�- Simple Nomad - -�- thegnome@nmrc.org <mailto:thegnome@nmrc.org> - No rest for the Wicca'd -�- www.nmrc.org <http://www.nmrc.org> - -��--------< Strategies for Defeating Distributed Attacks��-----------< Simple Nomad�-----------< thegnome@nmrc.org <mailto:thegnome@nmrc.org> - Nomad Mobile Research Centre�-----------< thegnome@bos.bindview.com <mailto:thegnome@bos.bindview.com> - BindView RAZOR Team���--------< Abstract��With the advent of distributed Denial of Service (DoS) attacks such as �Trinoo, TFN, TFN2K and stacheldraht [1], there is an extreme interest in �finding solutions that thwart or defeat such attacks. This paper tries to �look not just at distributed DoS attacks but distributed attacks in general. �The intent is not to devise or recommend protocol revisions, but to come �up with useable solutions that could be implemented at a fairly low cost.�This paper is also written with the idea that probably 90% of the problems�surrounding distributed attacks can be easily solved, with the last 10%�requiring some type of long-range strategies or new code to be written.���--------< Basics About Attack Recognition��How does one recognize an attack? Not just a Denial of Service attack, but�any attack? Before we can start applying solutions, we need to have a�discussion of attack recognition techniques. So let's first look at the �two main methods of attack recognition - pattern recognition and affect �recognition. ��Pattern recognition looks for a measurable quality of the attack in a �file, a packet, or in memory. Looking for file size increases of 512 bytes�or seeing a certain byte sequence in RAM are two simple examples of�pattern recognition. Looking for the string "phf.cgi" in web traffic might�be a simple method used by a network-based Intrusion Detection System�(IDS). ��Effect recognition is recognizing the effects of an attack. An example�might be specific log file entries, or an "unscheduled" system reboot.��In intrusion detection, pattern recognition is the only method used by�network-based IDS, while both pattern and effect recognition can be found�in host-based IDS. And herein lies the crux of the problem - attack�methods are calling for effect recognition methods to be applied to�network-based IDSes, and the technology just isn't there. See [2], [3].��Pattern recognition alone has problems to begin with. If a pattern that is�being checked for is altered by the attacker, such as a key word or byte�sequence, then the IDS will miss it. For over a year it has been common�knowledge that by dividing up an attack sequence into fragmented packets,�you can defeat most IDSes. In fact, a majority of commercial IDSes are�still unable to process fragmented IP packets [4].��Now couple this with the fact that effect recognition technology for �network-based IDSes is virtually non-existent, and you can see the problem.�If an attack is a one-time network event, your network-based IDS stands a�chance of detecting it, but a sustained series of network events will be�even more difficult to detect, especially if the events are disguised to�look like normal network traffic.��Distributed DoS attack tools such as stacheldraht will leave definite �patterns that can be searched out on the network. But attackers can modify�the source code of the tools, causing a different pattern to be produced.�If they do this, the IDS will not detect the new pattern.��What we need is an Overall Behavior Network Monitoring Tool, that can look�at logs on different systems from different vendors, sniff realtime �network traffic, and can logically determine bizarre or abnormal behavior�(and alert us). Unfortunately, there *is* no such tool, so we need to make�use of what tools we have (firewalls, IDS, etc) in a way that will thwart�or at least notify us about potential distributed network attacks.�We will discuss such strategies in this paper.���--------< Definition of the Attack Model��Before we start defining attack models, it should be noted that a number�of the attack models discussed here are theoretical. To prevent confusion�we will not differeniate between the two. Our discussion here centers�around the overall concept of a distributed attack, real and theoretical, �and tries to solve for the concept instead of specific attacks. ��There are two basic models of attack. In the first, the attacker does not �need to see the results. In the second, the attacker *does* need to see�the results. Distributed DoS attacks are good examples of attacks where�the attacker does not need to see the results, and since this simplifies�our attack model, we will examine that model first.��Distributed attacks have one interesting element in common. Typically �someone else's system is used to perform fairly critical tasks to meet the�objective. The flow of action is usually like so:��Figure 1:��*--------* *--------* *-------*�| | | | | |�| client |---->| server |---->| agent |�| | | | | |�*--------* *--------* *-------*��issues processes carries�commands command out commands�requests�to agents��There can be multiple servers, and hundreds of agents. The usual �deployment involves installing servers and agents on compromised systems,�in particular installing the agents on systems with a lot of bandwidth. To�help prevent detection and tracing back to the attacker directing the�activities, the act of issuing commands is typically done using�encryption, and by using ICMP as a transport mechanism.��With encryption, this helps at least hide the activities from active �sniffers being used by administrators, although it does not preclude �detection by other means. The packets used in part of the communications �by such products as TFN2K and stacheldraht can be encrypted, rendering �common viewing via a sniffer or IDS from casual detection of the rogue �packets.��While the model for hostile behavior that does not require viewing of the�results or "return packets" is in reality a little more complex than the�model I've outlined, the model for hostile behavior that *does* require�viewing of the results or "return packets" is a lot more complex [5]. For�the sake of brevity, we will only cover possible techniques that will help�hide the attacker's source address and/or use maximum stealth techniques,�including theoretical ones such as traffic pattern masking and upstream�sniffing [6].��We will divide up the more complex scenario of "the attacker seeing the �results" into three categories - enumeration of targets, host and host �service(s) identification, and actual penetration - and outline each �category.��Enumeration: This is the act of determining what hosts are actually �available for potential probing and attack. ��Enumeration example 1, figure 2:��*----------* *---------*�| | NMap forged ICMP_ECHO packets | |�| attacker |--------------------------------->| targets |�| | ---------------------| |�*----------* / *---------*�| /�ngrep target replies to forged source�| /�<--------------------��This first enumeration example is fairly simple - by sending forged �ICMP_ECHO packets, the attacker sniffs the replies destined for the forged�source address. This can be readily accomplished using tools such as NMap�[7] and ngrep [8] as long as the attacking host is upstream from the�target network.��Enumeration example 2, figure 3:�*---*�| f |�| i |�| r |�*----------* | e | *---------*�| | forged ICMP_TSTAMP packets | w | | |�| attacker |-----------------------------| a |-->| targets |�| | ----------------| l |---| |�*----------* / | l | *---------*�| / *---*�snort target replies to forged source(s)�| /�<--------------------��This second example of enumeration is also fairly simple. Assuming the �firewall is blocking ICMP_ECHO, we decide to send ICMP_TSTAMP packets with�forged addresses. Instead of ngrep in this example, we use an IDS product�called snort [9]. Snort is configured to capture the ICMP_TSTAMPREPLY�packets. Once again in this example we are assuming the attacking host is�upstream of the target network.��Now we move on to host and host service identification.��Host/Host Services Identification example 1, figure 4:��*---*�| f |�| i |�| r |�*----------* NMap forged source address | e | *---------*�| | with source port of 80 | w | | |�| attacker |-----------------------------| a |-->| targets |�| | ----------------| l |---| |�*----------* / | l | *---------*�| / *---*�snort target replies to forged source�| /�<--------------------��In figure 4, port and OS identification scans are done against targets �behind a firewall by taking advantage of the fact that SYN/ACKs with a �source port of 80 are allowed through. Mistaken as web traffic, the IDS �and the firewall are bypassed and the targets are scanned. Using a list of�valid hosts attained via host enumeration techniques, only valid targets �are scanned. By forging the source address, it helps hide the true source�of the scan. Reply packets are recovered via snort.��Figure 4 outlines a poorly configured firewall (or even a simple packet �filtering ruleset on a router), so we will look at something a little more�sophisticated.��Host/Host Services Identification example 2, figure 5:��*---------*�| |�/->| master |-----------�| | | \�| *---------* |�| | | |�| | v v�| *---------* *---------*�| | | | | �| | client1 |-- | client2 |--�| | | \ | | \ *---*�| *---------* \ *---------* \ | f |�| | \ \ | i |�| v \ \ | r | *---------*�| *---------* \ -----| e |-->| |�| | | ----------------------| w |-->| various |�| | client3 |-----------------------------| a |-->| targets |�| | | ----------------| l |---| |�| *---------* / | l | *---------*�| / *---*�| *---------* target replies to forged sources�| | | /�\->| sniff |--------/ �| | /�*---------* /�/�<------------------�/�<----------------�/�<--------------��Figure 5 is one of the more complex models. This involves multiple clients�directed by a master, performing slow methodical port scans of the target�network. All of the port scans are using forged addresses from trusted�sources whose IP addresses are allowed through the firewall. An upstream�sniffer captures the replies. The clients and sniffer could even reside on�hosts belonging to the trusted sources, and perhaps even be allowed�through a VPN. This type of scenario is rather complex due to the lack of�custom software need to perform the scans, although various existing�products could be modified to handle most of the elements involved.��When discussing actual attacks, in particular distributed attacks, the �best path into a network is the path you know works. Therefore the main �line of attack will more than likely involve Figures 4 and 5, with a few �possible modifications.��Actual Penetration, example 1, figure 6:��*---*�| f |�| i |�| r |�*----------* Sploit to remotely set up a | e | *---------*�| | reverse telnet via port 25 | w | | |�| attacker |-----------------------------| a |-->| targets |�| | ----------------| l |---| |�*----------* / | l | *---------*�/ *---*�Return of reverse telnet �*----------* output on port 80�| | /�| listener |<-------�| |�*----------*��In this example an exploitable sendmail daemon was found on a system that�didn't really need sendmail running, and since sendmail was running as�root, a reverse telnet was set up [10].��Actual Penetration, example 2, figure 7:��*----------*�| |�/->| attacker |----------�| | | \�| *----------* |�| | | |�| | v v�| *---------* *---------*�| | | | | �| | client1 |-- | client2 |--�| | | \ | | \ *---*�| *---------* \ *---------* \ | f |�| | \ \ | i |�| v \ \ | r | *---------*�| *---------* \ -----| e |-->| |�| | | ----------------------| w |-->| various |�| | client3 |-----------------------------| a |-->| targets |�| | | ----------------| l |---| |�| *---------* / | l | *---------*�| / *---*�| *---------* /�| | | /�\->| sniff |--------/�| results | /�| | /�*---------* /�/�<-----------------�/�<---------------�/�<-------------��In figure 7 the attacker directs attacks against targets via the clients �to try to compromise various daemons to run arbitrary commands as root.�Results are sent to forged IP addresses, but a sniffer captures these�results. In case of logging and host-based IDS, the attacker is not�suspected, the owners of the forged IP addresses are.���--------< Patterns of Attack��At first glance, it may seem easy to defend against the onslaught of �attacks, probes, and enumeration techniques. But it must be remembered �that byte pattern recognition or traffic on certain source and destination�ports can easily be changed by the attacker. A lot of the techniques�outlined above can and will use encryption, and can potentially operate�over TCP, UDP, and/or ICMP, and can use different source and destination�ports.��In particular let's look at figures 5 and 7 above. These are complex �scenarios, but could conceivably be done especially from a trusted host or�network. The VPN is often considered a security tool, and its use is �considered adequate in helping secure a channel. But all a VPN does is �ensure that a communications link can be established with the �communications link itself being somewhat secure. The end points are �critical - if you have established a VPN with a business partner of field �office, you are only as secure as that remote site's computer systems.�Does your business partner or remote office keep updated and patched as�often as you do? Does your vendor have a security policy in place? Have�you even asked your business partner or vendor these questions?��It is also possible that during upstream sniffing sessions that an �attacker could determine that due to relationships with certain vendors �you may have rules through the firewall entirely based upon IP address�and/or hostname. These can and will be exploited if uncovered, either�through the trusted vendor or by spoofing and sniffing as outlined in the�above models.��However we *can* look at the above attack models and make some general�determinations.��- All attacks involve possible covert communication methods between the�attacker and the attacking/probing device.�- When possible, traffic is disguised to look like normal network �traffic.�- When possible, IP addresses will be spoofed to mask the location of�attacker, attack clients, probing machines, and/or to implicate a third�party in case of accidental discovery.���--------< Primary Defensive Techniques��Let's first look at the easy-to-do defenses that can be put in place.��First off we need to eliminate as many unwanted forms of traffic through�the firewall as possible. This can be done by denying all traffic, and�very carefully opening things up. Sometimes by clicking on a pretty icon�in the firewall GUI control software labelled "DNS" or "Mail" we feel we�are controlling the environment, but this may be opening up ports 53 and�25 to the world. If attackers learn this, they could use these openings to�help set up covert channels. Ensure that when allowing public traffic into�your network (DNS, SMTP, HTTP, FTP) that you do *not* allow these forms of�traffic into your networks without limits. Check to make sure that turning�on DNS in the firewall did not open up TCP and UDP port 53 to every device�on your network.��All public boxes, such as your Web, FTP, and mail servers should reside in�a separate network (appropriately referred to as a "dead zone" or DMZ).�These boxes should not be allowed to initiate network conversations with�computers inside the internal network - if compromised, these boxes will�be used as stepping stones to the internal network across all channels you�leave open.��All Internet-connected boxes should not have compilers on them, should �have as few services running as possible, and should have fairly �sophisticated modifications to prevent compromise (see the Host�Recommendations section below).��Make sure management channels and ports are closed or at least secured. �For example, does turning on remote management to your Checkpoint Firewall�automatically open up port 256? Make sure you've set things up correctly.�Is SNMP closed from the outside? From the DMZ?��While it is my opinion that all computers should be secured as adequately �as possible, if you are on a limited budget, or you must prioritize what �boxes get secured first, secure them in this order - firewall, public �boxes in the DMZ, internal servers, workstations.��Obviously keeping the boxes themselves as updated as possible is the most�desired thing - the latest patches and tweaks - as this will make your�systems less of a potential target or launch point for further attacks.���--------< ICMP Defenses��Since a lot has been written about TCP/UDP rules for a firewall, but �little has been written about ICMP, I've decided to expand upon the �philosophy of handling ICMP at the firewall.��It is considered "bad form" by some Internet pundits to turn off ICMP �entirely. ICMP was originally developed to *help* networks, and is often �used as a diagnostic tool by WAN administrators. But today the various �inadequacies of ICMP are being used and abused in ways not originally �intended by supporters of RFC 792, and certain strategies need to be �implemented to make things a little safer. Therefore we need to try and �contain as much of the abuse as possible without shooting ourselves in the�foot.��Most Internet-connected sites block inbound ICMP Echo to their internal �networks, but do not block most everything else. This will still leave the �site inadequately protected. Inbound ICMP Timestamp and Information �Request will respond if not blocked, and both can be used for host �enumeration across a firewall that allows such traffic through. Even �forging packets with illegal or bad parameters can generate an ICMP �Parameter Problem packet in return, thereby allowing yet another method of�host enumeration.��One of the common methods used to issue commands from a master to clients �(especially if the clients are behind a firewall) in a stealth manner is �to use ICMP Echo Reply packets as the carrier. Echo Replies themselves �will not be answered and are typically not blocked at the firewall. An �excellent early example of this type of communication can be found in Loki �[11]. Loki was also pilfered from (at least in concept) during the �development and evolution of TFN [1] as communications use Echo Reply �packets between client and server pieces, which are also encrypted.��As techniques are developed to thwart specific tools, simple permutations �will continually bypass defenses. Therefore it is recommended that all �non-essential ICMP traffic be eliminated from traversing the Internet. �Here is a chart I've devised (see [12] for more details) that defines ICMP �traffic types and a bit of info about each. While all ICMP can be used for �tunneling, some ICMP types are better suited than others for tunneling. �Obviously the larger the data tunnel, the better (if you wish to send a �lot of data), but as little as 2 bytes can be used to issue commands via a�command structure. A "good" tunnel is one where the ICMP type is a little�less forgiving regarding free-form data insertion into the data fields of�the ICMP packets. ��ICMP Chart, figure 8:��ICMP Target Host "Good" Max Size Block at�Type Description Replies? Tunnel? of Tunnel Firewall�---- -------------- ----------- ------- --------- --------�0 Echo Reply No Yes 64K Limited�3 Destination No No 8+ bytes No�Unreachable�4 Source Quench No No 8+ bytes Limited�5 Redirect No No 8+ bytes Limited�8 Echo Yes Yes 64K Limited�11 Time Exceeded No No 8+ bytes Limited�12 Parameter Prob No Yes 8 bytes Limited�13 Timestamp Yes Yes 8 bytes Yes�14 Timestamp Reply No Yes 12 bytes Yes�15 Info Request Yes Yes 2 bytes Yes�16 Info Reply No Yes 2 bytes Yes�17 Address Request No* No 4 bytes Limited�18 Address Reply No No 4 bytes Limited��* Typically an Address Request is answered by a gateway, but may be �answered by a host acting in lieu of a gateway.��First we have to approach the entire "ICMP limiting" problem in terms of�both inbound and outbound. To cut some of the communication links in�models outlined above we have to "contain" ICMP. ICMP Echo does come in�handy for verifying that remote sites are up, but outbound Echo should be�limited to support personnel (okay) or a single server/ICMP proxy�(preferred).��If we limit Echo to a single outbound IP address (via a proxy), then our�Echo Replies should only come into our network destined for that �particular host.��Redirects are typically found in the wild between routers, not between�hosts. The firewall rules should be adjusted to allow these types of ICMP�only between the routers directly involved in the Internet connection that�need the information. If the firewall is functioning as a router, it is�quite possible that Redirects can be completely firewalled without adverse�effects, both inbound and outbound.��Source Quench packets are generated when a large amount of data is being �pushed toward a host or router, and the host or router wishes to tell the �sender to "slow things down". This is typically seen during streaming�uploads of data to a host, and can be generated by a router along the way�or via the target host itself. If the hosts inside the network can only�upload to a host on the Internet via FTP, then it is possible that the�only source of legitimate Source Quench packets will be destined toward�the FTP proxy, and all other Source Quench traffic can be dropped.��Time Exceeded packets are an interesting animal. There are two types of �Time Exceeded packets - code zero for Time To Live (TTL) timeouts, and�code one for fragmented packet reassembly timeout. ��The TTL is a value initialized and placed in the TTL field of a packet �when it is first created, and as the packet crosses a network hop its TTL�counter is decremented by one. Starting with a TTL of 64, once the 64th�hop is crossed the router that decremented the TTL to zero will drop the�packet and send a Time Exceeded back to the sender with a code of zero,�indicating the maximum hop count was exceeded.��In the case of fragmented packet reassembly timeout, when a fragmented �datagram is being reassembled and pieces are missing, a Time Exceeded code�one is set and the packet is discarded. It is possible to perform host�enumeration by sending fragmented datagrams with missing fragments, and�waiting for the Time Exceeded code one to alert the sender that a host�existed at the address, so care must be taken with the handling of these�types of packets.��It is recommended that by proxying all outbound traffic, inbound ICMP �traffic should come back through the firewall to the proxy address. This �at least limits Time Exceeded packets to a single inbound address. But it �is possible to block Time Exceeded packets. Most applications will have an�internal timeout that is not dependent upon receiving a Time Exceeded �packet, some applications may still be relying upon receiving one. YMMV on�this one. Block it unless too many critical internal applications are �affected.��The ICMP Parameter Problem packets are sent whenever an ICMP packet is �sent with incorrect parameters that will cause the packet to be discarded. �The host or router discarding the host sends a Parameter Problem packet �back to the sender, pointing out the bad parameter. By sending illegally �constructed ICMP packets to a host, you can cause the host to reply with a�Parameter Problem packet. Obviously if the type of illegally constructed �ICMP is allowed through the firewall, you can enumerate hosts.��There is no reason to allow inbound or outbound Timestamp, Timestamp�Reply, Info Request and Info Reply packets across the firewall. Whatever�value they might have should be limited to the internal network only, and�should never cross onto the open Internet. The same may be said of Address �Requests and Address Replies, as there is no real reason for a host to be�aware of the destination's IP Address mask to send the packet. Address �Requests and Replies are intended to assist diskless workstations booting �from the net to determine their own IP address mask, especially if there �is subnetting going on, therefore there is no reason to pass this traffic �across a firewall (in fact, routers adhering to RFC 1812 will not forward �on an Address Request to another network anyway).��The general philosophy here is that only publicly addressable servers �(such as web, e-mail, and FTP servers), firewalls, and Internet-connected �routers have any real reason to talk ICMP with the rest of the world. If �adjusted accordingly, virtually all stealth communication channels that�use ICMP, inbound or outbound, will be stopped.���--------< Host Recommendations��What are some good precautions we can use on hosts connected to the �Internet? We will not cover Microsoft offerings here, but will assume the�we will be using only open sourced operating systems on hosts we have that�are addressable from the Internet (Web, SMTP, FTP, etc). All machines �serving the public via the Internet should be locked down. Here is a �recommended list of tactics to help protect the machines exposed to the�Internet.��- Isolate all public servers to a DMZ.�- Each offered service should have its own server. For example, if your�public services are email and web, do not try to save money and run both�on the same server. Use separate servers.�- If using Linux (recommended) you can use any one or several of the �"buffer overflow/stack execution" patches and additions to prevent most �(if not all) local and remote buffer overflows that could lead to root �compromise. Solar Designer's patch [13] is highly recommended as it �includes additional security features, such as secured�- Instead of SSH, use Secure Remote Password (SRP) [14]. SRP offers PAM�compatibility, drop-in replacement for telnet and FTP daemons, encrypted�telnet and FTP sessions, and defeat of zero knowledge attacks. One great�advantage to SRP is that only enough material to determine that you know�the password is stored in the password file, so even if the password file�is captured by an intruder it cannot be cracked. You can even have�passwords up to 128 characters in length!�- Limit access to those SRP-enabled telnet and FTP daemons to internal�addresses only, and insist that only SRP-enabled clients can talk to�them. If you must run regular FTP for public access (such as anonymous�FTP) run SRP FTP on a different port. �- Use trusted paths. Only allow execution of root-owned binaries that �are in a directory owned by root that is not world or group writable. To�enforce this you can modify the kernel if need be [15].�- Use the built-in firewalling capabilities. By turning on firewall �rules you can often take advantage of the kernel's handling of state �tables. The state table keeps track of IP addresses and port connections. �If a packet is received that is *not* a SYN packet and *not* part of an �existing conversation, drop the packet. This may require kernel �modification to support it [16].�- Use some form of port scan protection. This can be done either via a�daemon on Linux [17] or via kernel modifications [16].�- Use Tripwire [18] or an equivalent to help detect modifications to�important files. Version 2.2.1 for Linux is freeware, other versions are�not.���--------< IDS Recommendations��Since many of the methods to defeat network-based IDS are still applicable �to most commercial IDS products available (see [2], [3], and [4] for �details), it is recommended using an IDS that at least can reassemble or �at least detect fragmented datagram packets. This limits you to Snort [9], �NFR, Dragon, and BlackIce [19], with Snort in its current version only�able to detect very small fragment sizes of packets. Only Dragon can�handle fragmented packet reassembly at high network speeds with lots of�traffic.��If you are on a budget, you can limp by with Snort, although any serious �or high-traffic site is going to require Dragon to handle the load. The �next question is - what should I watch for? Here is a partial list:��- Be sure to include all of the existing rules, including new rules for�some of the distributed DoS attacks (see [1] for details on those �attacks).�- Since much of ICMP will be blocked if the ICMP Recommendations section�is followed, numerous opportunities for IDS triggers exist. Any inbound or�outbound ICMP packets that would normally be blocked can be triggered�upon.�- *Any* network traffic you have firewalled off can be a potential IDS�trigger. Examine what you are blocking and why, and consider adding IDS�rules to look for such packets.�- If your IDS supports detection of attacks over long periods of time �(for example, a port scan) be sure to not exclude trusted hosts you might�be allowing through the firewall. This includes VPNs. Spoofed packets from�those trusted sites might *look* like normal traffic, but could possibly�be probes or attacks.�- If you can train any user of ping to use small packet sizes when �pinging hosts (such as 'ping -s 1 target.address.com'), set your IDS to�look for Echo and Echo Replies with packets larger than 29 bytes.���--------< Conclusions��By securing the hosts, limiting the channels of communication between �nefarious elements, and adjusting firewall and IDS rules, most of the �network attacks outlined here (real and theoretical) can be defeated. A�side effect of implementing these recommendations is that not only are�distributed attack models stopped, but overall security is greatly�enhanced. Full frontal attacks are easily detected and can be quickly�avoided.��--------< Acknowledgements��I would thank the BindView RAZOR team for their support during the writing�of this paper. Numerous times I asked the team questions and received�answers that opened up new ideas. Their help was invaluable.��I'd also like to thank my wife and kids for being patience while I toiled�away for hours over the computer. There is nothing like support from home.���--------< References��Here are some articles and papers related to the subject presented here.��--< [1] David Dittrich (dittrich@cac.washington.edu) provided detailed�analysis of three distributed denial of service tools found in the wild.�"The DoS Project's "trinoo" distributed denial of service attack tool"�http://staff.washington.edu/dittrich/misc/trinoo.analysis;�"The "Tribe Flood Network" distributed denial of service attack tool"�http://staff.washington.edu/dittrich/misc/tfn.analysis;�The "stacheldraht" distributed denial of service attack tool�http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.��--< [2] Thomas H. Ptacek and Timothy N. Newsham wrote an enormously�influential paper discussing IDS avoidance, with many of the documented�techniques still not corrected by commercial IDS vendors since the paper's �debut in January of 1998.��"Insertion, Evasion, and Denial of Service: Eluding Network Intrusion�Detection"�http://www.clark.net/~roesch/idspaper.html��--< [3] Rain Forest Puppy (rfp@wiretrip.net), author of numerous advisories,�wrote a tool called whisker, which is a CGI vulnerability scanner. RFP�wrote up this paper explaining the techniques he outlined in whisker,�can could be applied to other protocols besides HTTP.��"A look at whisker's anti-IDS tactics"�http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html��--< [4] Greg Shipley did a review for Network Computing of intrusion detection�systems, both host and network based. The results were interesting enough�to influence some of the thoughts in this paper as the article was much�more interesting than one would expect for a trade magazine product review.��"Intrusion Detection: Take Two"�http://www.networkcomputing.com/1023/1023f1.html��--< [5] Simple Nomad (thegnome@nmrc.org) presentations to SANS covered possible�network enumeration, host identification, and port scanning techniques using�various adaptations of off-the-shelf products.��"Network Cat and Mouse", SANS Network Security '99, New Orleans�http://www.sans.org/�"The Paranoid Network", to be presented at SANS 2000, Orlando, FL��--< [6] Simple Nomad (thegnome@nmrc.org) white paper that expanded on the ideas�originally developed and presented in [5].��"Traffic Pattern Duplication to Avoid Intrusion Detection", �To be released soon.��--< [7] Fyodor (fyodor@dhp.com) has written NMap, considered to be one of the�best host and host service enumeration tools available, loaded with tons of�features.��NMap, http://www.insecure.org/nmap/��--< [8] Jordan Ritter (jpr5@darkridge.com, jpr5@bos.bindview.com) has written a �handy tool to sniff and grep through network traffic, appropriately called ngrep.��ngrep, http://www.packetfactory.net/ngrep/��--< [9] Martin Roesch (roesch@clark.net) has written a great IDS called snort�that is simple to use, fast, and free. ��snort, http://www.clark.net/~roesch/security.html��--< [10] Stuart McClure, Joel Scambray, & George Kurtz have written a book�entitled "Hacking Exposed" which uncovers numerous attacker techniques. The�reverse telnet technique is detailed in Chapter 13, page 382-3.��"Hacking Exposed", ISBN 0-07-212127-0, 1999�http://www.hackingexposed.com/��--< [11] Michael D. Schiffman wrote a white paper that illustrate a method �for using ICMP to establish a covert communications method across a network, �including across a firewall. Jeremy Rauch assisted Schiffman in developing�proff of concept software, and Schiffman followed it up with a later article�that covered implementation issues. Both are available at Phrack's web site at�http://www.phrack.com/.��"Project Loki: ICMP Tunnelling", Phrack 49, File 6 of 16, 1996.�"LOKI2 (the implementation)", Phrack 51, File 6 of 17, 1997.��--< [12] RFC 792, RFC 950, RFC 1122, RFC 1123, and RFC 1812, specifically �section 4.3 of RFC 1812 on the handling of ICMP by routers.��--< [13] Solar Designer's Linux kernel patch is available from�http://www.openwall.com/linux/.��--< [14] Thomas Wu developed Secure Remote Password (SRP) while attending�Stanford. It touts a number of unique features, including defeating zero�knowledge attacks and even protects against password recovery from the�password file.��SRP, http://srp.stanford.edu/srp/��--< [15] Michael D. Schiffman wrote two articles for Phrack which cover�trusted path execution - one for Linux and one for OpenBSD. While the code�will not cleanly patch current kernels, it is a good place to start. Visit�http://www.phrack.com/.��"Hardening the Linux Kernel", Phrack 52, File 6 of 20, 1998.�"Hardening OpenBSD for Multiuser Environments", Phrack 54, File 6 of�12, 1998.��--< [16] Simple Nomad pulled together several security patches for 2.0.3x�kernels and developed a single patch. Two of the included items show how�to make use of the built-in state table and kernel-level port scan detection.��nmrcOS kernel patches, http://www.nmrc.org/nmrcOS/��--< [17] Solar Designer's scanlogd daemon detects multiple port connections�from a single address. NMap can easily defeat this with slower scans but it�is still useful.��scanlogd, http://www.openwall.com/scanlogd/��--< [18] Tripwire can be obtained from Tripwire, Inc. at �http://www.tripwiresecurity.com/. The Linux version is free.��--< [19] Commercial IDS products mentioned here can be obtained via the�following vendors:��NFR IDA from NFR, http://www.nfr.net/�BlackIce from Network Ice Corp., http://www.networkice.com/�Dragon from Network Security Wizards, http://www.securitywizards.com/��--------< EOF�

