
ABSTRACT

Application Level Cryptography

Combinational Stream & Block Ciphering Using Double Encryption Algorithms
Ashish Anand

Computer Science Engineering
Maharishi Dayanand University, India

ashishanand25@gmail.com

Scenario:

• Mails sent from a browser (using Yahoo! etc.) are broken down into TCP packets that
contain the body as plain text.

• Instant messages sent using clients (MSN, Yahoo! messenger etc.) are also sent as plain
text.

Vulnerability:

• TCP packets can be intercepted by monitoring the originating interface or by having
access to any of the routers that they pass through. Privacy loses its charm when even
your ISP can easily monitor all your data.

• Sad but true, inspite of using decent hardware (3Com HiperARC Dial-In PPP RASs’)
ISP’s like MTNL have proved to show oblivion towards elementary security measures.

My work:

• I successfully managed to access most of their routers and monitor each interface, thus
enabling me to view mails & chat sessions. The best part is that they can’t sue me for
this!

• In the process of coding a Linux based server in C++ using secure TCP/IP sockets
• Developing a TSR application with Windows-DOS inter-portability to make available

cipher-text in Windows Clipboard
• Key generation by measuring keyboard latency & tracking mouse movements. Technique

is immune to physical attacks. Statistical study verifies randomness of technique used.
Working on making key generation even more secure.

• “Private key” transfer using “public key”
• New “Session Key” after random time intervals, generated from the IM
• Modified IDEA & DESX standards to develop a simpler, faster, yet secure ciphering

technique using whitening, transposition, block & stream ciphering, and compression
algorithms.

• Resistance to brute force attacks.

Real time working of all concepts would be demonstrated…

(250 Words)

Application Level Cryptography
Combinational Stream & Block Ciphering Using Double Encryption Algorithms

Ashish Anand

Maharishi Dayanand University, India
E-mail: ashishanand25@gmail.com

“If I take a letter, lock it in a safe, hide the safe
somewhere in New York, then tell you to read the
letter, that’s not security. That’s obscurity. On
the other hand, if I take a letter and lock it in a
safe, and then give you the safe along with the
design specifications of the safe and a hundred
identical safes with their combinations so that
you and the world’s best safecrackers can study
the locking mechanism – and you still can’t open
the safe and read the letter – that’s security!” [1]

Fig. 1. Basic Cryptography [7]

In addition to providing confidentiality,
cryptography is often asked to do other jobs [1]:

Authentication: It should be possible for the
receiver of a message to ascertain its origin; an
intruder should not be able to masquerade as
someone else.

Integrity: It should be possible for the receiver
of a message to verify that it has not been
modified in transit; in intruder should not be able
to substitute a false message for a legitimate one.

Nonrepudiation: A sender should not be able to
falsely deny later that he sent a message.

This paper is inclined primarily towards the
integrity aspect of a successful cryptosystem.

Algorithms & Keys

A cryptographic algorithm, also called a cipher,
is the mathematical function used for encryption
and decryption. If the security of an algorithm is
based on keeping the way that algorithm works a
secret, it is a restricted algorithm. Restricted
algorithms are woefully inadequate by today’s
standards. A large or changing group of users

cannot use them, because every time a user
leaves the group, everyone else must switch to a
different algorithm. If someone accidentally
reveals the secret, everyone must change their
algorithm.

Modern cryptography solves this problem with a
key. All of the security in key based algorithms
is based in the key (or keys); none is based in the
details of the algorithm. This means that the
algorithm can be published and analyzed.
Products using the algorithm can be mass
produced. It doesn’t matter if an eavesdropper
knows your algorithm; if he doesn’t know your
particular key, he can’t read your messages.

“If privacy is outlawed, only outlaws will have
privacy…”

Choosing an algorithm

When it comes to evaluating and choosing
algorithms, people have several alternatives:

1. They can chose a published algorithm, based
on the belief that a published algorithm has been
scrutinized by many cryptographers; if no one
has broken the algorithm yet, then it must be
pretty good

2. They can trust a manufacturer, based on the
belief that a well-known manufacturer has a
reputation to uphold and is unlikely to risk that
reputation by selling equipment or programs
with inferior algorithms.

3. They can trust a private consultant, based on
the belief that an impartial consultant is best
equipped to make a reliable evaluation of
different algorithms.

4. They can trust the government, based on the
belief that the government is trustworthy and
wouldn’t steer its citizens wrong.

5. They can write their own algorithms, based on
the belief that their cryptographic ability is
second-to-none and that they should trust nobody
but themselves.

How I decided to design my own algorithm
considering the above mentioned:

1. The DES (Digital Encryption Standard) and
IDEA (International Data Encryption Standard)
are the most popular patented algorithms around
today. I chose a much simpler and thus faster
implementation of a combination of what these
algorithms do, including whitening,
transposition, block and stream ciphering
resulting in the evolution of an inherited version
of the DES variations (DESX) and IDEA used in
PGP. Thus besides originality, elements of
something widely published make the project
qualitative.

2. Trusting a manufacturer would mean
purchasing a hardware implementation.
Practically speaking, one man alone (me); cannot
design an implementation of this magnitude, so
the second option was ruled out.

3. Hiring a private consultant seems feasible, but
cryptography is not my profession, I haven’t
dedicated my life to it either. You’re probably
insane if you’re expecting someone to come up
with a radical new idea all by himself and I’d
rather not say why!

4. The Indian Government is hardly involved in
such projects on a scale comparable to the US or

the Europeans. Besides, this project is not
intended to be implemented on a scale so large
that it would require the intervention of a nations
Government.

5. Writing my own algorithm…sounds fun,
though the decision is certainly not based on the
belief that my ability is second-to-none and that I
don’t trust anyone but myself!

“Don’t worry that you’re reinventing the wheel
all over again, that’s what learning is all
about…!”

Compression & Encryption

Using a data compression algorithm together
with an encryption algorithm makes sense for
two reasons:

1. Cryptanalysis relies on exploiting
redundancies in the plaintext; compressing a file
before encryption reduces these redundancies

2. Encryption is time -consuming; compressing a
file before encryption speeds up the entire
process

The important thing to remember is to compress
before encryption. If the encryption algorithm is
any good, the cipher-text will not be
compressible; it will look like random data. (This
makes a reasonable test of an encryption
algorithm; if the cipher-text can be compressed,
then the algorithm probably isn’t very good).

Table 1. Observations upon encrypting a sample text file without any
compression using the program I developed

Size of Plain Text: 16,947 43,843
Size of Zipped Plain Text: 5,045 14,485
*Percentage Compression of Plain Text: 71% 67%

Size of Cipher Text: 29,923 80,143
Size of Zipped Cipher Text: 11,833 29,000
*Percentage Compression of Cipher Text: 61% 64%

$Ratio of Cipher Text & Plain Text: 1.76 1.82
^Ratio of Cipher Text & Plain Text: 2.34 2.00

$Before Compression
^After Compression
*Compression using WinZip 8.1

The catch here is that the input text consisted of
the source code of my program, which has about
1000 line breaks. Combine that with multiple
repetitions of keywords like cout, printf, get,
read, write and so on, and you have more
redundancies than one could imagine. More the
redundancies, greater is the compression.

In a way, this means that there are no bounds to
the range of the input character set (by no
bounds, I mean that it ranges across the entire
ASCII character set; codes 0-255). Now that’s at
least about 200 different symbols for any
conventional input stream. But after the second
round of my block ciphering algorithm, I’m
limiting the output cipher text to an ASCII
character set ranging from codes 33 – 132, that’s
just about 100 different symbols . This leads to
one observation and one question:

There would be a lot of character repetitions in
the resulting cipher text. Imagine representing
16,947 (~17,000) characters consisting of 200
different symbols using a character set of just
100 symbols. No wonder the size of the cipher
text is almost twice as that of the plain text!

Which one of the following ideal cases would
lead to greater compression?

Compressing an input plain text of 200
characters in which each symbol is
unique (because it uses the 0-255 range,
with some exceptions)

Compressing an input plain text of 200
characters in which at least 100 symbols
are unique (33-132) and each symbol
occurs exactly twice

If you couldn’t already guess, it’s the latter.
Better still, a practical examp le would verify that
symbol occurrences would actually be more than
twice, thus leading to even great amounts of
compression.

What conventional block ciphers don’t do is
limit their output to a smaller character set. And
that’s exactly what I’ve done. Thus, I’m
purposely compressing after encryption, rather
than the other way round. One may argue that if
the entire algorithm is intended to be made
public, then compressing the data wouldn’t add
to security as an eavesdropper could uncompress
it to obtain the cipher text with all the
redundancies. Now that would be undesirable.

To overcome this issue, I decided to treat the
compressed data with a transposition function
that would take the private key as an argument.
Thus without the key, it would be impossible to
uncompress the cipher-text.

IDEA - Block Cipher Algorithm

The first incarnation of the IDEA cipher, by
Xuejia Lai and Kames Massey, surfaced in 1990.
It was called PES (Proposed Encryption
Standard). After subsequent strengthening of the
algorithm, it was renamed to IDEA (International
Data Encryption Algorithm) in 1992. IDEA is
patented in Europe and the United States; the
patent is held by Ascom-Tech AG.

IDEA’s key length is 128 bits. Assuming that a
brute force attack is the most efficient, it would
require 2128 (1038) encryptions to recover the key.
Design a chip that can test a billion keys per
second and throw a billion of them at the
problem, and it will still take 1013 years – that’s
longer than the age of the universe. An array
of 1024 such chips can find the key in a day, but
there aren’t enough silicon atoms in the universe
to build such a machine.

This remarkable observation about this algorithm
prompted me to devise a software
implementation of something similar, but
something that would work much faster, since
IDEA uses 8 rounds of XOR and modular
addition and multiplication operations along with
52 sub keys derived from the 128 bit key. I cut it
down to just one round of XOR operations,
while using just 2 sub keys derived from a single
10 bit key. Though increasing the key length to
about 32 or 64 bits wouldn’t hurt, I shall stick to
just one round of XOR operations. (Inspite of
this simplification, encryption seems to remain a
slow process for comparatively large amounts of
data, as well as theoretically much less secure.
But my implementation is obviously not
intended to aim at achieving a Patent or
anything, and the outputs produced from my
program will appear secure enough to be
implemented on a personal basis as well as
within internal networks of an organization).

As already stated, one may keep adding rounds
and rounds of complexity to your algorithm, but
the power of your cryptosystem depends more on
how you generate the key.

Some concepts involved

Transposition Ciphers [Dis cussed later]
Whitening

Whitening is the name given to the technique of
XORing some key material with the input to a
block algorithm, and XORing some other key
material with the output. This was first done in
the DESX variant developed by RSA Data
Security, Inc.

C = K3 V EK2(M V K1)
M = K1 V DK2(C V K3)

Measuring Keyboard Latency

People’s typing patterns are both random and
nonrandom. They are nonrandom enough that
thy can be used as a means of identification, but
they are random enough that they can be used to
generate random bits. Here’s what I did:

Measure the time between successive keystrokes,
then take the least significant bits of those
measurements. These bits are going to be pretty
random. This technique may not work on a
UNIX system, since the keystrokes pass through
filters and other mechanisms before they get to
the program, but it will work just fine in a
DOS/Windows environment.

Next, find the sum of these random numbers.
Divide it by another random number between 1 –
11 generated by the C++ internal randomize()
function. If this number is greater than 5, then
divide the sum by this number, else multiply the
sum with it.

Calculate the 10-bit binary of the result and use it
as the private key.

Other sources of obtaining random data [1]:

• The sector number, time of day, and
seek latency for every disk operation

• Actual mouse position
• Number of current scan line of monitor
• Contents of the actually displayed

image
• Sizes of FATs, kernel tables, and so on
• CPU Load
• Arrival times of network packets
• Input from a microphone (noise)

“Random Number Generators in your Compiler
are NOT a source of randomness…!”

Statistics

During the program testing phase, the random
key generator's results at each run were recorded,
based on the typing patterns of a number of
different users. 5 different users were made to
generate 20 keys each, and the total number of
keys (100), were entered into a database for
further analysis.

Each user's data set was filtered out to obtain the
number of repetitions in the 20 keys generated.
The efficiency of my technique was obtained by
dividing the number of unique keys generated
with the total number of keys generated.
Individual efficiencies for each user's data were
calculated, along with the average efficiency of
the entire key generation algorithm. Some users
were made to type different strings each time,
while others were asked to monotonously repeat
the same string each time.

Table 2. Key Generation Statistics

 USER 1 USER 2 USER 3 USER 4 USER 5
KEY 01: 0000011100 0000101111 0010110110 0110011000 0000110111
KEY 02: 0000111101 1101001010 0000111100 0001011001 0011000000
KEY 03: 0010111011 0000011111 0000101101 1100011100 0000111100
KEY 04: 0101101101 1110011000 0000110001 0100101101 1111010110
KEY 05: 0000110010 1100010100 1110111110 0000111111 0000111110
KEY 06: 0000101100 0001000000 1101101010 0000101001 0000111100
KEY 07: 1011010010 0001000000 0000101010 1110100100 0000101001
KEY 08: 0001010110 0101011010 0001000110 0001000101 0101011000
KEY 09: 1111111100 0001001111 0001001111 0110110000 0100110110
KEY 10: 0000111011 0000111000 0001011001 0000111001 0000100100
KEY 11: 0001111000 0111101100 0001000001 0000101101 0000100110
KEY 12: 0000101001 0000100000 0011110100 0110110101 0000110101
KEY 13: 0111011010 0001011010 0000110110 1110100000 0001001110
KEY 14: 0001101010 0000100000 1101101100 0000111001 0000111111
KEY 15: 0000110001 1001011111 1101001100 0000111100 0000101111
KEY 16: 0000111010 0001001011 0001001011 0100111000 0110010100
KEY 17: 0000111010 0001010011 0001000110 0000111011 0011110100
KEY 18: 1110011110 0111001110 0000111011 0000011010 0011001100
KEY 19: 0000100111 0000101000 0000111000 0000111010 0001001101
KEY 20: 0001000111 0100001100 1101100110 0101100101 0000101001
INPUT
STRING Same Same Different Different Different
REPEATS 1 Repeat 2 Repeats 1 Repeat 1 Repeat 2 Repeats
EFFICIENCY 95% 90% 95% 95% 90%

If all 100 items are filtered, 23 repetitions are found. This implies
an average efficiency of 77%

PGP – Pretty Good Privacy

“If all the personal computers in the world—260
million—were put to work on a single PGP-
encrypted message, it would still take an
estimated 12 million times the age of the
universe, on average, to break a single
message.”

PGP is an e-mail security program written by
Phil Zimmermann, based on the IDEA algorithm
for encryption of plaintext and uses the RSA
Public Key algorithm for encryption of the
private key.

Fig. 2. The details of how PGP works, is out of the scope of this document [6]

PGP uses a pass phrase to encrypt your private
key on your machine. You use the pass phrase to
decrypt and use your private key. A pass phrase
should be hard for you to forget and difficult for
others to guess. It should be something already
firmly embedded in your long-term memory,
rather than something you make up from scratch.
Why? Because if you forget your pass phrase,
the game’s over! Your private key is totally and
absolutely useless without your pass phrase and
nothing can be done about it. PGP is
cryptography that will keep major governments
out of your files. It will certainly keep you out of
your files, too!

Sounds pretty neat! Top that up with the fact that
it’s all Open Source, which has it’s own plethora
of advantages which we don’t want to get into
right now.

PGP Vulnerabilities

Fake PGP: Since it’s all open source, there are
fake versions of the famous software floating
about the net. Unless you’re sure that your copy
of the program is from a trusted source, it
wouldn’t be surprising to realize one day that
your pass phrase was sent to an attacker via e-
mail the moment you went online! Once he has
your pass phrase, he has your private key. Key
transfer using public key cryptography is useless
after this point.

Tempest attacks: Another kind of attack that
has been used by well-equipped opponents
involves the remote detection of the
electromagnetic signals from your computer.

This expensive and somewhat labor-intensive
attack is probably still cheaper than direct
cryptanalytic attacks. An appropriately
instrumented van can park near your office and
remotely pick up all of your keystrokes and
messages displayed on your computer video
screen. This would compromise all of your
passwords, messages and so on. This attack can
be thwarted by properly shielding all of your
computer equipment and network cabling so that
it does not emit these signals. This shielding
technology, known as ‘tempest’ is used by some
government agencies and defense contractors.
There are hardware vendors who supply tempest
shielding commercially.

Keyloggers: Consider a keystroke recorder
logging your pass phrase and emailing it to an
eavesdropper. What’s the purpose of complex
algorithms and 128 bit public keys when your
own private key is in someone else’s hands?

My program overcomes this issue with the
mere fact that the only input the user will provide
to the system are a bunch of random keystrokes
for key generation. Any sensitive pass phrase or
the private key is never “typed” by the user.
There’s no question of encrypting the key and
storing it locally. I’m essentially using a different
key for each transaction. Since it’s a one time
session key, it gets erased from the memory the
moment the encryption operation is completed.
(Whether the key is physically; actually; erased
from the hard disk or not – is another issue,
which may be exploited by data recovery
packages; but then, this issue exists in PGP as
well, and besides, clearing out swap files or

overwriting on virtual memory…is not what my
project is about!).

Given below is an outline of the algorithm for
the system I designed:

Step 1: Processing of Plain Text

Read input file “PLAIN.TXT” sequentially (bit
by bit) and generate it’s binary output. Since the
ASCII Character Set consists of 256 characters
(0-255), it follows that 8-bits are required to
represent each character in its binary form. (28 =
256)

Step 2: Addition of One Time Pads

Pad each binary number with subsequent zero’s
towards the Most Significant Bit (MSB) until the
total number of the binary bits equals ten. This is
required as the binary data is being encrypted
using a 10-bit private key. Output is saved in file
“BINARY.TXT”.

Step 3: Key Generation By Measuring Keyboard
Latency

Take random input data from the keyboard. The
time difference between each keystroke serves as
an excellent source of randomness. The beauty of
encryption lies not in the complexity of its
algorithm, but how the key is generated. My key
generation technique is based on a function that
sums the millisecond field’s value of the time
difference between each keystroke and either
divides or multiplies the sum with another
random number generated based on its
magnitude and converts the final output into a
10-bit binary that is used as the private key. This
key is saved in another file “PVTKEY.TXT” in
binary form for future reference.

Step 4: Encrypting Plain Text (Phase I: Stream
Ciphering)

Each 10-bit binary block is sequentially read
from “BINARY.TXT” and XORed with the 10-
bit key as read from “PVTKEY.TXT”. The
resulting 10-bit data is stored in “XOR.TXT”.
This process is often referred to as whitening.

Step 5: Addition of Salt

We shall be using 16-bit long blocks of data
during the second round of encryption. Hence
the number of bits in “XOR.TXT” must
essentially be an integral multiple of 16. For this
purpose, n-bits of 0’s are padded at the end of
“XOR.TXT” where ‘n’ is calculated by the
following formula:

n = 16-[{(count-1)*10}%16]

where,
(count-1): represents the number of characters in
plain text
* : represents ordinary multiplication
% : represents remainder after ordinary
division

To make matters more complex, one may add
salt values other than a continuous stream of
zeros. Having another function to decide what
salt values to use, based on the value of ‘n’
generated from the above mentioned formula
wouldn’t hurt, although this change would
require alterations in the proceeding steps. I
would probably incorporate this, in the next
version of my program.

Step 6: Generation of Sub-Keys for Block
Ciphering

Two sub-keys K1 and K2 are generated using the
private key. The first 2 bits from the MSB of the
Private Key are discarded. The remaining 8 bits
are complemented and saved as K1. The contents
of K1 are reversed to obtain K2. Agreed this
means of generating sub-keys is lame. But it’s no
big a deal complicating this function, and would
be taken care of, in the next version.

Step 7: Division of Stream Cipher into blocks for
double encryption

The number of bits in the file “XOR.TXT” are
now divisible by 16. Blocks of 16-bits are
processed sequentially. Each 16-bit block is
divided into two equal halves X1 and X2.

Binary Data 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0
Element
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sub-Block
Number X1 X2
Block Number 1

Fig. 3. Diagram showing 1 block of length 16-bits being sub-divided into X1 &
X2, each 8-bit long

Step 8: Encrypting Stream Cipher (Phase II:
Block Ciphering)

The following operations are performed using
X1, X2, K1 and K2 and the result is stored in
“CIPHER2.TXT”

Y1 = X1 V K1
Y2 = X2 V K2

where,
V : represents XOR operation

Y1 and Y2 are concatenated to obtain a 16-bit
binary block. This process is applied on the
entire stream cipher.

Step 9: Processing of Block Cipher - I

The length of the binary file “CIPHER2.TXT” is
essentially a multiple of 16. Thus it is implied
that it is also a multiple of 8. Now we
sequentially read 8-bits at a time and convert
each 8-bit number into its decimal equivalent.
The value of the decimal equivalent will always
range between 0-256. Each corresponding
decimal equivalent is padded to 3 bits of length
(for instance, 3 is converted to 003, 52 is
converted to 052, 145 is left as it is) and written
into the file “CIPHER3.TXT”.

Step 10: Some more salt please!

The number of characters obtained from block
ciphering the file “CIPHER3.TXT” needs to be a
multiple of 2 for the next round of block
ciphering. Since each character obtained from
the previous file is being represented by 3
numbers in “CIPHER3.TXT”, the length of
“CIPHER3.TXT” must essentially be a multiple
of 3. I’m making it a multiple of 2 by padding
the end of the file with a zero.

(I realized later that if suppose there are 2
characters obtained from processing the file
“CIPHER2.TXT”; that would hold true if it
consisted of just 16 bits, then the number of
characters in “CIPHER3.TXT” would be 6,
which is already a multiple of 2. Thus,
subsequent addition of a zero would ruin things
up a little, by printing a garbage character at the
end of the decrypted text. This minor bug shall
be removed in the next version of the program)

Step 11: Processing of Block Cipher – II

The file “CIPHER3.TXT” is now sequentially
read, but this time 2 bits at a time. Thus at each
read operation, we essentially obtain an integer
between 00 and 99. 33 is added to each number
and the ASCII character corresponding resulting
number is written into the file “CIPHER.TXT”.
The basic issue was to avoid low range codes as
they contain non-printable characters, escape key
codes, line breaks, spaces etc.

The cipher-text would then be compressed.

The next version of the program would
incorporate a final transposition ciphering
function at this stage. I’m working on a
transposition function that would play around
with the values just obtained and side by side
make sure that the transposed resultant wouldn’t
violate the ‘avoiding a low ASCII code range’
condition. The output of the transposition
function is dependent on the private key. Thus, it
isn’t possible to uncompress without the key,
even if the algorithm is made public and an
eavesdropper has access to the compressed
cipher-text.

Thus the file “CIPHER.TXT” contains the cipher
text corresponding to the contents of
“PLAIN.TXT”.

Sample Plaintext

LZW Compression

The LZW compression method maps strings of text characters into numeric
codes. To begin with, all characters that may occur in the text file
are assigned a code. For example, suppose the text file to be
compressed is the string:

 aaabbbbbbaabaaba

The string is composed of the characters 'a' and 'b'. 'a' is assigned
the code 0 and 'b' the code 1. The mapping between character strings
and their codes is stored in a dictionary. Each dictionary entry has
two fields: KEY and CODE. The character string represented by CODE is
stored in the field KEY.

Corresponding Cipher text

[Note: Cipher text not compressed yet]

6!V(]H7@l.]ƒ2iJ7,s3rt/"b!qƒ3|H4Tr2740Jt(Is+}/5+W7"„/^`(@o/UK7-O-
J„/Tt(5c/UN6{W#sD7@a!r?4iK5+X7"h/,b!r/0AK5+W#s<7@_(6•7}N5+W7#40r`5"?.iN
6^45Jt7@b!r/6AG5+W"6l/^c!|o1-;5+W7"„0Tc!|`3|^65W#}T0hc!s;1-
H5+X0_8.|b(]t.A96qW%UT0^b(6?5U96iP27H/,`/"O6AB6h42AT/^d!{$.AG6iO7"l/,t(
5#3|^7!W+sH7@_(6•7}N5+W/#8/hc"6O-
}L6^/8_X/"`.]#0AH6^32AT0rt(6_3U>6^/"AT3Ta.hp.A=7?W:7(/@a(6€3,^7-
P3rx/@a.h_/T^7!W+sH7@_(6•7}N5+W/#8/hc"6O6AG5+W5KH7@d.]ƒ2iJ7,s3rt/"c!s,.
AA7-K8^h0,c"6O5-N7,s-J€06n5]T$@E4T-(gt9^z"I$$@E6h3:7X0hd5"o/-
<6hs:7X0hd!r?/-94Tm(gt2,b(6€.AK7!X5K8/Tc/"O1-K5+W7"„/^`(5ƒ5-
=6]S8^„0@t(A+1U=5+W7#40r`5"?.iN6^45Jt7@s.^@0@^6h3"7D7@s.^p0@l5+S0_X6^t(
5#5,^6h47"t0"c.^//U>5+X2740Jt(6_3U>6^/8hx7@d!r//|^5#O5U@7@_(53/T^6iO#sD
0Jt(h@3|^65W+sH7@a!r?4iJ6|3"7@7@d5"•6AO6^33r€7@d.]3-}L6h37"h0J`5JO5-
N7,s-J€06`/"O-}H6]S8^h0,c!q#5T^6iO#sD0J`/"O1-
K5+X7"h/J`5"•/|^6|3"AT0rt(7+1-;7!W-
J„/Td!|o7Tl5+U3sX0^b(^O/}A6iP278/Ja5"?5UQ5+W3r€.|`5+$.AB6h47-
T.|_.]„.A@6|33s$0T`/+T.A#5r2-
UT0ra5#,.@•6#M26,5|t(U+1U=5+W7#40r`5"?.iN6^45UT/"_(@o1-
H6_K8^p0J`(@o/UK6^3"6h0Jc(^O/-Q5+U7!h3hk"6O1-
K5+X7"h/,a.^•/|^6|3"AT.|b(6€.A@6|33s$0Tt(IC"i156p*

Private Ke y Used

Disclaimer

This project, for me, is an ongoing process of
learning; and like any other open source project,
would claim to remain ‘under development’ till
the end of time! The next version of my program
would incorporate the following points I
currently have in mind:

Compressing data after encryption to reduce
redundancy and provide more immunity to
frequency analysis attacks

Longer key length (so that a brute force attack
would theoretically take longer than the age of
the universe to complete)

Applying more randomization functions on the
data obtained after calculating keyboard latency
in order to make the process of key generation
even more secure

Performing modular (clocked) arithmetic
operations for key generation

Use a transposition ciphering function after the
process of whitening and multiple block
ciphering

Minor bug fixes, as discussed above

A ‘Terminate and Stay Resident’ version would
make it possible to read the encrypted file in
DOS and transfer its contents to the Windows
Clipboard. This is done by playing around with
hardware interrupts at the OS level.

Another side project that I have initiated is
making a TSR version of the program. This
would make it highly inter-portable between
Windows & DOS. My aim was to code in C++
(DOS based, not the Windows based VC++) but
still make it possible for a user to “Ctrl. + V” the
encrypted message into his browser when he
arrives at the ‘Compose Message’ screen. This
would eliminate the need to send the cipher-text
as an attachment, thus making the entire process
more convenient.

Since the instant messaging server is being
developed on a Linux platform, coding a Linux
based version of the cryptosystem wouldn’t hurt
either. Further ideas about the client-server
model would be discussed in the presentation.

“Those who claim to have an unbreakable
cipher simply because they can’t break it are
either geniuses or fools. Unfortunately, there are
more of the latter in the world.”

Wireless Security: A short note

The IEEE 802.11b standard uses WEP (Wired
Equivalent Protocol) to send packets over a
wireless network that are converted into a format
equivalent to the regular Ethernet packets. The
catch is that the moment a wireless base station
is connected to the Ethernet, all the traffic on the
Ethernet suddenly appears on the wireless
interface (exceptions might arise, but this would
certainly hold true in case of a non-switched
topology). This is similar to the case where a
LAN Interface can be set to ‘promiscuous mode’
thus making it possible to intercept packets that
are not intended to arrive at that interface.

What this boils down to is that if I take my
laptop to the basement of your office that uses a
Wireless LAN, and if your DHCP server permits
an additional node to be added to the network
(your administrator didn’t consider defining IP
Leases!), or if it were possible that my laptop got
assigned an IP address under the same subnet as
that of the wireless network, I could then simply
run a network analyzing utility on my laptop and
filter out packets and be able read plain text
mails traveling within and out of your office’s
network. Sounds cool doesn’t it? By the way, the
same would hold true for being able read chat
sessions (though messengers aren’t permitted to
be installed in an ideal office environment!).

Now that’s what happens when you simply ‘plug
and play’ your brand new wireless station, with
the security options turned off as factory
defaults. That’s what happens at MTNL!

RSA Security came out with algorithms such as
the RC2, RC4, RC5 that are used to encrypt
packets flowing across a wireless network. The
base station and the node share a secret key
which is used for encryption/decryption of
packets [4].

To sum up, wireless security is yet another
discussion altogether, and of course, is out of the
scope of this paper.

Software implementation

For those avid cryptographers who don’t find my
results convincing but are still curious about
what this is all about, here’s an encrypted version
of my programs source code:

http://ashishanand2.tripod.com/s
ource/source.zip

References

[1] Applied Cryptography – Bruce Schneier
[2] D. Balenson, Feb. 1993. RFC#1423: Privacy

Enhancement for Internet Electronic Mail:
Part III: Algorithms, Modes, and
Identifiers - Network Working Group

 [3] D. Comer, D. Stevens, Internetworking with
TCP/IP (Client - Server Programming &
Applications)

[4] A. S. Tanenbaum, Computer Networks
[5] RFC#2440: OpenPGP Message Format
[6] www.pgp.com, www.openpgp.org

