invalid signatures in the data. For the

purposes of this section, a “valid” signature is correctly structured,

an “invalid signature” fails validation for any reason, and a “faulty”

signature enables factorization by the lattice method.

Our analysis was performed on a cluster of machines that in-

cluded a combination of Intel Xeon E5-2699 v3 CPUs running at

2.30GHz and Intel Xeon E5-2699A v4 CPUs running at 2.40 GHz.

Processing the raw connection data in search of invalid signatures

consumed approximately 2080 core hours, and performing the lat-

tice attack to recover keys from invalid signatures consumed 26

core hours.

Table 3: Vulnerable implementations. We observed version
strings identifying four vendors among the SSH signatures
that revealed private keys. We compare the prevalence of
such signatures to the number of hosts in our August 22,
2023 scan with this version string, and observe different rates
of vulnerable signatures across vendors. Per RFC 4253, the
version number 1.99 indicates a server supports SSH-2, but
also supports older SSH protocol versions.

Host’s SSH Version Faults Recent Host Count

SSH-2.0-Zyxel SSH server 4705 3373

SSH-1.99-Zyxel SSH server 168 36

SSH-2.0-SSHD 87 11880

SSH-2.0-Mocana SSH 5.3.1 1 224

SSH-1.99-Cisco-1.25 1 83920

4.2.2 Details of Affected Devices. Our analysis of active scan data

revealed five unique SSH version strings that produced signatures

resulting in factored keys, detailed in Table 3. The most prevalent

software version is the “Zyxel SSH server” with 4873 vulnerable

signatures followed by “SSHD” with 87. “Mocana SSH 5.3.1” and

“Cisco-1.25” both generated a single vulnerable signature. We ex-

amined the behavior of hosts using these version strings over time.

In particular, once a private key is exposed by a faulty signature,

how long does the host continue to use that key? We also want

to classify the nature of the errors; that is whether the error is

permanent (all future signatures are faulty) or transient (the host

generates valid signatures after the fault).

Our data do not perfectly reveal whether two signatures were

created by the same physical device. A device may use multiple RSA

keys, a single RSA public key could be used by multiple load-shared

devices, and a single device may change its IP address between

scans. Because a compromised key affects all devices that share

the key, we make the assumption that a RSA public key uniquely

identifies a host machine. Our results do not change significantly

when we identify hosts by the pair of their public key and IP address.

We examined all signatures from hosts that presented an SSH

version from the list of five in Table 3. Our goal is to understand the

window of time in which the adversary can perform the attacks in

Section 2.4.1 after compromising a private key, so we first looked

at the length of time a compromised key continues to be used by

the SSH host to sign messages. This does not capture the case of a

client continuing to trust an old host key after the host rotates keys

or goes offline, but we believe this metric is nevertheless useful for

observing general trends. Several of the hosts did not reappear in

our scans after generating a faulty signature, and the longest-living

compromised host remained online for over seven years after the

first collection of a vulnerable signature. The median duration of

the attack window was around 4 months.

We partition the observed hosts into a number of classes. These

include whether the host generates no faulty signatures, gener-

ates only faulty signatures, generates a non-faulty signature after

generating a faulty signature (transient fault), and generates only

faulty signatures after the first fault (permanent fault). The results

of this classification are given in Table 4 and suggest that there are
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Table 4: Classifications of Potentially Faulty Hosts. We iden-
tified hosts using their public key and classified host versions
based on whether a host with a given key never, always, or
intermittently produced signatures resulting in factored pri-
vate keys over our dataset. We observe different behaviors
across vendors, suggesting different underlying root causes
for the vulnerable signatures.

Version No Faults Only Faults Transient Permanent

Zyxel 48172 133 3 3

SSHD 32117 0 48 0

Mocana 2231 0 1 0

Cisco 450681 0 1 0

different underlying root causes for signature faults in the types of

host we observed.

Notably, the majority of Zyxel hosts that produced faulty signa-

tures almost never produced non-faulty signatures in our scan data,

suggesting some type of permanent hardware failure. All 48 of the

SSHD hosts that generated a faulty signature eventually generated

a non-faulty signature, and 14 of these produced more than one

faulty signature, which suggests that the invalid signatures are

produced by a process that may recover. Both of the Mocana and

Cisco hosts generated non-faulty signatures after generating the

faulty signature, and the invalid signatures were so rare that the

error condition appears to be truly transient.

Zyxel manufactures a variety of networking equipment for both

individual consumers and businesses. Based on manual fingerprint-

ing of some of the affected hosts, it appears that the faulty signa-

tures originated from Zyxel-manufactured ZyWALL firewall de-

vices. Hastings et al. [26] and Sullivan et al. [50] both previously

identified issues in RSA keys used by Zyxel devices. [26] factored

RSA keys by observing that RNG errors led to RSA keys sharing

a common secret factor that can be found by computing the GCD,

and [50] observed Zyxel devices creating a faulty RSA signature as

part of a TLS connection. In their response to our disclosure, Zyxel

concluded that legacy ZLD firmware versions V3.30 and earlier

may be affected, and currently available products defend against

this by using OpenSSL.

It is more difficult to identify the faulty devices that present the

“SSH-2.0-SSHD” version string. However, some of the IP addresses

that generated the faulty signatures also had open ports responding

to TLSv1.2 connections with certificates. These certificates included

an organization name of “Hillstone Networks” and a common name

of “SG-6000.” Hillstone Networks manufactures networking equip-

ment, and the SG-6000 is a rack-mounted firewall that performs

network inspection and analysis. Hillstone Networks was also pre-

viously identified by Hastings et al. [26] and Sullivan et al [50] due

to the presence of the same aforementioned vulnerabilities.

We have little information about the single Cisco host that gener-

ated a faulty signature. Cisco also manufactures networking equip-

ment and had products that were also affected by the issues in [26]

and [50]. According to Cisco, the SSH version string indicates that

the signature was likely generated by Cisco IOS, IOS XE, ASA, or

FTD Software. In 2022, Cisco ASA and FTD Software introduced

a mitigation to prevent faulty RSA signatures in TLS
1
that also

mitigates the issue we found with SSH, and they are evaluating

mitigation strategies for Cisco IOS and IOS XE Software.

Little information is available about the Mocana host. Some

of the other hosts that identified themselves by the same version

string also hosted web pages for monitoring a HP 2530 network

switch manufactured by Hewlett Packard. Hewlett Packard was

also among the network equipment manufacturers affected by the

issue in [26].

For all of these affected devices, we can conclude that they did

not incorporate countermeasures against fault attacks, despite these

countermeasures being well known for decades.

4.2.3 Long Term Trends. Our active scan data empirically reveal

several interesting trends in the cryptographicmethods used by SSH

implementations. As time has passed, RSA has apparently become

less common, and elliptic curve cryptography has become more

common. This is shown in Figure 1. While there are other explana-

tions for this trend, such as RSA hosts being firewalled from the

public internet or ssh-rsa host keys being deprecated and replaced
by rsa-sha2-256 keys, we conclude that the increasing popularity
of elliptic curve cryptography is the simplest explanation.

In addition, the sizes of RSA keys has shifted over time. This

is shown in Figure 2. While RSA-2048 remains the most common

key size in our data, RSA-1024 has maintained a consistent pres-

ence since the beginning of our scan data. The use of RSA-3072

was uncommon up through 2020, but it has a substantial share in

our contemporary scans beginning 2022. Note that the RSA key

generation implementation in OpenSSH 8.0 changed the default

RSA bit size from 2048 to 3072 in April 2019, which may partially

explain this change.

Finally, Figure 3 shows that vulnerable signatures are most preva-

lent in the historical scan data between 2017 and 2020. As the ma-

jority of the observed faulty signatures came from a single software

version, the prevalence may simply reflect the introduction and

eventual upgrading of this software.

4.2.4 Other causes of invalid signatures. We explored other possi-

ble errors that could have led to the signature being invalid. To help

diagnose the cause, we considered the active scan records that in-

cluded enough information to reconstruct the message hash. There

were 457,944 such invalid signatures that we considered. Of these,

27,956 were invalid but had correct PKCS#1 v1.5 signature padding.

Of the invalid signatures with correct PKCS#1 v1.5 padding, 27,580

included a hash value that did not match our reconstructed message

hash, suggesting that either a fault occurred during the host’s hash-

ing process or the values incorporated into the hash were corrupted

in transit. The remaining errors, which included formatting issues

or incorrect ASN.1 information, were rare.

4.3 Passive Data Collection and Analysis
In addition to our active SSH scans, we collected data from two

network taps at the University of California, San Diego. Both taps

1
CVE-2022-20866
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Figure 1: Signature key types over time. We analyzed a het-
erogeneous dataset of historical and current SSH scans. The
prevalence of RSA has decreased among host keys collected
over time. We exclude key types, such as Ed25519, that rep-
resent less than 1% of each scan.
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Figure 2: RSA key sizes over time. As RSA has become less
common, key lengths have grown. We exclude key sizes that
account for fewer than 5% of keys in every scan.
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Figure 3: RSA key compromise via signatures over time. The
rate of key compromise from vulnerable signatures has de-
creased over time.

were set up using the same stack. We processed incoming traffic

using PF_RING [44] and the Bro [45] Intrusion Detection System
2
.

2
Now known as The Zeek Network Security Monitor: https://zeek.org/.

We used an older version, Bro 2.5.3.

Table 5: Common key types in passive data collection.

Signature Type WiFi

ecdsa-sha2-nistp256 386,259 (64%)
ssh-rsa 134,686 (22%)
ssh-ed25519 46,336 (7.7%)
rsa-sha2-512 34,299 (5.7%)

Total 602,491

While fully passive attacks are possible for both SSH and IKEv1

in Aggressive mode, Bro does not include a module for analyzing

IKEv1 traffic, and the complexity of the numerous IKEv1 configura-

tions made it infeasible to implement our own. For this reason, our

analysis of passive data focuses exclusively on SSH connections.

The first tap was on the campus WiFi network and collected data

from February 2022 until September 2023. Over this time we saw

2,326,378 connections that Bro identified as SSH traffic. In 602,491

(26%) of these connections we saw the server’s signature for the

handshake.

Of these connections Bro identified 78% as being outbound con-

nections, 3% as inbound, and the remaining 19% were unidentified,

mostly intra-campus traffic.

We checked for valid padding on all of the RSA signatures and

did not observe any invalid padding. We are unable to validate the

ECDSA signatures we observe in this data because we do not have

the hash.

We give the distribution of key types in Table 5. RSA signatures

accounted for around 28% of host key signatures. OpenSSH is by

far the most common SSH version string we see in our dataset for

connections originating on the network. We saw a few thousand

connections to hosts with Cisco version strings, although with

different versions than the one that generated the faulty signature.

4.4 Active IPsec Data Collection
We carried out internet-wide scans of IKEv1 and IKEv2 hosts to

collect certificates and digital signatures. There is no existing official

ZGrab2 module for IKE. We implemented a custom module for

IKEv1 and IKEv2 to collect data from hosts. The details of collecting

this information differ for both versions of the protocol. We focused

on authentication modes that would allow us to collect signatures.

4.4.1 IKEv1 protocol. We carried out weekly scans of IKEv1 from

November 16, 2022, to August 30, 2023. To find hosts responding

to IKEv1, we first did a full IPv4 scan on UDP port 500 using the

ZMap scanner with a fixed probe packet offering an IKEv1 security

association containing a list of common cipher choices. For each

responding host, we used our ZGrab2 module to carry out a partial

IKEv1 handshake with that host, using digital signature authentica-

tion in aggressive mode. We chose to use aggressive mode because

this is the only mode in which a responder authenticates before the

initiator.

The initial message in an aggressive mode handshake includes

Security Association (SA), Key Exchange (KE), nonce, and Identity

(IDii) payloads. For our identity, we used an email address identify-

ing the connection as research from our institution, which recipi-

ents could contact to opt out of our scans. An important caveat of

https://zeek.org/
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this approach is that IKE responders often use the identity of the ini-

tiator (IDii) to lookup IKE policy.We found that many hosts respond

with a notification payload indicating AUTHENTICATION-FAILED
when the identity is not known to the responder. A scan with a

more common identity would have likely had a higher response

rate, but we wanted to be transparent about our identity.

Our initial message included a Certificate Request (CERTREQ)

payload, which is allowed to be sent in any message. We included

this because we observed that some responders were configured

to only send a Certificate (CERT) payload if the initiator explicitly

requests it. For successful connections, the responder responds

with SA, KE, nonce, and identity payloads. In addition, successful

connections included a Signature (SIG) payload and a Certificate

(CERT) payload in response to our request. We terminated the

handshake at this point.

As an example of representative response rates, on August 30,

2023, we received a total of 6,151,330 responses from ZMap. When

we scanned again with ZGrab2, 6,041,029 hosts did not respond or

sent a notification payload indicating an error. See Table 9 for a

categorization of all the hosts that responded to the initial ZMap

request.

4.4.2 IKEv2 protocol. We carried out weekly scans of IKEv2 from

September 15, 2022 to September 1, 2023. To find hosts responding

to IKEv2, we first did a full IPv4 scan on UDP port 500 using the

ZMap scanner with a fixed probe packet offering an IKEv2 security

association containing a list of common cipher suites. For each

responding host, we used our ZGrab2 module to carry out a partial

IKEv2 handshake with that host, using EAP authentication mode.

We chose to scan EAP mode because the responder is authenticated

before the initiator using a digital signature. This means our scanner

can extract a signature from a host without completing the EAP

authentication process.

Our scanner sends initial Security Association (SA), Key Ex-

change (KE), and Nonce payloads and receives the corresponding

values from the responder. In the next exchange, encrypted un-

der session key, our scanner sends sends an Identity (IDi) payload,

a CERTREQ payload, and omits the authentication (AUTH) pay-

load to indicate that it wishes to use EAP mode. In a successful

response, the responder sends its encrypted Identity, Certificate,

Authentication, and EAP payload. We end the connection there.

Our scanner still needs to send IDi in the second round of ex-

change, and a responder might reject that identity. Interestingly,

such rejections are less common than in IKEv1, as can be seen by

comparing the percentages for RSA in Tables 9 and 10. One possible

reason is that the EAP authentication process will also ask for the

identity, and RFC 7296 specifies in section 2.16 that “When the ini-

tiator authentication uses EAP, it is possible that the contents of the

IDi payload is used only for Authentication, Authorization, and Ac-

counting (AAA) routing purposes and selecting which EAP method

to use. This value may be different from the identity authenticated

by the EAP method.”

As a representative example scan, on September 1, 2023, we re-

ceived 8,682,630 total responses from our ZMap probes. When we

scanned again with ZGrab2, 5,891,901 hosts did not respond or sent

a notification payload indicating an error in the first IKE_SA_INIT
message, and 2,121,067 further hosts did not reply to the second

encrypted IKE_AUTH message. We received 524,002 RSA signatures,

84,613 ECDSA signatures, and 59,657 PSK-MAC authentication mes-

sages in response to our probe. A breakdown of the authentication

methods used by IKEv2 hosts that responded to the ZMap probes

is in Table 10. Every authentication method except PSK-MAC is

an asymmetric digital signature scheme.

Fragmentation. IKEv2 allows initiators to specify whether they

support fragmentation as specified in RFC 7383. Some form of frag-

mentation is necessary because many networks have a Maximum

Transmissible Unit (MTU) that limits how big a packet it can re-

ceive, and our scan requests certificates containing large public keys

(especially RSA keys) that often exceeds the size of the MTU. The IP

protocol itself supports fragmentation, but it may not always work

since many devices filter out IP fragments. Unlike IP fragmentation,

IKEv2 fragmentation is performed at the application layer and is

specifically designed to avoid needing to use IP fragmentation.

We hypothesized that fragmentation might influence the distri-

bution of key sizes we observed, but the differences across scans

were very small.

4.5 IPsec analysis
4.5.1 IKEv1. We collected weekly scans of IKEv1 data fromNovem-

ber 16, 2022, to August 30, 2023. IKEv1 gives far fewer signatures

compared to IKEv2. Nevertheless, in the IKEv1 scan data for our

most recent scan on August 30, 2023 (Table 9), we collected one

non-validating signature out of 2,517 total RSA signatures. We col-

lected 83 non-validating signatures across all of our scans. None of

these invalid signatures had valid PKCS#1 v1.5 padding, and none

of them revealed a private key.

4.5.2 IKEv2. In the weekly IKEv2 scans from September 15, 2022 to

September 1, 2023, the number of hosts we observed that responded

on port 500 varied from 7,922,385 to 8,682,630 hosts per scan. When

we initiated full handshakes with each of these hosts, we received

between 471,806 and 530,812 RSA signatures per scan. Among these

signatures we collected, we validated each signature and found

between 380 and 951 invalid RSA signatures per scan. In total, we

collected 65,002 invalid RSA signatures across all of our scans.

For each invalid signature, we attempted to classify the source

of failure by checking whether the message recovered from the

signature (𝑠𝑒 mod 𝑁 ) had proper PKCS#1 v1.5 signature padding.

Signatures with incorrect PKCS#1 v1.5 padding. For all but ten of

the invalid signatures, the recoveredmessage did not satisfy PKCS#1

v1.5 padding, and appeared to be random. For these signatures, we

had the messages since we were a participant in the protocol, and

we attempted to factor the RSA modulus using the GCD attack. The

attack did not succeed for any of these invalid signatures.

Incorrect RSA moduli. We traced nearly all of these invalid signa-

tures to mismatches between the public key in the host certificate

and the private key used to generate the signatures. This type of fail-

ure can be detected by taking several invalid signature pairs (𝑚𝑖 , 𝑠𝑖 )
from a single host and computing 𝑁 ′ = gcd(𝑠𝑒

1
−𝑚1, 𝑠

𝑒
2
−𝑚2, . . . ).

For failures of this type, 𝑁 ′
is typically the real value of the pub-

lic modulus 𝑁 with high probability. For other types of failures,

typically 𝑁 ′ = 1. See Appendix A.1 for a more detailed justification.
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For 576 out of the 579 invalid signatures collected on January

6, 2023, we recovered proper moduli which make the signatures

valid. About half of the certificate subjects for the affected devices

identified a Watchguard VPN product.

Signatures with correct or nearly correct PKCS#1 v1.5 padding. We

observed a small number of invalid signatures where the recovered

message had correct PKCS#1 v1.5 or PKCS#1 v1.5-like padding. Our

September 15, 2022 IKEv2 scan results contained four signatures

that did not validate because 𝑠𝑒 mod 𝑁 contains just the PKCS#1

v1.5 padding of the SHA-1 hash without the ASN.1 OID preceding

the hash. That is, 𝑠𝑒 = 00 || 01 || FF ... FF || 00 ||
SHA-1(m). The hash is otherwise a valid SHA-1 hash of the message

to be signed. This is consistent with the IKEv1 signature format

where there is no OID, so this indicates that an implementation

may have mixed up the formats between the two IKE versions.

There are also six instances of 𝑠𝑒 mod 𝑁 being in the correct

format (PKCS#1 v1.5 padding followed by ASN.1 OID and then

the hash), but the hash does not match that of the signed message.

This indicates that either the hash or handshake messages were

corrupted either in transit or during computation.

PSK vulnerabilities. Several IKEv2 hosts responded with a PSK

authentication (AUTH) message containing a MAC derived from

a pre-shared key, see Section 2.5. For example, in our September

7, 2022 scan, out of 7,925,522 total responses to our ZMap probe,

55,936 returned this type of response. If the pre-shared key is set

to a poorly chosen password, knowledge of this AUTH payload

allows a dictionary attack to determine which key generated the

MAC. We checked these unwittingly collected MACs against the

rockyou wordlist [37], and found that 8,868 (16%) used a pre-shared

key matching a password from the rockyou list.

5 DISCUSSION
5.1 Countermeasures
The countermeasure to the attacks we describe in this paper is

well known: implementations should validate signatures before

sending them. OpenSSH, the most common SSH implementation

we observed in this data, implements this countermeasure because

it uses OpenSSL to generate signatures, and OpenSSL has included

countermeasures against RSA fault attacks since 2001.

5.2 OpenSSH deprecates ssh-rsa
OpenSSH deprecated the ssh-rsa signature scheme in version 8.8,

released in September 2021. This deprecation does not remove the

use of RSA entirely, only the ssh-rsa signature type that uses

the SHA-1 hash function. Signature types of rsa-sha2-256 and

rsa-sha2-512 using SHA-2 are still enabled in OpenSSH. How-

ever, our passive network data shows that ssh-rsa remains more

common than the rsa-sha2 alternatives, and both types represent

almost 20% of connections we observe.

5.3 Lessons for protocol design
These attacks provide a concrete illustration of the value of several

design principles in cryptography: encrypting protocol handshakes

as soon as a session key is negotiated to protect metadata, binding

authentication to a session, and separating authentication from

encryption keys. TLS 1.3 has taken these steps, as have versions

of IPsec. Although an active attacker can still make a connection

to the server in hopes of triggering a fault, the attack is no longer

passive, and a server would have records of, for example, a large

number of connections.

5.4 Limitations
Our visibility into the IPsec protocol is particularly limited, given

the constraints on our data collection: the number of signatures we

were able to collect is a small fraction of the dataset we were able to

collect for SSH. Given the rarity of vulnerable signature faults, we

are not able to conclude much about IPsec implementations from

our data, and believe this question deserves further study.
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A APPENDIX
A.1 Incorrect modulus recovery from signatures
We conjectured that some invalid signatures were due to a host

not presenting the correct RSA public key (𝑁, 𝑒). To test this, we

assumed 𝑒 = 65537, since this was the most common exponent in

our data, and used ten pairs of invalid signatures and padded mes-

sages (𝑠1,𝑚1), (𝑠2,𝑚2), . . . from the same host collected in follow-

up scans. We then computed 𝑁 ′ = gcd(𝑠𝑒
1
−𝑚1, 𝑠

𝑒
2
−𝑚2, . . . ).

Since 𝑠𝑒
𝑖
=𝑚𝑖 mod 𝑁 , then 𝑁 divides 𝑠𝑒

𝑖
−𝑚𝑖 over the integers.

This implies 𝑁 divides 𝑁 ′
. In practice, the values of 𝑠𝑒

𝑖
−𝑚𝑖 are

unlikely to share other factors, and 𝑁 = 𝑁 ′
with high probability.

If the signatures were invalid for a reason other than the host

presenting an incorrect modulus, then the values of 𝑠𝑒
𝑖
−𝑚𝑖 are

unlikely to all share a common factor, and in this case 𝑁 ′ = 1.
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A.2 Additional Tables

Table 6: Key sizes in passive SSH data collection.

Signature Type Key Size WiFi

ecdsa-sha2-nistp256 - 386,259 (64%)
ssh-rsa all 134,686 (22%)

3072 61,626
2048 60,622
1024 12,018
1040 360
4096 57
1536 2
8192 1

ssh-ed25519 - 46,336 (7.7%)
rsa-sha2-512 all 34,299 (5.7%)

2048 33,406
1024 852
3072 24
4096 17

ssh-dss - 271 (0.0%)
rsa-sha2-256 all 601 (0.0%)

2048 408
3072 190
4096 3

ecdsa-sha2-nistp521 - 36 (0.0%)
ecdsa-sha2-nistp384 - 3 (0.0%)

Total 602,491

Table 7: Most Common Passive WiFi Data SSH Clients.

SSH Version String Count

SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3 191,921

SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.8 150,869

SSH-2.0-SecureBlackbox 57,069

SSH-2.0-OpenSSH_8.6 27,692

SSH-2.0-OpenSSH_8.1 22,248

SSH-2.0-Go 18,436

SSH-2.0-PuTTY_Release_0.70.2_Sourcetree 18,318

SSH-2.0-SecureBlackbox.9 12,823

SSH-2.0-libssh2_1.9.0_DEV 7,858

SSH-2.0-OpenSSH_9.0p1 Debian-1 7,786

Table 8: Most Common Passive WiFi Data SSH Servers.

SSH Version String Count

SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.8 345,858

SSH-2.0-OpenSSH_7.4 50,586

SSH-2.0-OpenSSH_8.2p1 48,592

SSH-2.0-OpenSSH_4.3 11,928

SSH-2.0-Go 8,983

SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.10 8,880

SSH-2.0-OpenSSH_7.5p1b-GSI NMOD_3.19... 8,263

SSH-2.0-Cisco-1.25 6,372

SSH-2.0-OpenSSH_6.6.1 5,632

SSH-2.0-OpenSSH_7.5 PKIX[10.1] 5,522

Table 9: IKEv1 scanning outcomes for August 30, 2023. IKEv1
supports RSA or DSS signatures, but we only saw RSA.

Handshake outcome Key Size Connections

Rejected handshake - 6,041,029 (98.21%)
Missing signature - 107,169 (1.74%)
RSA signature all 2,517 (0.04%)

2048 2,145

1024 344

4096 25

512 2

3072 1

Missing public key - 615 (0.01%)

Total 6,151,330

Table 10: IKEv2 scanning outcomes for September 1, 2023.

Handshake outcome Key Size Connections

Rejected handshake - 5,891,901 (67.86%)
Missing IKE_AUTH - 2,121,067 (24.43%)
RSA signature all 524,002 (6.04%)
ECDSA signature all 84,613 (0.97%)
PSK-MAC - 59,657 (0.69%)
Missing signature - 993 (0.01%)
Missing public key - 329 (0.00%)
DSS signature - 68 (0.00%)

Total 8,682,630

Table 11: IKEv2 key lengths in the September 1, 2023 scan.
The “other” category includes keys of bit length 2192, 2432,
3584, 4104, 6144, 7680, and 16384.

Key Type Key Size Connections

RSA all 524,002 (6.04%)
512 121

1024 17,215

2048 420,270

3072 630

4096 85,681

8192 65

other 20

ECDSA all 84,613 (0.97%)
256 84,386

384 189

521 38
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