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Scenario:  
 

• Mails sent from a browser (using Yahoo! etc.) are broken down into TCP packets that 
contain the body as plain text. 

• Instant messages sent using clients (MSN, Yahoo! messenger etc.) are also sent as plain 
text. 

 
 
Vulnerability: 
 

• TCP packets can be intercepted by monitoring the originating interface or by having 
access to any of the routers that they pass through. Privacy loses its charm when even 
your ISP can easily monitor all your data.  

• Sad but true, inspite of using decent hardware (3Com HiperARC Dial-In PPP RASs’) 
ISP’s like MTNL have proved to show oblivion towards elementary security measures.  

 
 
My work: 
 

• I successfully managed to access most of their routers and monitor each interface, thus 
enabling me to view mails & chat sessions. The best part is that they can’t sue me for 
this! 

• In the process of coding a Linux based server in C++ using secure TCP/IP sockets 
• Developing a TSR application with Windows-DOS inter-portability to make available 

cipher-text in Windows Clipboard  
• Key generation by measuring keyboard latency & tracking mouse movements. Technique 

is immune to physical attacks. Statistical study verifies randomness of technique used. 
Working on making key generation even more secure. 

• “Private key” transfer using “public key” 
• New “Session Key” after random time intervals, generated from the IM 
• Modified IDEA & DESX standards to develop a simpler, faster, yet secure ciphering 

technique using whitening, transposition, block & stream ciphering, and compression 
algorithms. 

• Resistance to brute force attacks. 
 
Real time working of all concepts would be demonstrated… 
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“If I take a letter, lock it in a safe, hide the safe 
somewhere in New York, then tell you to read the 
letter, that’s not security. That’s obscurity. On 
the other hand, if I take a letter and lock it in a 
safe, and then give you the safe along with the 
design specifications of the safe and a hundred 
identical safes with their combinations so that 
you and the world’s best safecrackers can study 
the locking mechanism – and you still can’t open 
the safe and read the letter – that’s security!” [1] 
 
 

 
Fig. 1. Basic Cryptography [7] 
 
In addition to providing confidentiality, 
cryptography is often asked to do other jobs [1]: 
 
Authentication: It should be possible for the 
receiver of a message to ascertain its origin; an 
intruder should not be able to masquerade as 
someone else. 
 
Integrity: It should be possible for the receiver 
of a message to verify that it has not been 
modified in transit; in intruder should not be able 
to substitute a false message for a legitimate one. 
 
Nonrepudiation: A sender should not be able to 
falsely deny later that he sent a message. 
 
This paper is inclined primarily towards the 
integrity aspect of a successful cryptosystem. 
 
Algorithms & Keys 
 
A cryptographic algorithm, also called a cipher, 
is the mathematical function used for encryption 
and decryption. If the security of an algorithm is 
based on keeping the way that algorithm works a 
secret, it is a restricted algorithm. Restricted 
algorithms are woefully inadequate by today’s 
standards. A large or changing group of users 

cannot use them, because every time a user 
leaves the group, everyone else must switch to a 
different algorithm. If someone accidentally 
reveals the secret, everyone must change their 
algorithm.  
 
Modern cryptography solves this problem with a 
key. All of the security in key based algorithms 
is based in the key (or keys); none is based in the 
details of the algorithm. This means that the 
algorithm can be published and analyzed. 
Products using the algorithm can be mass 
produced. It doesn’t matter if an eavesdropper 
knows your algorithm; if he doesn’t know your 
particular key, he can’t read your messages. 
 
“If privacy is outlawed, only outlaws will have 
privacy…” 
 
Choosing an algorithm 

 
When it comes to evaluating and choosing 
algorithms, people have several alternatives: 

 
1. They can chose a published algorithm, based 
on the belief that a published algorithm has been 
scrutinized by many cryptographers; if no one 
has broken the algorithm yet, then it must be 
pretty good 

 
2. They can trust a manufacturer, based on the 
belief that a well-known manufacturer has a 
reputation to uphold and is unlikely to risk that 
reputation by selling equipment or programs 
with inferior algorithms. 
 
3. They can trust a private consultant, based on 
the belief that an impartial consultant is best 
equipped to make a reliable evaluation of 
different algorithms. 
 
4. They can trust the government, based on the 
belief that the government is trustworthy and 
wouldn’t steer its citizens wrong. 
 



5. They can write their own algorithms, based on 
the belief that their cryptographic ability is 
second-to-none and that they should trust nobody 
but themselves. 
 
How I decided to design my own algorithm 
considering the above mentioned: 
 
1. The DES (Digital Encryption Standard) and 
IDEA (International Data Encryption Standard) 
are the most popular patented algorithms around 
today. I chose a much simpler and thus faster 
implementation of a combination of what these 
algorithms do, including whitening, 
transposition, block and stream ciphering 
resulting in the evolution of an inherited version 
of the DES variations (DESX) and IDEA used in 
PGP. Thus besides originality, elements of 
something widely published make the project 
qualitative. 
 
2. Trusting a manufacturer would mean 
purchasing a hardware implementation. 
Practically speaking, one man alone (me); cannot 
design an implementation of this magnitude, so 
the second option was ruled out. 

 
3. Hiring a private consultant seems feasible, but 
cryptography is not my profession, I haven’t 
dedicated my life to it either. You’re probably 
insane if you’re expecting someone to come up 
with a radical new idea all by himself and I’d 
rather not say why! 

 
4. The Indian Government is hardly involved in 
such projects on a scale comparable to the US or 

the Europeans. Besides, this project is not 
intended to be implemented on a scale so large 
that it would require the intervention of a nations 
Government. 

 
5. Writing my own algorithm…sounds fun, 
though the decision is certainly not based on the 
belief that my ability is second-to-none and that I 
don’t trust anyone but myself!  
 
“Don’t worry that you’re reinventing the wheel 
all over again, that’s what learning is all 
about…!” 
 
Compression & Encryption 
 
Using a data compression algorithm together 
with an encryption algorithm makes sense for 
two reasons: 
 
1. Cryptanalysis relies on exploiting 
redundancies in the plaintext; compressing a file 
before encryption reduces these redundancies 
 
2. Encryption is time -consuming; compressing a 
file before encryption speeds up the entire 
process 
 
The important thing to remember is to compress 
before encryption. If the encryption algorithm is 
any good, the cipher-text will not be 
compressible; it will look like random data. (This 
makes a reasonable test of an encryption 
algorithm; if the cipher-text can be compressed, 
then the algorithm probably isn’t very good). 
 

 
 
Table 1. Observations upon encrypting a sample text file without any 
compression using the program I developed 
 
Size of Plain Text:      16,947  43,843 
Size of Zipped Plain Text:        5,045  14,485 
*Percentage Compression of Plain Text:     71%    67%  
 
Size of Cipher Text:     29,923  80,143 
Size of Zipped Cipher Text:    11,833  29,000 
*Percentage Compression of Cipher Text:      61%    64%  
 
$Ratio of Cipher Text & Plain Text:   1.76  1.82 
^Ratio of Cipher Text & Plain Text:   2.34  2.00 
 

$Before Compression 
^After Compression 
*Compression using WinZip 8.1  

 



The catch here is that the input text consisted of 
the source code of my program, which has about 
1000 line breaks. Combine that with multiple 
repetitions of keywords like cout, printf, get, 
read, write and so on, and you have more 
redundancies than one could imagine. More the 
redundancies, greater is the compression. 
 
In a way, this means that there are no bounds to 
the range of the input character set (by no 
bounds, I mean that it ranges across the entire 
ASCII character set; codes 0-255). Now that’s at 
least about 200 different symbols for any 
conventional input stream. But after the second 
round of my block ciphering algorithm, I’m 
limiting the output cipher text to an ASCII 
character set ranging from codes 33 – 132, that’s 
just about 100 different symbols . This leads to 
one observation and one question: 
 
There would be a lot of character repetitions in 
the resulting cipher text. Imagine representing 
16,947 (~17,000) characters consisting of 200 
different symbols using a character set of just 
100 symbols. No wonder the size of the cipher 
text is almost twice as that of the plain text!  

 
Which one of the following ideal cases would 
lead to greater compression? 
 

Compressing an input plain text of 200 
characters in which each symbol is 
unique (because it uses the 0-255 range, 
with some exceptions) 

 
Compressing an input plain text of 200 
characters in which at least 100 symbols 
are unique (33-132) and each symbol 
occurs exactly twice 
 

If you couldn’t already guess, it’s the latter. 
Better still, a practical examp le would verify that 
symbol occurrences would actually be more than 
twice, thus leading to even great amounts of 
compression.  
 
What conventional block ciphers don’t do is 
limit their output to a smaller character set. And 
that’s exactly what I’ve done. Thus, I’m 
purposely compressing after encryption, rather 
than the other way round. One may argue that if 
the entire algorithm is intended to be made 
public, then compressing the data wouldn’t add 
to security as an eavesdropper could uncompress 
it to obtain the cipher text with all the 
redundancies. Now that would be undesirable. 

To overcome this issue, I decided to treat the 
compressed data with a transposition function 
that would take the private key as an argument. 
Thus without the key, it would be impossible to 
uncompress the cipher-text.  
 
IDEA - Block Cipher Algorithm 
 
The first incarnation of the IDEA cipher, by 
Xuejia Lai and Kames Massey, surfaced in 1990. 
It was called PES (Proposed Encryption 
Standard). After subsequent strengthening of the 
algorithm, it was renamed to IDEA (International 
Data Encryption Algorithm) in 1992. IDEA is 
patented in Europe and the United States; the 
patent is held by Ascom-Tech AG. 
 
IDEA’s key length is 128 bits. Assuming that a 
brute force attack is the most efficient, it would 
require 2128 (1038) encryptions to recover the key. 
Design a chip that can test a billion keys per 
second and throw a billion of them at the 
problem, and it will still take 1013 years – that’s 
longer than the age of the universe. An array 
of 1024 such chips can find the key in a day, but 
there aren’t enough silicon atoms in the universe 
to build such a machine. 
 
This remarkable observation about this algorithm 
prompted me to devise a software 
implementation of something similar, but 
something that would work much faster, since 
IDEA uses 8 rounds of XOR and modular 
addition and multiplication operations along with 
52 sub keys derived from the 128 bit key. I cut it 
down to just one round of XOR operations, 
while using just 2 sub keys derived from a single 
10 bit key. Though increasing the key length to 
about 32 or 64 bits wouldn’t hurt, I shall stick to 
just one round of XOR operations. (Inspite of 
this simplification, encryption seems to remain a 
slow process for comparatively large amounts of 
data, as well as theoretically much less secure. 
But my implementation is obviously not 
intended to aim at achieving a Patent or 
anything, and the outputs produced from my 
program will appear secure enough to be 
implemented on a personal basis as well as 
within internal networks of an organization). 
 
As already stated, one may keep adding rounds 
and rounds of complexity to your algorithm, but 
the power of your cryptosystem depends more on 
how you generate the key.  
 
 



Some concepts involved 
 
Transposition Ciphers [Dis cussed later] 
Whitening 
 
Whitening is the name given to the technique of 
XORing some key material with the input to a 
block algorithm, and XORing some other key 
material with the output. This was first done in 
the DESX variant developed by RSA Data 
Security, Inc. 
 
C = K3 V EK2(M V K1) 
M = K1 V DK2(C V  K3) 
 
Measuring Keyboard Latency 
 
People’s typing patterns are both random and 
nonrandom. They are nonrandom enough that 
thy can be used as a means of identification, but 
they are random enough that they can be used to 
generate random bits. Here’s what I did: 
 
Measure the time between successive keystrokes, 
then take the least significant bits of those 
measurements. These bits are going to be pretty 
random. This technique may not work on a 
UNIX system, since the keystrokes pass through 
filters and other mechanisms before they get to 
the program, but it will work just fine in a 
DOS/Windows environment. 
 
Next, find the sum of these random numbers. 
Divide it by another random number between 1 –  
11 generated by the C++ internal randomize() 
function. If this number is greater than 5, then 
divide the sum by this number, else multiply the 
sum with it. 
 

Calculate the 10-bit binary of the result and use it 
as the private key. 
 
Other sources of obtaining random data [1]: 

• The sector number, time of day, and 
seek latency for every disk operation 

• Actual mouse position 
• Number of current scan line of  monitor 
• Contents of the actually displayed 

image 
• Sizes of FATs, kernel tables, and so on 
• CPU Load 
• Arrival times of network packets 
• Input from a microphone (noise) 

 
“Random Number Generators in your Compiler 
are NOT a source of randomness…!” 
 
Statistics 
 
During the program testing phase, the random 
key generator's results at each run were recorded, 
based on the typing patterns of a number of 
different users. 5 different users were made to 
generate 20 keys each, and the total number of 
keys (100), were entered into a database for 
further analysis. 
 
Each user's data set was filtered out to obtain the 
number of repetitions in the 20 keys generated. 
The efficiency of my technique was obtained by 
dividing the number of unique keys generated 
with the total number of keys generated. 
Individual efficiencies for each user's data were 
calculated, along with the average efficiency of 
the entire key generation algorithm. Some users 
were made to type different strings each time, 
while others were asked to monotonously repeat 
the same string each time. 



 
Table 2. Key Generation Statistics 

  USER 1 USER 2 USER 3 USER 4 USER 5 
KEY 01: 0000011100 0000101111 0010110110 0110011000 0000110111 
KEY 02: 0000111101 1101001010 0000111100 0001011001 0011000000 
KEY 03: 0010111011 0000011111 0000101101 1100011100 0000111100 
KEY 04: 0101101101 1110011000 0000110001 0100101101 1111010110 
KEY 05: 0000110010 1100010100 1110111110 0000111111 0000111110 
KEY 06: 0000101100 0001000000 1101101010 0000101001 0000111100 
KEY 07: 1011010010 0001000000 0000101010 1110100100 0000101001 
KEY 08: 0001010110 0101011010 0001000110 0001000101 0101011000 
KEY 09: 1111111100 0001001111 0001001111 0110110000 0100110110 
KEY 10: 0000111011 0000111000 0001011001 0000111001 0000100100 
KEY 11: 0001111000 0111101100 0001000001 0000101101 0000100110 
KEY 12: 0000101001 0000100000 0011110100 0110110101 0000110101 
KEY 13: 0111011010 0001011010 0000110110 1110100000 0001001110 
KEY 14: 0001101010 0000100000 1101101100 0000111001 0000111111 
KEY 15: 0000110001 1001011111 1101001100 0000111100 0000101111 
KEY 16: 0000111010 0001001011 0001001011 0100111000 0110010100 
KEY 17: 0000111010 0001010011 0001000110 0000111011 0011110100 
KEY 18: 1110011110 0111001110 0000111011 0000011010 0011001100 
KEY 19: 0000100111 0000101000 0000111000 0000111010 0001001101 
KEY 20: 0001000111 0100001100 1101100110 0101100101 0000101001 
INPUT 
STRING Same Same Different Different Different 
REPEATS 1 Repeat 2 Repeats 1 Repeat 1 Repeat 2 Repeats 
EFFICIENCY 95% 90% 95% 95% 90% 

If all 100 items are filtered, 23 repetitions are found. This implies 
an average efficiency of 77% 

 
PGP – Pretty Good Privacy 
 
“If all the personal computers in the world—260 
million—were put to work on a single PGP-
encrypted message, it would still take an 
estimated 12 million times the age of the 
universe, on average, to break a single 
message.” 

 
PGP is an e-mail security program written by 
Phil Zimmermann, based on the IDEA algorithm 
for encryption of plaintext and uses the RSA 
Public Key algorithm for encryption of the 
private key. 



 
Fig. 2. The details of how PGP works, is out of the scope of this document [6] 
 
PGP uses a pass  phrase to encrypt your private 
key on your machine. You use the pass phrase to 
decrypt and use your private key. A pass phrase 
should be hard for you to forget and difficult for 
others to guess. It should be something already 
firmly embedded in your long-term memory, 
rather than something you make up from scratch. 
Why? Because if you forget your pass phrase, 
the game’s over! Your private key is totally and 
absolutely useless without your pass phrase and 
nothing can be done about it. PGP is  
cryptography that will keep major governments 
out of your files. It will certainly keep you out of 
your files, too! 
 
Sounds pretty neat! Top that up with the fact that 
it’s all Open Source, which has it’s own plethora 
of advantages which we don’t want to get into 
right now.  
 
PGP Vulnerabilities 

 
Fake PGP: Since it’s all open source, there are 
fake versions of the famous software floating 
about the net. Unless you’re sure that your copy 
of the program is from a trusted source, it 
wouldn’t be surprising to realize one day that 
your pass phrase was sent to an attacker via e-
mail the moment you went online! Once he has 
your pass phrase, he has your private key. Key 
transfer using public key cryptography is useless 
after this point.  
 
Tempest attacks: Another kind of attack that 
has been used by well-equipped opponents 
involves the remote detection of the 
electromagnetic signals from your computer. 

This expensive and somewhat labor-intensive 
attack is probably still cheaper than direct 
cryptanalytic attacks. An appropriately 
instrumented van can park near your office and 
remotely pick up all of your keystrokes and 
messages displayed on your computer video 
screen. This would compromise all of your 
passwords, messages and so on. This attack can 
be thwarted by properly shielding all of your 
computer equipment and network cabling so that 
it does not emit these signals. This shielding 
technology, known as ‘tempest’ is used by some 
government agencies and defense contractors. 
There are hardware vendors who supply tempest 
shielding commercially. 

 
Keyloggers: Consider a keystroke recorder 
logging your pass phrase and emailing it to an 
eavesdropper. What’s the purpose of complex 
algorithms and 128 bit public keys when your 
own private key is in someone else’s hands? 
 
My program overcomes this issue with the 
mere fact that the only input the user will provide 
to the system are a bunch of random keystrokes 
for key generation. Any sensitive pass phrase or 
the private key is never “typed” by the user. 
There’s no question of encrypting the key and 
storing it locally. I’m essentially using a different 
key for each transaction. Since it’s a one time 
session key, it gets erased from the memory the 
moment the encryption operation is completed. 
(Whether the key is physically; actually; erased 
from the hard disk or not – is another issue, 
which may be exploited by data recovery 
packages; but then, this issue exists in PGP as 
well, and besides, clearing out swap files or 



overwriting on virtual memory…is not what my 
project is about!). 
 
Given below is an outline of the algorithm for  
the system I designed:  
 
Step 1: Processing of Plain Text 
 
Read input file “PLAIN.TXT” sequentially (bit 
by bit) and generate it’s binary output. Since the 
ASCII Character Set consists of 256 characters 
(0-255), it follows that 8-bits are required to 
represent each character in its binary form.  (28 = 
256) 
 
Step 2: Addition of One Time Pads 
 
Pad each binary number with subsequent zero’s 
towards the Most Significant Bit (MSB) until the 
total number of the binary bits equals ten. This is 
required as the binary data is being encrypted 
using a 10-bit private key. Output is saved in file 
“BINARY.TXT”. 
 
Step 3: Key Generation By Measuring Keyboard 
Latency 
 
Take random input data from the keyboard. The 
time difference between each keystroke serves as 
an excellent source of randomness. The beauty of 
encryption lies not in the complexity of its 
algorithm, but how the key is generated.  My key 
generation technique is based on a function that 
sums the millisecond field’s value of the time 
difference between each keystroke and either 
divides or multiplies the sum with another 
random number generated based on its 
magnitude and converts the final output into a 
10-bit binary that is used as the private key. This 
key is saved in another file “PVTKEY.TXT” in 
binary form for future reference. 
 
Step 4: Encrypting Plain Text (Phase I: Stream 
Ciphering) 
 
Each 10-bit binary block is sequentially read 
from “BINARY.TXT” and XORed with the 10-
bit key as read from “PVTKEY.TXT”. The 
resulting 10-bit data is stored in “XOR.TXT”.  
This process is often referred to as whitening. 

 
Step 5: Addition of Salt 
 
We shall be using 16-bit long blocks of data 
during the second round of encryption. Hence 
the number of bits in “XOR.TXT” must 
essentially be an integral multiple of 16. For this 
purpose, n-bits of 0’s are padded at the end of 
“XOR.TXT” where ‘n’ is calculated by the 
following formula: 
 
n = 16-[{(count-1)*10}%16] 
 
where,   
(count-1): represents the number of characters in 
plain text  
*     : represents ordinary multiplication 
%          : represents remainder after ordinary         
division 
 
To make matters more complex, one may add 
salt values other than a continuous stream of 
zeros. Having another function to decide what 
salt values to use, based on the value of ‘n’ 
generated from the above mentioned formula 
wouldn’t hurt, although this change would 
require alterations in the proceeding steps. I 
would probably incorporate this, in the next 
version of my program. 
 
Step 6: Generation of Sub-Keys for Block 
Ciphering 
 
Two sub-keys K1 and K2 are generated using the 
private key. The first 2 bits from the MSB of the 
Private Key are discarded. The remaining 8 bits 
are complemented and saved as K1. The contents 
of K1 are reversed to obtain K2. Agreed this 
means of generating sub-keys is lame. But it’s no 
big a deal complicating this function, and would 
be taken care of, in the next version. 
 
 
Step 7: Division of Stream Cipher into blocks for 
double encryption 
 
The number of bits in the file “XOR.TXT” are 
now divisible by 16. Blocks of 16-bits are 
processed sequentially. Each 16-bit block is 
divided into two equal halves X1 and X2. 

 
 
 
 
 
 



Binary Data 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 
Element 
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Sub-Block 
Number X1 X2 
Block Number 1 

Fig. 3. Diagram showing 1 block of length 16-bits being sub-divided into X1 & 
X2, each 8-bit long

 
 
Step 8: Encrypting Stream Cipher (Phase II: 
Block Ciphering) 
 
The following operations are performed using 
X1, X2, K1 and K2 and the result is stored in 
“CIPHER2.TXT” 
 
Y1 = X1 V K1 
Y2 = X2 V K2  
 
where, 
V : represents XOR operation 
 
Y1 and Y2 are concatenated to obtain a 16-bit 
binary block. This process is applied on the 
entire stream cipher. 
 
Step 9: Processing of Block Cipher - I 
 
The length of the binary file “CIPHER2.TXT” is 
essentially a multiple of 16. Thus it is implied 
that it is also a multiple of 8. Now we 
sequentially read 8-bits at a time and convert 
each 8-bit number into its decimal equivalent. 
The value of the decimal equivalent will always 
range between 0-256. Each corresponding 
decimal equivalent is padded to 3 bits of length 
(for instance, 3 is converted to 003, 52 is 
converted to 052, 145 is left as it is) and written 
into the file “CIPHER3.TXT”. 
 
Step 10: Some more salt please! 
 
The number of characters obtained from block 
ciphering the file “CIPHER3.TXT” needs to be a 
multiple of 2 for the next round of block 
ciphering. Since each character obtained from 
the previous file is being represented by 3 
numbers in “CIPHER3.TXT”, the length of 
“CIPHER3.TXT” must essentially be a multiple 
of 3. I’m making it a multiple of 2 by padding 
the end of the file with a zero. 
 

 
 
(I realized later that if suppose there are 2 
characters obtained from processing the file 
“CIPHER2.TXT”; that would hold true if it 
consisted of just 16 bits, then the number of 
characters in “CIPHER3.TXT” would be 6, 
which is already a multiple of 2. Thus, 
subsequent addition of a zero would ruin things 
up a little, by printing a garbage character at the 
end of the decrypted text. This minor bug shall 
be removed in the next version of the program) 
 
Step 11: Processing of Block Cipher – II 
 
The file “CIPHER3.TXT” is now sequentially 
read, but this time 2 bits at a time. Thus at each 
read operation, we essentially obtain an integer 
between 00 and 99. 33 is added to each number 
and the ASCII character corresponding resulting 
number is written into the file “CIPHER.TXT”. 
The basic issue was to avoid low range codes as 
they contain non-printable characters, escape key 
codes, line breaks, spaces etc.  
 
The cipher-text would then be compressed.  
 
The next version of the program would 
incorporate a final transposition ciphering 
function at this stage. I’m working on a 
transposition function that would play around 
with the values just obtained and side by side 
make sure that the transposed resultant wouldn’t 
violate the ‘avoiding a low ASCII code range’ 
condition. The output of the transposition 
function is dependent on the private key. Thus, it 
isn’t possible to uncompress without the key, 
even if the algorithm is made public and an 
eavesdropper has access to the compressed 
cipher-text. 
 
Thus the file “CIPHER.TXT” contains the cipher 
text corresponding to the contents of 
“PLAIN.TXT”. 
 

 
 



 
Sample Plaintext 
 
LZW Compression 
 
The LZW compression method maps strings of text characters into numeric 
codes. To begin with, all characters that may occur in the text file 
are assigned a code. For example, suppose the text file to be 
compressed is the string: 
    
 
     aaabbbbbbaabaaba 
 
 
The string is composed of the characters 'a' and 'b'. 'a' is assigned 
the code 0 and 'b' the code 1. The mapping between character strings 
and their codes is stored in a dictionary. Each dictionary entry has 
two fields: KEY and CODE. The character string represented by CODE is 
stored in the field KEY. 
 
Corresponding Cipher text 
 
[Note: Cipher text not compressed yet] 
 
6!V(]H7@l.]ƒ2iJ7,s3rt/"b!qƒ3|H4Tr2740Jt(Is+}/5+W7"„/^`(@o/UK7-O-
J„/Tt(5c/UN6{W#sD7@a!r?4iK5+X7"h/,b!r/0AK5+W#s<7@_(6•7}N5+W7#40r`5"?.iN
6^45Jt7@b!r/6AG5+W"6l/^c!|o1-;5+W7"„0Tc!|`3|^65W#}T0hc!s;1-
H5+X0_8.|b(]t.A96qW%UT0^b(6?5U96iP27H/,`/"O6AB6h42AT/^d!{$.AG6iO7"l/,t(
5#3|^7!W+sH7@_(6•7}N5+W/#8/hc"6O-
}L6^/8_X/"`.]#0AH6^32AT0rt(6_3U>6^/"AT3Ta.hp.A=7?W:7(/@a(6€3,^7-
P3rx/@a.h_/T^7!W+sH7@_(6•7}N5+W/#8/hc"6O6AG5+W5KH7@d.]ƒ2iJ7,s3rt/"c!s,.
AA7-K8^h0,c"6O5-N7,s-J€06n5]T$@E4T-(gt9^z"I$$@E6h3:7X0hd5"o/-
<6hs:7X0hd!r?/-94Tm(gt2,b(6€.AK7!X5K8/Tc/"O1-K5+W7"„/^`(5ƒ5-
=6]S8^„0@t(A+1U=5+W7#40r`5"?.iN6^45Jt7@s.^@0@^6h3"7D7@s.^p0@l5+S0_X6^t(
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Disclaimer 
 
This project, for me, is an ongoing process of 
learning; and like any other open source project, 
would claim to remain ‘under development’ till 
the end of time! The next version of my program 
would incorporate the following points I 
currently have in mind: 
 
Compressing data after encryption to reduce 
redundancy and provide more immunity to 
frequency analysis attacks 
 
Longer key length (so that a brute force attack 
would theoretically take longer than the age of 
the universe to complete) 
 
Applying more randomization functions on the 
data obtained after calculating keyboard latency 
in order to make the process of key generation 
even more secure 
 
Performing modular (clocked) arithmetic 
operations for key generation 
 
Use a transposition ciphering function after the 
process of whitening and multiple block 
ciphering 
 
Minor bug fixes, as discussed above 
 
A ‘Terminate and Stay Resident’ version would 
make it possible to read the encrypted file in 
DOS and transfer its contents to the Windows 
Clipboard. This is done by playing around with 
hardware interrupts at the OS level. 
 
Another side project that I have initiated is 
making a TSR version of the program. This 
would make it highly inter-portable between 
Windows & DOS. My aim was to code in C++ 
(DOS based, not the Windows based VC++) but 
still make it possible for a user to “Ctrl. + V” the 
encrypted message into his browser when he 
arrives at the ‘Compose Message’ screen. This 
would eliminate the need to send the cipher-text 
as an attachment, thus making the entire process 
more convenient. 
 
Since the instant messaging server is being 
developed on a Linux platform, coding a Linux 
based version of the cryptosystem wouldn’t hurt 
either. Further ideas about the client-server 
model would be discussed in the presentation. 
 

“Those who claim to have an unbreakable 
cipher simply because they can’t break it are 
either geniuses or fools. Unfortunately, there are 
more of the latter in the world.” 
 
Wireless Security: A short note 
 
The IEEE 802.11b standard uses WEP (Wired 
Equivalent Protocol) to send packets over a 
wireless network that are converted into a format 
equivalent to the regular Ethernet packets. The 
catch is that the moment a wireless base station 
is connected to the Ethernet, all the traffic on the 
Ethernet suddenly appears on the wireless 
interface (exceptions might arise, but this would 
certainly hold true in case of a non-switched 
topology). This is similar to the case where a 
LAN Interface can be set to ‘promiscuous mode’ 
thus making it possible to intercept packets that 
are not intended to arrive at that interface. 
 
What this boils down to is that if I take my 
laptop to the basement of your office that uses a 
Wireless LAN, and if your DHCP server permits 
an additional node to be added to the network 
(your administrator didn’t consider defining IP 
Leases!), or if it were possible that my laptop got 
assigned an IP address under the same subnet as 
that of the wireless network, I could then simply 
run a network analyzing utility on my laptop and 
filter out packets and be able read plain text 
mails traveling within and out of your office’s 
network. Sounds cool doesn’t it? By the way, the 
same would hold true for being able read chat 
sessions (though messengers aren’t permitted to 
be installed in an ideal office environment!). 
 
Now that’s what happens when you simply ‘plug 
and play’ your brand new wireless station, with 
the security options turned off as factory 
defaults. That’s what happens at MTNL! 
 
RSA Security came out with algorithms such as 
the RC2, RC4, RC5 that are used to encrypt 
packets flowing across a wireless network. The 
base station and the node share a secret key 
which is used for encryption/decryption of 
packets [4].  
 
To sum up, wireless security is yet another 
discussion altogether, and of course, is out of the 
scope of this paper. 
 
 
 
 



Software implementation 
 
For those avid cryptographers who don’t find my 
results convincing but are still curious about 
what this is all about, here’s an encrypted version 
of my programs source code: 
  
http://ashishanand2.tripod.com/s
ource/source.zip 
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