

 Protecting against the unknown

 A guide to improving network security to protect the

 Internet against future forms of security hazards

 Mixter <mixter@newyorkoffice.com>,

 January 2000

 Contents

 0 About

 0.1 Copyright

 0.2 Disclaimer

 0.3 Acknowledgements

 1 Introduction

 1.1 Preface

 1.2 Document scope and structure

 1.3 Problem description

 1.3.1 Security threats summary

 1.3.2 Problem definition

 1.4 Basic concepts

 A short-term approach

 2 Conceptual security measures

 2.1 Taking the systematic approach

 2.2 Designing a security model

 2.3 Problems in a corporate environment

 2.4 Preparing against an incident

 2.5 Incident response

 2.5.1 Reacting to an ongoing incident

 2.5.2 Post mortem: Incident recovery

 3 Technical security measures

 3.1 Strong resource protection

 3.1.1 Defending your system integrity

 3.1.1.1 Setting up a secure environment

 3.1.1.2 Establishing access controls

 3.1.1.3 Application security

 3.1.1.4 Auditing - reactive and proactive measures

 3.1.2 Defending your data confidentiality

 3.1.3 Defending your network availability

 3.1.3.1 Guidelines to defensive routing

 3.1.3.2 Tracing: capabilities and problems

 3.2 Problem specific protection

 3.2.1 Protecting against viruses

 3.2.2 Using Intrusion detection systems

 3.2.3 Backdoors and trojan horses

 3.3 Conclusions about present security technology

 A long-term approach

 4 Proposed future security architecture improvements

 4.1 Improving incident response capabilities

 4.1.1 A new approach to incident consulting

 4.1.2 Incident response and law enforcement

 4.1.3 Establishing an incident response infrastructure

 4.2 Operating systems

 4.2.1 Privilege separation and kernel-based security

 4.2.2 Kernel-based authentication

 4.2.3 Privilege and permission separation

 4.2.3.1 Sand boxes versus protective cages

 4.2.3.2 Differentiated access permissions

 4.2.4 Auditing requirements

 4.3 Auditing software

 4.3.1 Evolving intrusion detection

 4.3.2 Evolving proactive auditing technology

 4.4 Networking architecture

 4.4.1 Routing security

 4.4.1.1 Improving availability

 4.4.1.2 Improving access controls and authenticity

 4.4.2 Protocol security

 4.4.3 Public Key Infrastructure

 4.5 Improving software design

 4.5.1 Technology standards

 4.5.2 Network application security

 4.5.3 Software development security design methodology

 5 Final words

 6 Footnotes: technical background, definitions and explanations

 0 About this paper

 0.1 Copyright

 This document was written by Mixter <mixter@newyorkoffice.com>. Technical

 solutions, ideas and concepts in this document have mostly been developed by

 the author unless referenced or acknowledged otherwise. This paper by Mixter,

 named 'Protecting against the unknown', is a candidate entry for the Packet

 Storm Security Competition 'Storm Chaser 2000'.

 The author hereby represents his eligibility to participate in the

 Competition and to satisfy all requirements specified in the Competition

 Rules issued by Packet Storm. The author presents that he independently

 created the document and waives his intellectual property rights in the

 Competition entry. Furthermore, the author has acknowledged, signed and

 agreed to all terms of the Packet Storm Affidavit of Eligibility and

 Liability and Publicity Release, which has been attached to the submission.

 0.2 Disclaimer

 This document and the information contained herein is provided on an 'as is'

 basis and the author disclaims all warranties, express or implied, including

 but not limited to any warranty that the use of the information herein will

 not infringe any rights or any implied warranties of merchantability or

 fitness for a particular purpose.

 Please note that the author's native language is not English. My apologies

 in advance in case you should find any formal mistakes in this document.

 0.3 Acknowledgements

 This paper was improved by many insights I have been able to gain from

 a large number of people engaged in the security community. Although the

 paper was completely written by myself, knowledge and experience I gained

 from these sources were needed to make it possible for me to compose this

 document. Some of these sources that I would like to specifically acknowledge

 are: Bugtraq Security Mailing List / SecurityFocus, BufferOverflow /

 Hackernews, many of the detailed articles from authors of Phrack Magazine,

 OpenSEC contributors, site maintainers of security archives and security

 related sites, authors of open source security software (no advertisement

 here, you know who you are) as well as the authors of publications and texts

 referenced in the footnotes section.

 1 Introduction

 1.1 Preface

 Since the Internet has begun evolving from an academic and military resource

 to a public world-wide computer network utilized by numerous commercial and

 non-commercial organizations and individuals, and on which modern society is

 becoming increasingly more dependent, there have been many security [1]

 issues, some of them exposing weaknesses in the security model of the Internet

 itself. While the importance of computing will advance in our society, one of

 the first and biggest problems concerning the evolution of computing is the

 improvement of applied Internet security technology. With increasing speed

 and complexity of technology and software development, the number of security

 issues as well as their severity and impact on the Internet community is

 tending to grow drastically, and so are the security incidents caused by the

 growing number of intruders that are actively exploiting weaknesses in current

 security models and by intrusion software [2] becoming more sophisticated.

 While defense against specific intrusion software is futile, because private

 attacking software and techniques can be developed that either can hardly be

 identified or possess no methodological weaknesses which could be used to

 stop them, the security problem has to be conquered using coherent, logically

 applied, systematic security improvement and protection efforts.

 This paper attempts to define the problem and answer the question:

 What pure or applied technical measures can be taken to

 protect the Internet against future forms of attack?

 In order to develop a defense strategy against future threats, one has to

 take into account that the proposed solution needs to include effective

 countermeasures against an unknown threat potential. An approach to this

 solution needs to be formed upon a differentiated set of measures against

 current weaknesses and threats, and against upcoming security issues,

 extrapolated by analyzing existent weaknesses and core problems in the

 security infrastructure of the Internet. It has to be regarded that current

 threats like distributed attack tools [3] do not represent security

 vulnerabilities themselves, but multiply and visualize the potential of

 existent problems present in the current security architecture model.

 1.2 Document scope and structure

 The security improvement measures described in this document are designed

 to provide guidance to everyone who needs to improve the security of his

 network or machine that is publicly accessible over the Internet, including

 ISP and corporate technicians, executive managers, government and military

 executives, network administrators, security consultants and all other

 individuals requiring or wanting to improve their computer security.

 Covered topics include problem and threat definition, potential security

 issues and active countermeasures, concrete technical requirements and

 methods, as well as conceptual and procedural security measures.

 To provide a coherent security solution to upcoming and partially yet

 unidentified security problems means to design a new security architecture,

 instead of trying to solve issues by designing reactive solutions to known

 problems. Therefore, this document includes both technical and conceptual

 aspects that need to be regarded for the design of a coherent security

 architecture.

 Since the upcoming threats are serious and imminent, a fast and concrete

 solution, which should be practical for everyone is needed. Therefore, the

 first part of this paper deals with short-term measures that can immediately

 be taken, using the current infrastructure and technological standards.

 But it must also be regarded that information technology in general is

 still in its infancy, and that a better approach to upcoming, yet

 unidentifiable problems and threats has to be realized with long-term

 measures aimed at programmers, vendors, corporations, and further instances

 responsible for the design of a future information security architecture.

 Therefore, the second part of this paper is about such long-term measures

 that should be taken to implement future security features and models.

 To enhance comprehensiveness of the technical issues, technical definitions

 and background explanations have been added in form of footnotes at the end

 of the paper. The reader is advised to consult these to help understanding

 the definitions and technical subjects mentioned in this paper.

 1.3 Problem description

 1.3.1 Security threats summary

 Before focusing on the problem definition, I would like to summarize the

 current actual threats to security and the causes of active security breaches,

 possibly correcting or at least questioning some popular viewpoints.

 Analyzing opinions shared by authorities and the media, one comes to the

 conclusion that malicious software (viruses/worms, trojans, intrusion

 software) and intruders which actively spread or use this software are the

 cause of all security incidents and therefore represent the major threat to

 the Internet.

 This is in my opinion a simplistic view of the problem. Imagine the Internet

 would consist of 90% vanilla WinNT 4.0 machines (a scary thought..), but no

 public exploits existed against them, and no known security weaknesses or

 incidents were reported to any authorities. According to the above viewpoint,

 there would be no 'threats', even though a single person with appropriate

 knowledge would be able to compromise or shut down the majority of the worlds

 computers by exploiting just one of the given unidentified weaknesses.

 I hope you understood my point that the threat to security should not be

 seen in the currently existing malicious software and individuals that take

 advantage of mostly known weaknesses to wreak havoc. The threat should be

 considered as the damage and incident potential caused by resources [4]

 lacking overall security architecture and applied protection. This potential

 is also multiplied by the value and possibilities a resource provides to a

 potential intruder, once its security is compromised. A compromised web

 server for example provides access to all web documents and potentially to

 gaining higher privileges on the system. A compromised mail or ftp server

 usually provides root access (read: in most cases nearly complete access to

 all of the systems capabilities, hardware, network interfaces, hard disk

 content, etc.). Observing future trends in the development of the Internet,

 we could extend our examples to a compromised gigabit ethernet / wdm routing

 device, giving the advantage of taking up a small countries bandwidth, or a

 compromised digital wiretapping device used by law enforcement, giving

 access to privately transmitted information from millions of persons.

 To conclude, the value and power of resources are a multiplying factor to

 the potential of an existing threat, which means that different kinds of

 resources need different protection, and that delegating resources to a

 task or service should be done with utmost prudence and care.

 However, the origin of security threats can only be seen in the lack of

 security given for any resource. Such threats include the potential lack

 of security, in form of uneducated administration personnel, insufficient

 scrutiny while applying security guidelines and vulnerability to known

 methods of security compromises [5].

 Not existing malicious software, or individuals with malicious intent

 represent the threats against information systems, but the vulnerability

 and threat potential that exists in the resources that are to be protected.

 This shows that responsibility for eliminating security threats lies in the

 hands of those who are responsible for designing and implementing security.

 1.3.2 Problem definition

 Taking a look at the current state of security on the Internet, and at the

 kind of incidents that we have experienced so far, it shows that all serious

 intrusions, those which involve remote compromise of confidential information,

 system access and privileges, have all been made possible due to insecure

 design and implementation of applications or operating system functions and

 the protocols they use. These problems are present in the input handling,

 access control, configuration and sometimes the amount of privileges a

 program requires in order to fulfill its task. While these weaknesses may

 seem relatively predictable, the cause of intrusions that are and will be

 frequently occurring has to be seen in a bigger scope.

 Consider that actually a high percentage of available servers are secure,

 and some of them, especially open-source products have been well-audited

 for several years. There are at least two main reasons that the relatively

 few programs whose current versions are vulnerable at the same can still be

 used by intruders to gain access to a huge number of systems:

 - Weak configuration and inexperienced users. Today's systems and software

 that look easy to install and configure are often actually the hardest to

 establish a secure configuration on, and insufficiently error tolerant

 (while intolerance to errors means in this context silently creating a major

 security hole while operating just fine), and either lacks documentation or

 comes with documentation so complex that the average user does not read

 it or take the sufficient time to get familiar with the software's functions.

 This problematic trend causes users and administrators to lack basic

 experience and understanding of their system programs, including the services

 running by default on many operating system distributions. Since those systems

 and their services can be run prior to acquiring information about them,

 people fail to recognize whether they need particular services or not. Since

 people can run all these services without spending time with the configuration

 and documentation, they fail to recognize even simple and well known

 known vulnerabilities and do not inform themselves about updates or patches.

 - Mono-cultural network structures. Another phenomenon that multiplies the

 chances for intruders and the risks is the fact that a few number of operating

 system distributions out that come with a static set of applications are

 widely spread and used, and as a side effect also spread the same known and

 the yet undiscovered vulnerabilities to a large audience; as a result, one

 known vulnerability in the today's relatively homogeneous computing

 environment can become a threat to a large number of similar systems

 with similar configurations.

 Beyond the issues regarding weak operating systems and applications, a

 further factor that contributes to the problem is the approach of the

 currently accepted solutions for conceptual software development and security

 improvement. Today's security measures, applications and protocols are often

 being standardized with only merchantability, performance and such aspects

 in mind, and therefore, no coherent systematic design approach is made that

 includes necessary minimum security standards. With current approaches to

 technology standardization, other issues like security education of end-users,

 and extendibility are also being disregarded, which makes it more difficult

 for software developers to maintain programs complying to those standards,

 and consequently more difficult to design secure software.

 Additionally, ineffective and incoherent concepts to achieving protection

 against attacks can imply a false sense of security and also represent new

 opportunities to attackers that are able to find weaknesses in those concepts.

 For example, security through obscurity empowers those who are able to crack

 and reverse engineer software. Relying on law enforcement gives an opportunity

 to those who can withdraw from law enforcement. Extensive intrusion pattern

 logging, and origin tracing can be a disadvantage to inexperienced intruders

 but an advantage to the intruders that use private exploits and have enough

 compromised machines at their disposal to obscure their origin.

 Only implementation of all basic and systematic protection measures can

 effectively withstand all current and upcoming threats.

 1.4 Basic concepts

 Before coming to applied security measures, I want to briefly describe

 some of the basic concepts that can be used to assess a solution and which

 can be applied to design a systematic approach.

 To start off, it is advisable to find the lowest layer of information

 processing to which security measures can be applied to. Excluding physical

 security and hardware design, the lowest layer of security has to be

 established at the operating system level; for the existence of access

 control [6] to any resource and system capability, it is required that this

 control can be securely enforced by the operating system on which it is

 implemented. The next layer is the secure transmission and storage of data

 in general - locally and remotely. Note that access control has to be in

 place for this layer to effectively work [7]. An effective additional

 measure to harden this security layer can be cryptography, because of its

 universal applicability. Further security layers are problem specific, in

 this case network specific. The third layer of network security is the

 stability and security of any points of access [8] to a network, single

 machine or higher privileges.

 Only by ensuring presence of such a consecutive row of security layers to

 protect against a problem, it is possible to construct a scalable solution,

 whose protection can then be improved at its weakest layer, if necessary.

 Another paradigm for establishing a long-term security solution is easy

 implementation feasibility, realized by avoiding unnecessary complexity and

 minimizing the efforts needed to individually adapt the solution. To achieve

 this, steps have to be taken to design standards which are more comprehensible

 and easier to implement, especially regarding recommended use of programming

 style and functions, and the design of security API, system security

 capabilities, protocols features and other security interfaces.

 2 Conceptual security measures

 2.1 Taking the systematic approach

 People are well advised to put their efforts into achieving one goal:

 optimizing network security to mitigate the vulnerability potential over a

 maximum period of time. The second rule to follow is to use common sense

 and apply logical concepts. An untrusted system, i.e. a system that could

 already potentially have been compromised cannot totally be 'secured'. Refrain

 from connecting a vanilla (out-of-the-box, as some people say) system to any

 network, before applying basic security guidelines. An intruder could

 theoretically be getting into it while you are in the process of securing it,

 rendering all your efforts worthless. And if we are talking about a high

 profile system or a popular attack target, this applies even more. Either a

 system has been secured from the beginning or it can never be considered to be

 fully trusted. Things that should be established from the beginning on also

 include some form of backup/recovery system, at least for unique data, and

 some kind of checksums or change logs, preferably cryptographic, which

 will later be valuable resources to compare the systems current state

 with its original state reliably.

 In order to eliminate vulnerabilities efficiently, try compiling a

 vulnerability checklist, ordered by priority. Security threats considered

 as critical to a systems survival have to be eliminated at all costs. Do not

 take easily preventable risks either (e.g. by not updating software versions

 or configuration to latest standards). A good administrator should try to

 imagine worst case situations. If someone could be interested in gaining as

 much access to your network as possible, don't be scared to imagine what could

 happen if someone would successfully run a sniffer. Measures like using

 switched ethernet are easy to apply and should be mandatory (although be

 warned that this might only raises the difficulty level; using ARP cache

 poisoning, sniffing is still feasible), and critical devices such as

 switches, routers, gateways and other packet forwarding devices, as well as

 log hosts and other hosts that serve the function to preserve your network /

 data integrity should not be accessed remotely at all; ideally they have no

 open ports at all and must be accessed via console. A few weeks earlier I

 would've suggested running ssh as only service, but since a working exploit

 against a current version of ssh is out... well, by assuming the worst case

 in all situations applicable to your network, you cannot be wrong.

 2.2 Designing a security model

 Just like a single host that has to be protected prior to using it in a

 network environment, internal structural design of your network(s) has

 to be completed before exposing them to the Internet.

 Taking a look at the latest threats, and upcoming possibilities of intruders,

 I would strongly advise a decentralized task security model. This means to

 avoid single, big resources that share many points of access. On one hand,

 hosts that run a concentrated amount of services can be easier compromised

 because an intruder can select from a variety of services which to exploit,

 and on the other hand, by having a single, big machine compromised or

 penetrated with Denial Of Service [9] attacks over a long time, you would

 lose a lot of services at a time, which possibly many users or critical

 network processes depend on.

 Consider using a higher bandwidth on your local network than you have overall

 bandwidth to your uplink(s), so you still would have the possibility of

 internal process and user communication when your network gets hit by DoS

 from the outside.

 Try to retain the systematic aspect of design. Reliable audit trails are good,

 preventive measures against intrusions are much better. Do not rely on an

 extra mechanism if you know that your networks security would be lost without

 it. Once you have established basic security, extra packet filtering and

 intrusion detection rules can act as additional security layers if deemed

 necessary. Another subject worth mentioning is a mistake which I have

 observed is being frequently made. Yes, a DMZ is supposed to be exposed to the

 Internet more than the other sensitive parts of your network are. But that

 does not mean there is any reason in exposing hosts on the DMZ, preferably

 mail servers, bastion hosts, and gateways running a bulky mass of services,

 to preventable risks! This is something just too many people do, without

 considering that the DMZ hosts are very vital parts of your overall network

 security. I would bet that more than a half of all incidents have happened on

 those hosts, which have been poorly secured or not secured at all, while their

 protection is as important as protection of any other network components.

 2.3 Problems in a corporate environment

 A popular, generally accepted security solution for corporations is to

 establish a security policy, and then assign a team that is specially

 responsible for protecting the corporate resources and enforcing that

 policy. The problem is that a few people in control of security measures

 cannot guarantee this protection, while the rest of the employees possibly

 lack sufficient understanding of their software to care enough about security.

 The same way in which it is possible to demonstrate lack of security, but

 not its guaranteed existence, a security policy can be enforced with all

 technical measures, but cannot fully guarantee that employees lacking

 awareness find a way to circumvent it (or that the policy is not sufficient

 and people never find out about it). A better approach to corporate security

 is to define a minimum of security and of technical education for everyone,

 and educate everyone in an adaptive manner, suiting the individually present

 state of knowledge. Instead of possessing either expensive or insufficient

 security, corporate security needs to be designed to be comprehensible for

 everyone, and education that goes beyond basic mandatory guidelines should be

 acquired individually by self-education; that way, corporate security can be

 achieved by everyone without dedicating it huge amounts of money or time.

 Taking this approach, however, makes it necessary to observe how well it is

 individually adapted, rewarding knowledgeable employees with respect, and

 helping those who face problems gaining the sufficient knowledge, possibly by

 assigning them to teams with more knowledgeable individuals.

 2.4 Preparing against an incident

 To be prepared against incidents like intrusions, intrusion attempts, and DoS

 coming from outside your local network, it is important to be able to

 correctly interpret the meaning of probes [10] and other unusual traffic to

 your network, and of course to have sufficient audit trails present that can

 be evaluated. Some essential precautions that should be taken are to enable

 network egress and ingress filtering [11], and setting up secure, impenetrable

 logging facilities, in form of a more or less isolated loghost [12].

 By being able to recognize the kind of threat, you prevent unnecessary panic

 when you are facing futile intrusion attempts, and on the other side can

 take appropriate measures quickly, when your systems are really at risk.

 Preparation should generally start at network design, in form of separating

 important tasks of the network by delegating them to different machines with

 the aim to minimize the damage that can be caused by an incident.

 While in my humble opinion there are not many similarities between computer

 crime and conventional crime, one thing they have in common is that they can

 hardly be stopped by harder prosecution and better tracking. If an intruder

 wants to gain access to your network, and there is any possibility, he will.

 Like conventional crime, the better approach to mitigating the possibility

 that incidents occur is to make an intrusion into your network appear less

 inviting by hiding as much information about your network as possible.

 Approaches to this include using meaningless hostnames for different

 internal hosts that serve different purposes, denying external DNS zone

 transfer, configuring your servers to show bogus version information, or even

 slightly modifying your kernel to defeat remote OS identification [13]. While

 this tactic does not represent a factual security improvement, you will stop

 presenting a possible intruder information about where to find your internal

 DNS server, SQL databases, and other weak points on a golden plate. Note

 that the best method in making your host an uninviting target is of course

 to apply all possible security measures at your disposal. A final important

 preparation is to have some way of recovery, in form of incremental backups,

 site mirroring, or anything else you deem appropriate, and to possess

 necessary information to reestablish integrity of your critical data, in

 form of cryptographic checksums and/or system images of a trusted state of

 your systems, which have to be stored in a way that it is not possible for

 an intruder to remotely manipulate them.

 2.5 Incident response

 2.5.1 Reacting to an incident

 If your router experiences large amounts of spoofed traffic, it is recommended

 to ask your uplink or backbone provider for assistance. In all other cases

 that represent a real threat to your network, you are well advised to directly

 contact the responsible technical or administrative authority of the attackers

 origin(s). While the current international chain of network information

 centers is undergoing structural changes, there are still reliable ways

 to find the proper authority to contact. A WHOIS hostname query to

 whois.internic.net will, in most cases, reveal the proper NIC to contact. [14]

 If this is not the case, you should try contacting whois.ripe.net for

 European IP addresses, whois.apnic.net for Asia, and whois.arin.net, which

 will always deliver you information about the owners of assigned IP blocks.

 If the contact persons you found do not reply to email and phone in a short

 period of time, look up their uplink provider by querying whois.arin.net,

 doing traceroutes, or by gathering information about the hosts that provide

 top-level DNS services to them, generally shown in the WHOIS query. Another

 possibility is to make use of the Network Abuse Clearinghouse, by sending

 email to <offending-domain.dom>@abuse.net, which will efficiently try to

 contact the responsible administration, especially if you are experiencing

 unauthorized use of your mail servers.

 If you are experiencing ongoing intrusions which are massively putting

 machines on your network at risk (e.g. you are experiencing repeated buffer

 overflow attempts that indicate the attacker only needs to find the correct

 offset, you are not certain if low-privilege access has already been gained,

 your webserver is being intensively probed and you are not convinced that it

 is totally secure, or a front-door brute force password cracking attack is

 going on), emergency actions should be filtering the attackers subnet at the

 border routers, and if the attacker is persistent, temporarily null-routing

 or even shutting down attack victims and other weak hosts on the network.

 2.5.2 Post mortem: Incident recovery

 Once your security has been partially or completely compromised, you have

 two proposed solutions to recovery, with the goal of restoring the system

 back to a trusted state. The first, and most reliable solution is to do a full

 backup from the last trusted system state [15], or, if backup data is not

 present, to completely delete and reinstall the system, only retaining

 databases, documents and other non-executable data from the compromised

 system. The second approach means to examine your system to find the

 path an intruder has taken in compromising, backdooring and using your system.

 You should have some kind of checksum data present in this case, to find

 changed binaries. Checksums and checking utilities have to be kept on a

 device that cannot be manipulated, such as a removable disk. If you assume

 the worst case, your system kernel or libraries could be changed in order

 to hide checksum errors. You can, however, keep checksums on each machine,

 if you encrypt or digitally sign them with a key that is not stored in any

 form on the machine, e.g. with PGP or any other strong encryption tool. [16]

 Performing initial integrity verification of the checksums from a trusted,

 non-compromised system (or by booting from removable media), is mandatory.

 After that you are able to isolate and examine changed files. Popular

 backdoors that you should scan for in the first place to reveal starting

 points of a compromise include system configuration such as inetd.conf,

 SysV init scripts, access control lists, password files, shell profile files,

 rhosts files, crontabs, server and other critical system binaries, as well

 as hidden filenames (find / -type f -name "*[]*" -o -name "*.*.*") and

 files in unusual places (find /dev -type f). Further methods that can help

 you analyze what steps and intruder has taken are all instances of logging

 facilities, which should be closely analyzed from the first possible event

 of intrusion. After restoring a system back to a trusted state, the

 vulnerability that has been used to gain access has to be identified and fixed

 at all costs, together with all obviously existing weak points in the security

 design that have lead to the vulnerability not being discovered and patched

 before. Keep in mind that a vulnerability can be everything from an

 exploitable server to insecure access permissions or weak passwords.

 3 Technical security measures

 3.1 Strong resource protection

 In retrospect, attacks against information systems, be it embedded technology,

 telephone networks or computer networks have been commenced for a long time on

 a tame, mostly experimental and educational basis. Of course, malicious intent

 has always been present, but because of computing still being in a relatively

 early phase, the challenge to break security has not yet been high enough to

 make military-level intrusion skills for an intruder necessary to be able to

 compromise enough resources to satisfy his or her needs. With the necessity

 of protection becoming popular, and countermeasures against intrusions

 advancing, we are about to experience equal advancements in intrusion

 technology as an adequate answer of the intruders who want to be able to

 compromise resources, be it for gaining knowledge, financial profit,

 or because of social, military or terrorist ambitions.

 To keep up with this trend, the strongest protective measures currently

 available should be applied by everyone to defend their resources, because

 on the Internet, all resources are theoretically being targeted equally. The

 following section will make an attempt to establish a universal guide to

 defining and applying existent security measures to your network environment,

 by identifying defense methods for separate points of access and bringing

 them together as a scalable technical solution. To retain the independent

 applicability of this solution, I will evade recommending operating system

 specific solutions or products; additionally, a paper describing such a

 specific solution would require constant improvement and updates when

 specific vulnerabilities would be discovered or functionality of specific

 software would be improved.

 3.1.1 Defending your system integrity

 Possessing system integrity means having functional access control, a trusted

 and secure environment and control over any modifications made to the data

 belonging to you. Points of access that can be used for attacks against

 system integrity include all processes involving evaluation of data -

 sessions, informational and executable content - performed by the kernel,

 servers, applications and scripts.

 3.1.1.1 Setting up a secure environment

 In the beginning, the operating system has to be in the most secure condition

 that is possible. If your system allows it, recompile your kernel, applying

 all patches relevant to security and stability, and disable capabilities that

 you will not need. Enabling firewalling, resource limits and using restrictive

 network features (regarding spoof- and flood protection as well as routing

 and packet forwarding) are especially recommended.

 If you have a personal choice of what operating system, distribution and

 release version to prefer, there are some important recommendations you should

 consider. Naturally, use of systems that have proven to contain very little

 vulnerabilities over a long time and are open-source should be preferred [17].

 Systems offering a minimum of pre-configured settings and programs, which have

 to be customized manually often offer a maximum of stability and security to

 the knowledgeable user (see problem definition, 1.3.2), for example systems

 belonging to the BSD family, but also other Unix systems or Linux, if

 installed with a minimum of pre-configuration and pre-installed applications.

 Another important security criteria when selecting an operating system (or

 any other software, for that matter) is not to use very recently published

 software for production, because most present vulnerabilities of a

 distribution or other software product are still being found after

 its release. Therefore, it is recommended using older operating system

 versions with all released vendor patches and updates for production. [18]

 Before going any further, it is important to consider that protecting a

 multi-user system is much harder than a single user system. If you are

 establishing protection on a dedicated mail/web/ftp/etc. server, disabling

 nearly all accounts, including anonymous mail and ftp access, and setting up

 restrictive access control (see 3.1.1.2) makes the task easier.

 On multi-user systems, your tasks must include proper local resource and

 access restriction (using quota, securelevels, permission checking scripts,

 systems security- and limit configuration files), and mitigating the chances

 for a local security compromise by disabling suid permissions where not

 explicitly necessary and updating remaining critical suid applications.

 To establish a secure environment, one more thing to do is to ensure that

 no modification to the files that you expect to be trusted, by using simple

 Perl or other scripts (I like Tcl a lot) that ensure file integrity. This

 should include checking of size, access and modification time, detecting

 recently created files in paths reserved for privileged accounts, and

 cryptographic checksum comparison. This is basically the job of host-based

 intrusion detection, whose purpose is to detect irregularities that can be

 signs of security compromises. To really ensure data integrity, cryptographic

 checksum comparison has to be commenced from a completely trusted environment,

 such as a write protected removable media from which is booted and which

 contains all files necessary to validate checksum information. To be able

 to actually trace back and recover from occurred unattended modifications,

 there is no other way than having data recovery mechanisms present (be

 it in form of high-level RAID, full backups, or regular site mirroring).

 3.1.1.2 Establishing access controls

 Before thinking about any kind of (password-) authentication, basic measures

 should be established that narrow down the amount and range of clients that

 can connect to your hosts or specific services. Access to services that are

 being used only internally, e.g. POP, portmap, or SNMP, should be blocked

 at your border router - specific configuration depends on how you are using

 your network, however, for most small web sites there is not much that speaks

 against only permitting incoming http traffic. Secondly, restrictive local

 access control should be established. If you can, permit only sessions from

 explicitly trusted hosts. For services run via inetd/tcpd and portmap, the

 access permissions are set in hosts.allow (while denying all default traffic

 in hosts.deny, if using restrictive controls), for other services there are

 separate access configuration files that need to be modified. The advantage

 of blocking lies also in the fact, that denied connections can be logged and

 help indicate possible security violation attempts. If really fail-safe

 audit trails are desired, nothing beats running tcplogd, udplogd and icmplogd

 running together with a syslog daemon that forwards all traffic to a loghost.

 A dominating rule for access control of any kind should be to enforce the

 predetermined security requirements by the system, not relying on users to

 uphold system security.

 The same rule applies to all kinds of password-based authentication. While

 buffer overflow and other exploits have been gained popularity to overcome

 system protection, during times where less vulnerabilities are being exposed,

 attacks against the weak password authentication scheme should never be

 underestimated. [19] Therefore it is mandatory for the authentication system

 to enforce the use of strong passwords by everyone, especially root, and

 password aging - to prevent compromise due to sniffing or successful attacks

 against individual users. [20]

 3.1.1.3 Application security

 The core of the currently present security problems certainly revolves around

 deficits in the countless and complex server and client applications, which

 often possess security relevant bugs. While there is no definite solution and

 no final proof for the security of an application, evolving incident response

 capabilities and full-disclosure security are helping to discover information

 about serious issues earlier, a situation of which you should take advantage

 by frequenting security- and your vendors sites to periodically gain

 knowledge about latest serious vulnerabilities, install patches, and if your

 system has been exposed for a long time by containing a serious bug,

 performing integrity verification and intrusion checking measures.

 Regarding the technical aspect, understanding a program means being able

 to detect security issues, and browsing its source code for known security

 leaks [21] is recommended, if the application is in beta development stage,

 or a security critical application used on many of your networks machines.

 World Wide Web related traffic is a specifically fragile topic, because it is

 often used for gaining access to system whose overall protection is relatively

 strong. By being able to chose exploits from a huge collection of existing

 vulnerabilities in HTTP servers, Server Side Includes, and CGI scripts an

 intruder has many possible starting points for compromising security. It is

 important to consider every CGI script and similar facilities belonging to the

 web server as a single server application, because they are executables that

 are evaluating remote content on the web servers machine. Be very careful

 while configuring the HTTP servers runtime permissions and minimize the amount

 of CGI scripts, for example by using Java or similar content to enhance a web

 sites appearance at the clients end, just like you should minimize the number

 of other servers that you run off your site.

 Upcoming reactive solutions to provide application security are represented

 by applications that try to harden the operating systems protection against

 common security vulnerabilities, by restricting processes' access to resources

 (like special files, memory page segments and kernel capabilities) and issuing

 alerts when access to such resources is attempted. Examples include StackGuard

 and Unix kernel patches to protect stack segments and internal registers, and

 stack shield, a compiler wrapper that produces binaries with self protection

 against boundary overflow attacks by wrapping the compilation at assembly

 level. Obviously, these are only temporary solutions against a specific

 (but widespread) problem category, but show that the problem has to be solved

 by improving security measures at operating system level. Nevertheless, it

 is strongly recommend to make use of these solutions for now and make use of

 intensive auditing to compensate the existent weaknesses.

 3.1.1.4 Auditing - reactive and proactive measures

 To provide coherent security, the process of auditing has to be applied

 frequently, to improve not only the security of applications, but of all

 substantial and abstract parts information systems consist of.

 Reactive auditing means a constant verification that preventive and protective

 measures are sufficient by improving configuration and design of systems,

 software and network design. An important part of this task is to routinely

 identify and evaluate occurring events on a system, to be able to discover

 vulnerabilities as they are exploited or created. Therefore, auditing should

 start at kernel level, in form of detailed verification and ability to

 record all of the systems actions, independent from logs generated by

 applications themselves, because they can never fully be trusted, as shown.

 Platform specific experimental approaches exist in form of the system events

 logger ssyslogd, or the kernel-level execution logging lkm exec.c, but current

 kernel based event logging are not yet standardized, or implemented into

 operating systems, so that secure kernel-level auditing is problematic. It is

 generally advisable to make use of auditing and intrusion detection tools that

 work on a remote, networked basis, to enhance reliability and availability of

 audit trails in critical events. If you want resource protection at the

 strongest level possible, a currently possible solution you should consider is

 auditing using remote real-time auditing agents (IDS, data verification-

 or event monitoring applications capable of transmitting traffic to a central

 evaluating machine) and half- or fully automated real-time traffic and

 signature processing to be able to react to all events threatening system

 integrity immediately. If such agents are used, and it is technically possible

 to disable remote management facilities, it should be done, to provide a safe

 one-way reporting channel without opening a possible point of access. [22]

 Besides all these sophisticated measures, you should never forget to implement

 the proactive aspect of auditing, which means to systematically scan your

 system remotely (and locally if necessary) for exploitable vulnerabilities.

 Proactive auditing is so advisable because it means to examine your systems

 from the 'black-hat' viewpoint of an intruder, meaning with the goal in mind

 to be able to gain unauthorized access to it. You might always have forgotten

 some updates or configuration changes, leaving a critical hole open, and

 therefore combined reactive and proactive auditing is necessary to mitigate

 the possibilities for an intrusion. See also [23].

 3.1.2 Defending your data confidentiality

 Ensuring confidentiality of your data means to effectively protect

 sensitive and private information of any kind, stored on and transmitted

 over systems that are connected to the Internet, from being accessed by

 any external party. Pre-requirement is to possess an environment with intact

 integrity of data and functional access control mechanisms, to prevent leaking

 out of confidential information from a supposedly trusted storage source.

 For accomplishing this task, cryptographic measures are essential. Wherever

 possible on a network, services using plaintext authentication and sessions

 should be completely disabled and replaced with equal services supporting

 encryption, like ssh for telnet and r-commands, sftp for ftp, SSL instead of

 base64 encoded plaintext basic authentication for web servers, and kerberos

 authentication instead of plaintext authentication for services like POP,

 IMAP, and nntp. While plaintext services seem to be a bigger threat to

 privacy than to effective system security, they aren't. A huge number of

 intrusions commenced by knowledgeable intruders are performed by gaining

 access to a huge number of machines all around the world, installing stealthy

 packet sniffing programs with the purpose to gain as many login / password

 information as possible, hoping to gain access to high-profile systems which

 are then invaded and compromised by attacking local system security.

 Additionally, a compromise of authorization methods can be used to gain access

 to trusted resources. Basic authorization is realized at protocol level, and

 therefore protection against attacks that involve spoofing has to be present.

 While vanilla IP spoofing is itself no confidentiality issue and cannot be

 prevented, security of TCP sessions should be improved by assuring that all

 trusted systems use unpredictable TCP sequence numbers, to prevent tcp

 hijacking. Another vulnerability lies in the ARP (ethernet address resolution

 protocol). Dynamic ARP cache entries can be manipulated using forged ARP

 traffic; use of static ARP cache entries, especially on routers and switches

 is recommended, to prevent malicious packet redirection to arbitrary hosts.

 Once the security on a system is compromised, session hijacking and sniffing

 from a client process' memory is quite feasible, for example by using process

 tracing. While the use of programs like SSH is strongly recommended, another

 important factor is keeping contact to system administration of other remote

 trusted systems, making sure that their system security is not the weakest

 link in your chain of resource protection.

 Further methods of providing confidential transmission of data include using

 IPSEC tunneling and IPv6 protocol capabilities, and similar protocol based

 solutions, as well as Virtual Private Networking, all of which are generally

 advantageous to use, but cannot be fully recommended yet to be used by

 everyone because of today's lacking standardizations, public key infrastructure

 and wide-range implementation in operating systems and applications.

 To assure local data confidentiality, which can, in addition to assuring

 privacy and anonymity, play an important role to prevent user-level attacks

 against data and privileges of other user or administrator accounts, I

 would advise reading [24].

 3.1.3 Defending your network availability

 Assuring availability on your network means to protect your communicational

 in form of a guaranteed minimum bandwidth and impenetrable functionality of

 processes which use remote data transmission. To define requirements for

 a defense is a delicate task, because for an attacker, the potential of Denial

 Of Service [9] attacks often depends on gaining access to any host(s), which

 do not have to be associated with your network at all [25]. In the beginning,

 possibilities for attacks which an attacker could perform with minimal efforts

 have to be eliminated. As mentioned in 3.1.1.1, your systems should be

 prepared against application- and kernel-level (including IP protocol stack)

 attacks, by having applied specific vulnerability and flood protection

 patches, for example in form of a robust syn cookie implementation [26].

 To prepare against Denial Of Service, distributing tasks over different

 hosts is an invaluable method of minimizing impact of (wanted or unwanted)

 traffic irregularities and problems, because the number of unavailable

 services during such periods are minimal, and an attacker would have to

 concentrate on many targets. If administrating a larger network, separating

 network segments via routing, packet filtering capable device can make

 sense, to generate zones of different availability, which will help you to

 set different priorities on a network, along with using more than one uplink

 channel at different spots of your network, raising the chance of being able

 to have emergency or spare bandwidth to the rest of the world in case of

 ongoing massive flooding attacks.

 The next important thing to do is to secure your routing infrastructure, by

 preventing intrusions made by spoofed or unauthorized routing protocols coming

 from an attacker. It is generally advisable to only accept ICMP, TCP and

 UDP traffic to prevent arp, rip and other fragile protocols to penetrate

 your internal hosts and routers. This also applies to closing down

 tcp/udp ports used for routing at your network border, if using for example

 routed (udp) or routers running border gateway protocol (tcp). If you rely

 on a firewall/gateway solution for blocking outside access, it is advisable

 not to allow outgoing ICMP/11 (time exceeded) messages, which can be used to

 map your protected network, even if most tcp/udp ports are being blocked [27].

 3.1.3.1 Guidelines to defensive routing

 From a strong security perspective, routing should have the ability to prevent

 traffic that could be malicious or unwanted from entering or leaving a network

 and perform this task with a minimum of extra routing features and access

 rules, which could degrade the routing performance during high bandwidth

 traffic, possibly caused by attacks, and represent potential weaknesses, as

 increased complexity always does in a network environment.

 Routing and packet forwarding/switching should never be allowed on firewalling

 and gatewaying machines that process packets themselves, because it could be

 exploited to bypass gateway and firewall rules, penetrating internal hosts.

 One of the most important things (which everyone should know about anyway) is

 to disable outgoing directed broadcast traffic that can give an attacker the

 opportunity to use your networks broadcast replies to generate icmp and udp

 broadcasts storms directed against another victim (smurf / fraggle attacks).

 Using SNMP capabilities of routers can be advantageous to detect and respond

 to irregularities or possible intrusions, but should be done with care, as

 securely configuring this facility is absolutely critical [28]. If you are

 inexperienced with SNMP and don't already have a concrete concept of using it

 to gather statistical network information, you are well advised to disable it.

 Further extra routing capabilities (like Cisco's CDP, debug mode, link state

 routing) should not be activated, especially not on border routers, unless

 particularly necessary, with the exception of tcp intercept features [29].

 If bandwidth and availability is critical for your network, or if your uplink

 charges you depending on the amount of traffic sent, it is advisable to

 establish especially restrictive access rules at network borders by blocking

 most in- and outgoing ICMP datagram types if unnecessary for your internal

 network tasks (especially unreachables, which can help to multiply effects of

 DoS attacks and udp probes), and to deny access to privileged ports on which

 internal services are run or which are not needed to be accessed by external

 hosts at all [30]. Additionally, you should evaluate your router logs and

 examine status information on your routers periodically, to detect networking

 problems, and eventually change to restrictive or emergency access lists you

 have previously compiled, for the case that network critical events occur.

 3.1.3.2 Tracing: capabilities and problems

 Origin tracing is a measure essential to network protection and incident

 response. In the context of packet switching based networks, it means to

 reliably determine the origin of incoming packets, including packets with

 forged IP source addresses. Determining the origin of incoming forged

 packets is necessary to contact the proper administrative authorities

 for the network(s) or host(s) from which an attack - mostly packet flooding

 DoS attacks - is coming in order to stop the attacks by either fixing security

 leaks on systems which the attacker is using or by getting attacking systems

 taken off the network.

 One method of generating audit trails on your routers, that help in improving

 tracing capabilities, is to establish ACL rules that permit, but log traffic

 that matches patterns which are commonly found in DoS attack traffic [31].

 However, by instructing your routers to generate extensive logs, possibly

 using extensive ACL rules, you are risking to cripple your routing performance

 and actually decrease your capacities.

 To sites for which it is critical to be able to establish tracing

 capabilities, be it for network observation or incident response ability,

 I would recommend to do the following: at your network border, set up routers

 that do plain IP based routing with a minimum of enabled access rules and

 features. The border routers should then, additionally to routing traffic,

 forward all traffic to a separate router, which null-routes all incoming

 packets and is only used for forensic purposes. This 'forensic' router then

 has all facilities and features enabled that help evaluating the traffic and

 creating valuable audit trails. This router can be slowed down, because it

 is not dedicated to routing, but only to evaluating and auditing traffic.

 Note that this is of course only a solution recommended for big companies

 and backbone providers who can afford running such an infrastructure.

 Additionally, your routers should make use of NTP (network time protocol),

 because tracing relies on a time-based correlation of log events, and slight

 time differences can already complicate log evaluation (for example, if you

 have to evaluate a huge amount of packets, each with a different forged

 source IP address, that have been transmitted in a short amount of time).

 The above measures are meant to help tracing packets using hop-by-hop

 tracing, which means to trace packet streams by evaluating the routing

 entries of each router between source and destination host. A packet with a

 forged IP address is followed back by determining from which port it entered,

 and then continuing the trace on the router associated with that port, until

 reaching the origin. This is hard to do because it requires all involved

 uplinks to coordinate in performing the trace over their backbone, and it has

 to be performed quickly, because the routing entries are automatically cleared

 shortly after a finished or failed host-to-host connection.

 See Figure 1 [32] for a scenario of tracing back a distributed attack.

 Another way of associating incoming packets having forged source IP addresses

 is to identify them by MAC (media access control layer, usually ethernet)

 addresses, which are generally not spoofed. Using IP debugging features on a

 router, one can determine the MAC addresses of incoming packets, and save

 them for reference and later backtracing or compile access control lists on

 all border routers that deny and log packets with the concerning MAC

 addresses, if technically supported.

 3.2 Problem specific protection

 Despite all efforts to improve overall security by properly protecting and

 maintaining a site's resources, risks to become a victim of new or unresolved

 vulnerabilities or general weaknesses present in the network architecture

 may be mitigated, but not eliminated. Yet undiscovered and non-public

 vulnerabilities might exist in popular server software, that are not being

 detected despite of performed source code auditing. A fundamental security

 flaw could be present in your core operating system or protocol stack,

 temporarily rendering all security efforts useless. You might become a

 target of attacks which exploit fundamental weaknesses of the current

 Internet architecture, including DNS and PKI hierarchic structures [33],

 protocol weaknesses, and resources of other, insecure systems turned against

 you [34]. Therefore, it is required to adopt strategies to prevent and

 recognize ongoing events endangering system security and emergency methods

 to stop such events.

 3.2.1 Protecting against viruses

 Since the aim of this paper is to help protecting your network against new

 kinds of attacks, what is my point of coming up with viruses? Actually, virus

 related problems and problems caused by system insecurity and intrusions have

 some points in common, especially regarding their evolution and effective

 countermeasures against them. A virus is a pattern that self-replicates and

 tends to be spread to other systems from infected ones, be it by exploiting

 weaknesses of the system, or weaknesses of the systems communication

 infrastructure (i.e. using human interaction or popular distribution channels

 in a network to spread). So, viruses take advantage of the infected systems

 to penetrate further systems from there, meaning that they actually belong

 in the category of distributed attack tools (though they are not human-

 controlled and thus target random victims).

 The interesting thing about virus and worm code is that there are few

 limitations regarding its possible appearance. It can exist in virtually

 infinite new forms, and use an infinite amount of new methods to propagate

 and operate, making detection a hard task [35]. The current anti-virus

 solution is to maintain pattern databases of today's known viruses and scan

 for their occurrence. However, pattern scanning is obviously a futile method

 against viruses, since an infinite number of new viruses with new patterns

 can be created. This is also the reason of virus outbreaks despite widely used

 and updated Anti-Virus software, as caused by the Melissa worm, CIH,

 BubbleBoy, etc. After the outbreak of such threats, they can be recognized,

 but this is an insufficient security strategy which people should not rely on.

 If I wanted to spread a virus, I wouldn't have to write an entirely new one.

 Implementing unknown or modified self-encrypting algorithms into a virus and

 deploying the encrypted version would suffice, as not a single scanner can

 actually detect or reverse engineer encrypted viruses.

 (Fine, they can scan for the self-decryption code once they've seen it and

 updated databases, but that won't help a scanner discovering it initially).

 A somewhat better solution is heuristic program analysis, which detects

 what kind of functions and resources a program is designed to use, determining

 virus-like character. Again, those scanners don't detect encrypted viruses.

 As I mentioned in section 1.3.2, solutions like present anti-virus scanners

 give people a false sense of security. Once they run updated scanners, they

 often assume to be 100% safe, and happily access untrusted binary executable

 content. Instead, the solution needs to be based upon restrictive guidelines.

 Applications (and all content that will be evaluated and executed by

 interpreters or as machine code) need to be either coming from a trusted

 source, compiled locally from source code that can openly and freely be

 reviewed before compiling and running it, code running with a drastically

 reduced set of permissions and system access, or else they must not be

 executed at all costs. Since this is especially hard to realize with current

 desktop operating systems and software models, new software standards and

 operating system requirements have to be formulated to effectively cover

 security deficits in present software technology, as proposed in section 4.2.

 3.2.2 Using Intrusion detection systems

 Host- and network based intrusion detection can be described as a set of

 methods for discovering attack signatures in network traffic and system data.

 The above introduction to viruses and problems that are encountered in the

 development of countermeasures helps to show the parallels that exist with

 the IDS approach of auditing countermeasures against intrusions. Much like

 virus technology, intrusion methods are actively being developed as long as

 new software is written, which can never be totally free of security

 relevant vulnerabilities. This is one way an IDS can be bypassed by an

 intruder, by exploiting an unidentified vulnerability for which intrusion

 attempts are not known and therefore not being monitored. But intruders also

 have a large disposal of methods available to commence well-known attacks in

 new forms that are not being detected by IDS. This is a very similar problem

 to the anti-virus detection problems with encryption and other machine

 language level tricks to perform identical virus tasks with new patterns,

 fooling pattern detecting scanners. When anti-virus software became popular,

 this game (or war, if you prefer) of evasion and detection started between

 virus programmers and anti-virus companies. Now that IDS are increasingly

 gaining popularity, it seems that similar evasion techniques are being

 actively developed to bypass them as well. It is obvious that there are

 fundamental weaknesses in today's approaches to intrusion detection.

 See [36] for some brief explanations on existing IDS evasion tactics.

 Something else to consider is, that people who configure, run and periodically

 maintain recent IDS are probably sufficiently enough aware of security to

 be sure to use updated and secure software (well, at least they should!)

 and will not be affected by most of the known vulnerability exploit attempts

 an IDS registers and reports. If being on the Internet, it is unavoidable

 to be scanned for vulnerabilities now or then, and therefore, false positives

 will accumulate, which alarm an administrator but pose no real threat. The

 problem here is, that if someone repeatedly hits your front door without the

 possibility of him getting inside, chances are that you will get weary of it,

 and, in case of a real break-in, be less alerted than you should. Sites that

 are most vulnerable to known security vulnerabilities often have insufficient

 time, knowledge, money or other resources available to be able to recognize

 and find these vulnerabilities. Unfortunately, such sites will probably not

 have IDS software installed, or even know about its existence.

 This shows that a coherent preventive solution may include usage of intrusion

 detection, but not as a single and ultimate auditing measure.

 Once suspicious audit trails are generated, by intrusion detection or other

 facilities, correct assessment of the event and appropriate actions will play

 the key role. To help in assessing such events, many independent facilities

 that each provide protection and audit information separately are of

 advantage. If you use IDS, I strongly recommend flexible, configurable

 software, because you can then perform a system auditing and disable

 configuration entries that cause false positive alarms [37]. In a perfect

 system, an administrator would have the ability to monitor all system events

 down to function calls and all user activity rigorously, but could chose to

 log only certain events at system and application level that can have a

 critical impact on security. Weak points of today's security technology

 include the lacking of continuous, permanent and fail-safe protection of a

 system at low level whose security and performance cannot be penetrated

 itself, and the enforcing of a restricted system environment that grants even

 the most privileged processes no complete control over the systems resources.

 These are obviously deficits which require new technological and systematic

 long term approaches and cannot be fully resolved using currently available

 standards and production software.

 3.2.3 Backdoors and trojan horses

 There will always be possible scenarios in which your system can be fully

 compromised, be it by a new, unidentified vulnerability, or by a vulnerability

 that has been overlooked or exploited before security measures and updates

 were applied. Therefore, awareness of existing methods of intrusion software

 - which can be designed to help an intruder keep full access to a system,

 including self-hiding, audit trail suppression, manipulation of any data that

 can assist in discovering compromises and assuring anonymity to the intruder -

 has to be created, before effective and (hopefully) reliable countermeasures

 against a compromise can be taken. By asking yourself what an intruder

 could possibly do after a full root compromise, one realizes that regarding

 the security impact, there is not much difference to physical access, at least

 if today's broadly used operating system software is used. Don't think that

 trying to discover known types of backdoors helps you to reliably recover

 from an incident (see 2.4), but it is necessary to actually find out that your

 system has in fact been compromised.

 Scheduling scripts using cron(8) or at(1) which scan for access and change

 time stamps can sometimes help to find traces of unauthorized access [38].

 A backdoor is any executable code that is used to grant an intruder access

 to a system without having to go through authentication, and possibly evades

 creation of audit trails. It can exist in form of executable programs, kernel

 code, or subtle configuration changes that help to bypass authentication.

 Popular ways of launching backdoors are running them on system start via

 altered SysV init scripts, preference files, or the inetd.conf file, which

 decides what programs to start on connection requests to a service port.

 Trojans are programs that serve a legit purpose, while performing unauthorized

 tasks such as letting an intruder gain access on special conditions which the

 intruder can generate. These kinds of trojans are mostly hidden in recompiled

 network daemons, and can sometimes be found by searching for phrases in the

 binary that seem to be passwords or encrypted strings (this will only work

 if a backdoor password is stored in a character string buffer, else the

 executable would need to be debugged, traced or reverse engineered). System

 access backdoors which are not created using trojaned executables or

 configuration normally run as own processes which offer some kind of remote

 access to an attacker (excluding privileges elevating backdoors on multi-

 user systems, which are mostly hidden in suid/sgid binaries). Therefore, a

 way of detecting a compromise can be analysis of the netstat(8) output, or

 using lsof(8) to determine which program utilizes certain ports and other

 resources. Traffic to destination ports that are not associated with known

 services running on the target machine, which can be found by using the

 above mentioned tools, or analyzing SNMP and router logs statistics can

 be a sign of intrusions. However, if a host is compromised, an intruder

 could have taken care to manipulate analyzing programs and audit trails so

 that his traffic is not visible from the host. It is also possible that

 intruders set up 'booby trap' programs, trojans of system utilities that

 are frequently used by administrators (ps, du, ls, who, etc.) which primarily

 hide output that would be compromising for the intruder, but can also be

 manipulated to do unwanted things when being called with administrator

 privileges (alarm the intruder, change files, open a backdoor, etc.).

 As a general preventive measure for detecting trojans, it is recommended to

 watch network traffic and system events from the beginning on, determining

 statistically averages of normal network usage. After such an average profile

 of network events is generated, one could perform penetrations in form of

 Denial Of Service and exploit attempts and watch for significant changes

 in the networks traffic flow. When real intrusions or intrusion attempts

 occur that are not specially being monitored for, a prepared administrator

 will have better chances of recognizing them by comparing statistical

 irregularities. This method might be gaining importance as stealthier

 methods to commence intrusions and to establish backdoor access become

 popular [39]. Using the present security level features of operating

 systems can also be recommended, to prevent interfering with specially

 protected files, devices or performing other privileged tasks as root

 that should not be possible to do without physical access. Secure levels

 can restrict the privileges of the root account so that it is not possible

 to do everything possible for the kernel with highest user privileges.

 However, mind that by rebooting to a different environment, this is still

 possible, because administrators having console access must be able to

 use these privileges (for example, to add or remove files and reconfigure

 the system). If you rely on security levels, it is mandatory to prevent

 your system from loading the operating system after being rebooted without

 user interaction at the console. You are strongly encouraged to set BIOS

 and other boot-time loader passwords; else, after a compromise, an intruder

 could remotely reboot the system into a insecure level, or with a

 kernel compiled by himself, instructing it to go back online after rebooting

 and granting the intruder remote, complete system access.

 3.3 Conclusions about present security technology

 As it seems, the security features of present software and networking

 structures are sufficient for achieving a secure environment, if some

 effort is put into the process of systematically securing, protecting

 and auditing systems. However, the present security features cannot

 guarantee that a system is safe from intrusions and other security relevant

 attacks with complete reliability. Not to mention the problems that many

 people have with security because they are lacking detailed technical

 knowledge, sufficient time or financial resources for establishing a

 sufficient network protection. There are obviously moderate deficits in

 the current information security architecture, which need to be resolved

 by finding and applying long-term solutions to the current software and

 network infrastructure to act against fundamental weaknesses which can

 currently be avoided but not completely eliminated.

 4 Proposed future security architecture improvements

 As both security technology and system intrusion methods are advancing,

 the situation is beginning to resemble a competitive race between different

 parties trying to improve white-hat technology and black-hat technology.

 Since the advancements in attack technology are happening unpredictably and

 many of the new intrusion methods are evolved without public disclosure,

 further security impacts and threats can not reliably be predicted. Therefore,

 the only approach for the future is to make coordinated efforts at improving

 the white-hat aspect of information technology, which can be done publicly

 with systematic, controlled approaches, in the best and most effective

 possible ways. The following proposals are aimed at programmers, free

 developers and companies, and also attempt to assist everyone who is

 unsatisfied with his present security architecture to point out possibilities

 of migrating to improved security standards. The main approach I will be

 taking is to identify basic weaknesses in the security model of the

 Internet and today's networks, and propose approaches to specifically work

 against these existent certain weaknesses.

 4.1 Improving incident response capabilities

 One of today's biggest organizational problems on the Internet is the

 uncontrolled flow of information. Because of the decentralized, non-

 authoritative nature of the Internet, information is being distributed

 over a variety of different channels, including security organizations,

 but also news groups, and media sites, which often do not provide reliable

 and complete information, causing unnecessary panic and paranoia on one hand,

 and insufficient awareness on the other. There exists a deficit in present

 incident response structures through which security relevant information

 is being gathered, evaluated and distributed.

 4.1.1 A new approach to incident consulting

 As technology increasingly tends to outstrip policy, user education and

 transparent information exchange are gaining importance. Incident Response

 Teams should no longer operate within restrictive guidelines. One of the most

 important tasks of incident response should be prevention. This should be

 realized by practical education and promotion of open security models.

 Security consulting should generate awareness that the 'security through

 obscurity' principle is not working against problems, but making things

 worse in the long term. Preventive measures should also include distribution

 of intrusion methods and tools, as well as long term weaknesses to the

 public. Generating awareness and educating people towards following the path

 of a hacker ensures that they themselves can realize appropriate security

 measures and recognize incidents and threats. It should also be mentioned that

 such a strategy could drastically reduce the expensiveness of information

 security in the future. [40] Incident response should aim to offer as many

 as possible different approaches and options to users regarding the solution

 to a problem. When offered many unique solutions, users can combine the

 different approaches and build scalable solutions. By being able to choose

 and weigh aspects of different options, they will also be motivated to

 get deeper into the details of the technology they use and might find new

 security solutions they can apply themselves. Another important service which

 incident response and emergency consulting should offer is informal and

 anonymous consulting. A big present problem is that especially companies are

 afraid of image and popularity loss when they have experienced compromises and

 should be releasing public information about it. If the task of showing such

 organizations that admitting to having security problems is the first step

 to improving their security is too hard, they should at least be assured

 that they can get anonymous consultation and emergency services, to help

 them in performing some 'first aid' security measures and to evaluate and

 distribute possibly valuable information about such incidents, which

 would have otherwise not been gained.

 4.1.2 Incident response and law enforcement

 Originally, incident response capabilities have been established by military

 or government agencies and big companies. One of their primary tasks was to

 collect notifications of intrusions, investigate (i.e. track down the

 responsible individual(s)) and, in most cases, to hand their information over

 to law enforcement. In my personal opinion, law enforcement should be

 reviewed critically when it comes to computer crime prevention. The reason

 is that the effects of law enforcement are, in this case, very limited.

 Intruders can be tracked, which however requires reasonable effort most of

 the time, not to mention the poor efficiency of computer crime trials, but

 the problem is that the possibility of incident occurrence is not related

 to single intruders, but to the level of security present on your network.

 If you manage to track down a particular individual compromising your

 security, but do not greatly improve your security after a security incident,

 chances are good that intrusions from other people keep occurring.

 Prevention of computer crime in general cannot be established by introducing

 harder penalties or better methods of law enforcement either, as deterring

 measures to prevent committing of crime can be considered as inefficient in

 this case [41], and a prevention system that relies on extensive reporting

 and countermeasures against any insignificant intrusion related activity

 could even lead to Internet security getting worse [42].

 4.1.3 Establishing an incident response infrastructure

 As a measure against developing intrusion technology, information exchange

 between institutions and organizations, companies and countries play a key

 role in early identification of new software, methods, and strategies adopted

 by intruders, which is essential for the security industry to keep up with

 them. Insights about methods that have individually proven to be successful

 against intrusion or attack methods need to be spread to improve global

 security. Incident Response Teams have to consider offering solutions that

 take common organizational problems into account like low budgets for

 security and fear of image loss. By designing solutions and emergency

 measures that are applicable despite of such problems of companies and

 organizations, incident response will assure helping a larger community,

 and incident response and consulting services will also gain popularity.

 In the same way in which security organizations and private Incident

 Response Teams should be cooperating with each other, an incident response

 structure should be established in form of a global security consortium,

 that coordinates information exchange between national, local, and private

 Incident Response Teams. If members from as many as possible countries would

 offer emergency consulting and incident response, while featuring 24 hour

 hotlines with real-time support, anonymous incident reporting, and incident

 reporting over the Internet using secure services, there would be an ideal

 flow of incident information, statistic information and latest security

 measures. Additionally, all options, including law enforcement, should be

 optional for help seeking attack victims, to enhance flexibility of the

 offered services, and different urgency levels and guidelines should be

 established, to assure that individual emergency incident response is

 available in wide spread or specifically imminent cases.

 4.2 Operating systems

 A coherent security architecture must be based on security established on

 different recursive layers of information processing. Strong security

 capabilities of the operating system are mandatory so that further security

 implementations in facilities such as network transport, user access handling

 and application stability can have reliable effects. The following section

 deals with some of the basic features that should be implemented at kernel

 level to enable high-level information handling facilities to provide a

 maximum of stability and protection to information systems.

 4.2.1 Privilege separation and kernel-based security

 Establishing security at system kernel level means to achieve optimal

 control, stability, and predictability of low level system events. For any

 truly secure operating system, it is therefore mandatory to use different

 security levels in which it can operate. At least two different modes of

 operation should be established, a maintenance mode, in which all systems

 resources can be freely accessed while being off-line, and a regular mode,

 in which the kernel will protect critical and fundamental system facilities

 and prevent any user or super-user intervention against these to assure

 basic system stability and security. [43]

 The next security measure to apply to kernel design are better user-level

 privilege restrictions, to narrow down possible misuse of functions which are

 not supposed to be called in certain process- or privilege specific context.

 Privileges including the triggering of system events and access to resources

 and data need to be separated and managed individually by the administrator.

 If an access matrix could be created and managed, which controls access

 over all specific privileges, compartmented sets consisting of only the

 privileges necessary in each case could be delegated to specific processes

 and entities (different user levels / accounts). One set of permissions could,

 for example, be represented by the network family of functions, using access

 control to manage user level based privileges of opening different types of

 sockets, binding to privileged ports, or establishing active and passive

 connections. Additionally to determining privileges dependent from the file

 system flags of a binary and the authorization of the entity under which a

 process is run, dependence of other conditions should also be relevant to

 determine which privileges are delegated to a running process; for example,

 if the factual user ID does match the effective user ID, or if a process is

 running in a restricted (chroot()'ed, for example) environment. [44]

 Further methods of hardening the operating systems core operations include

 methodological and structured kernel design, aiming at redundant security

 and verification layers, abstraction of different compartments of kernel

 tasks (I/O operations, cryptographic/mathematical operations, memory

 and resource access, network related functions), a maximum of facilities

 that can work and fail independently from system stability and security,

 and a kernel designed to use only completely defined, audited and documented

 operating methods to ensure reliable kernel behavior under all circumstances.

 4.2.2 Kernel-based authentication

 One of the big security weaknesses of systems exposed to the Internet are

 remote vulnerabilities of network daemons which can be exploited without

 even having finished the authentication stage of a service. Since the

 authentication methods of most service protocols are defined in detail

 via RFC and other established Internet standards, it would be possible to

 perform at least the authentication part of many sessions with a unified

 interface, just like incoming packets are all handled and processed equally

 by a systems protocol stack. I am only suggesting this as an optional solution

 to eliminating some of the widespread weaknesses in server software, and if

 authentication is applied at kernel level, it must not only be designed with

 security, but also availability, stability and performance in mind. In my

 proposed approach, authentication would be implemented in the protocol stack,

 and could be optionally enabled for certain services. The protocol stack

 would, after receiving a session request, act as a proxy and establish the

 session at kernel level after accurately identifying the client is making a

 valid request (for tcp services, by completing the 3-way protocol handshake),

 and before passing session control to the application authenticate the

 session using the authentication standard of the services protocol which is

 assigned to the destination port and then invoke the actual server

 application. From there, it could either, as a temporary solution be checked

 that the authentication fields contain sane values and the session including

 the initial authentication data is then passed to a traditional application,

 or as a better future method, the kernel would be passing an authentication

 token to a future server application which would start taking control of the

 session after the authentication stage. This service should be an option

 that can be activated as an alternative to traditional session initiation.

 If applied at kernel level, it could also take a unified approach at secure

 authentication and session key exchange via kerberos or other cryptographic

 challenge protocols [45]. The described method could, of course, also be

 applied to a system by implementing it into a multi-service network

 daemon similar to inetd(8).

 4.2.3 Privilege and permission separation

 4.2.3.1 Sand boxes versus protective cages

 To effectively separate the privileges of a users' processes, a system

 needs to employ what I could be called access oriented design - kernel based

 access controls have to be present in a multi-user system architecture.

 This can be realized either with access oriented processes or access oriented

 user environments, which will be explained in detail below. The purpose of

 this design is not only to enforce access restriction but additionally the

 implementation of trusted paths, through which trusted information and

 executable content can be accessed and executed while being protected against

 manipulation of information, malicious code, and unwanted execution of

 generally unclassified or untrusted code. This concept could be called

 'mandatory restricted code execution' and is especially necessary when using

 closed-source systems and applications where the user can not clearly

 determine the actions taken by a program, and to protect users against being

 tricked or forced into executing trojan and malicious code, that has either

 been acquired or introduced by an intruder who manipulated the system.

 In the "sand box" model, user processes are access oriented receiving only a

 restricted set of resources and privileges, that forms a virtual environment

 in which they operate. This prevents the processes from executing external

 resources and any untrusted code that has not been approved as being a part

 of the "sand box". An example for this is the Java Virtual Machine (tm) and

 various script languages for web content which are executed at the client

 side. However, these kind of restricted processes and especially shells are

 hard to securely implement and to manage, they are overly confining and

 they are based on a security design which can be overcome, if any aspect of

 an allowed program, privilege or resource should accidentally allow to

 execute arbitrary programs or code, breaking the restricted environment.

 An alternative model is an access oriented user environment which delegates

 privileges to each process based on access control guidelines and

 restrictions related to user identification and the trusted state of binaries

 and files. I refer to this model as the "protective cage", in which the

 associated processes reside inside a protected environment with the full

 set of functions and resources at their disposal (although access to

 them is of course still being controlled at kernel level). To enforce

 mandatory restricted code execution in this model, the system should maintain

 a list of trusted system binaries and their cryptographic checksums. These

 checksums could be kept in a special area of the file system or configuration

 database file, and must never be able to be modified or created in the normal

 system security level. To make changes to this database, physical interaction

 should be necessary (e.g. rebooting the machine into maintenance mode and

 operating at the physical console) for the super-user account to commit any

 changes. In the normal system mode where critical resources are being

 protected, the kernel must recognize such files and perform cryptographic

 file integrity verification on them. If the cryptographic verification fails,

 the files should be flagged as untrusted and therefore non-executable, and an

 alert should be automatically issued so the original files can be restored by

 the administrator. This protection is especially recommended to be applied to

 setuid/setgid programs, shared libraries, kernel modules, system maintenance

 tools, and servers that run with elevated privileges. It should also be used

 to generate a restricted environment for users with elevated privileges, who

 can then chose to activate the restricted environment (the "protective cage")

 at any time, in order to be sure to only access trusted binaries which have

 been initially approved. A feature which could greatly support this scheme

 would be file system implementations which support new flags and file system

 attributes which represent capabilities and privileges [46].

 4.2.3.2 Differentiated access permissions

 Separating access permissions to data and shared resources primarily serves

 the purpose of achieving confidentiality for individual users. Cryptography

 should be a standard feature of future file systems, to assure privacy, and

 to prevent attacks aimed against the compromise of confidential data. This

 approach should include time-based security, unique key creation for each

 user, and transparent encryption and decryption features of the kernel

 coupled with user specific data keys. That way, a separated access to

 non-shared information resources on one system could be achieved, which

 would help to mitigate the potential of race condition exploits and

 espionage of security relevant or otherwise confidential information

 left accidentally unprotected by users.

 4.2.4 Auditing requirements

 Kernel based auditing facilities are key factors for establishing fundamental

 security and control on a system. One purpose of audit functions is to ensure

 that critical parts of the system configuration, which can have impacts on

 the machines security, meet certain security requirements in a way that

 implements the desired security policy. Parts of the system configuration

 compiled and implemented under individual human control (everything that is

 variable, configurable and optional for the user) should be evaluated and

 parsed in a restrictive way, that ensures fail-safe security. A systems

 interface should not be counterintuitive, but its error tolerating and

 tolerance features for arbitrary input must not exceed a maximum level beyond

 which erroneous and insecure configuration can impact the systems security

 measures, without refusing to accept such configurations or at least issue

 clear and understandable warnings. A common problem for large sites is

 to maintain secure configuration on a large amount of machines equally. My

 suggesting is to design systems which accept and propagate site policies,

 in form of distributed configuration management. A facility could implement

 features to transfer configuration information and desired system condition

 to other hosts on the network, cloning or reproducing a system state of one

 host which has securely been configured and audited with scrutiny to other

 machines on the network.

 The second purpose of auditing is to generate audit trails, information about

 system events, network- and user activity, which are needed to recapitulate

 the flow of events and identify possible intrusions, configuration errors

 and other critical irregularities. Though present logging facilities already

 generate an overwhelming amount of information, they do not greatly

 differentiate between regular, informational audit information and security

 relevant (audit trails that can especially show the existence or absence of

 intrusions and irregularities) as well as security critical (audit trails

 which are created when system security or stability is being or has been

 actively harmed) information. The monitoring of security significant events

 should be focused on, and stored in a way that one can easy differ between

 events showing unusual activity and information recording regular activity.

 Ideally, a system should shall have the ability of recording all occurring

 events down to single functions called at kernel level, and employ mechanisms

 which let the user selectively and dynamically manage the types of audit

 trails that the system should generate.

 System events which should especially be audited and extensively documented

 by auditing facilities include any processes initiated with elevated

 privileges, and events that could intentionally or unintentionally generate

 a point of access on a machine, such as binding to a port, handling data via

 low layer sockets or system calls, and the receiving of network traffic.

 These facilities must lay the foundation for the auditing requirements which

 have to be further implemented at higher levels, such as system loggers,

 process communication, and intrusion detection / auditing applications,

 which are described in the following section.

 4.3 Auditing software

 4.3.1 Evolving intrusion detection

 Since the first traffic loggers and port scan detectors had been designed,

 classical intrusion detection has been relying on monitoring network traffic

 and system events and identifying unusual actions and objects to determine

 intrusions. While this is a valuable concept, it does contain fundamental

 weaknesses (as described in 3.2.2) and has to be completed. Sophisticated

 attacks against a system which either employ evasion techniques [36] or try

 not to violate a given ruleset (for example, by gaining access from a trusted

 host and using compromised authentication data) can still very possibly be

 successful without even being noticed by classic detection methods. To

 substitute these weaknesses, future intrusion detection should be designed

 to detect intrusive events by employing heuristics. So, you should actively

 analyze all system actions and network traffic and intelligently determine

 what probably constitutes anomalous events. A sophisticated approach to

 intrusion detection heuristics would be to let an IDS analyze regular events

 on a network and supply it with hints about what could constitute an

 intrusion, in form of information about how different attack scenarios cause

 certain network and system events to occur, and in which contexts.

 An easier method would be to regard statistical anomalies as possible

 indications of an intrusion, outweighing occurrences of different events,

 depending on network throughput, connection states, errors reported by

 applications, etc. while differentiating between the severity of certain

 events, e.g. some events are regarded a less significant indicator for

 intrusions, so that it takes a huge amount of those events to trigger an

 actual match, and other events which are more security critical or more

 common and reliable indicators for intrusions are regarded as highly

 significant and trigger alerts after only few occurrences.

 Future IDS should additionally be able to distinguish between different

 attack phases. [47]

 IDS should react differently to these phases. While only internally

 recognizing initial information gathering, it should issue an alert when a

 system is being scanned intensively, and when an intrusion attempt is

 recognized that endangers system security, the intrusion system should,

 in addition to issuing an alert, actively facilitate corrective action to

 prevent impacts on security (depending on the kind of attack, filtering rules

 should be set, the intruders connection to the server should be terminated,

 or abusive access to a service should be revoked automatically). To determine

 at which point which action should be taken, threshold values, determining

 the maximum tolerable incident indicators, should be either configurable or

 determined by the IDS based on generic average values and the statistical

 analysis of traffic flow on the particular network on which it is operating.

 Another concept that is beneficial to intrusion detection operations is

 the ability to gain and evaluate the maximum amount of information about

 ongoing events as possible. Therefore, future IDS should work closer with

 audit trails produced at system and application level, and be generally

 designed as distributed applications, in form of remote network agents which

 gain and pre-process audit data and forward relevant information to a

 central, possibly dedicated host on which a IDS server is running and

 evaluating the different events by analyzing them in context.

 4.3.2 Evolving proactive auditing technology

 To verify the presence of robust and (mostly) impenetrable security measures,

 it is always advisable to perform active auditing in form of version and

 configuration reviews, and by testing servers and system protection.

 Since manual or systematic file auditing of the code base would be very

 costly and inefficient, the major part of these proactive auditing tasks

 should be carried out from the perspective of an intruder, namely, by

 scanning a system for possibilities to compromise its security. While

 current auditing scanners are already quite sophisticated and spot a large

 range of remote and local vulnerabilities and mis-configurations, a basic

 problem they suffer from is similar to the IDS problem; their scanning

 signatures have to be updated frequently, as new programs containing new

 vulnerabilities come out. Therefore, software distributors should be

 encouraged to publish auditing tools for their systems and applications,

 detecting especially insecure configurations, and to develop and maintain

 standardized vulnerability and mis-configuration pattern databases which

 can easily be implemented into auditing scanners.

 Auditing should perform its task systematic and thorough, with the aim to

 support reliable configuration base design, which is especially important

 when scanning firewalls, intrusion detection system and trying to penetrate

 critical facilities such as system loggers. The penetration aspect of auditing

 should also always be implemented; nowadays, checking for immunity against

 latest Denial Of Service (e.g. fragmentation, land, syn floods) should be

 mandatory as well as either employing basic low level IDS evasion tactics

 to scan, or specifically penetrating and detecting IDS which suffer from

 such weaknesses. It is also recommended that an auditing tool uses a core

 part which gathers as much information about a system as possible (e.g. by

 recording all servers versions and remotely determinable configuration

 aspects) and then evaluates, determines and attempts to exploit certain

 present vulnerabilities with a separated evaluation part. The evaluation

 part of auditing software should be designed modular and extendable, as

 future necessity to detect new vulnerabilities is certain to come.

 One of the biggest advantages for the black-hat system intruders is that

 they can carry out attacks and scans on a distributed basis. [48]

 Developing distributed aspects is an approach that scanning software should

 take as well, to scan internal networks completely. My suggestion for future

 scanners is to implement Internet worm like behavior into them. They could

 be constructed to take advantage of all existing vulnerabilities to spread

 through a network and identify its weaknesses, in a way simulating the

 behavior of real intruders. This means to take advantage of mis-configured

 proxy servers and protocol weaknesses to try to bypass firewall rules,

 exploit vulnerabilities in remote servers, then copy themselves onto the

 compromised systems, trying to get higher privileges by exploiting local

 vulnerabilities and then using the compromised systems resources to

 gain unauthorized access to trusted hosts and to carry on the scanning

 process from there. Naturally, the scanner has to be instructed to audit

 only a predefined domain or network range. I think the development of such

 an auditing tool would make an interesting open project, that could assist

 in improvement of coherent network auditing techniques, and also visualize

 the methodology of intruders and occurring security incidents on the

 Internet in a bigger scope.

 4.4 Networking architecture

 Originally, the Internet was designed for military and academic purposes,

 for researching, providing access to data over long distances, and as

 a communication infrastructure for a relatively small set of institutions

 and persons that knew and trusted each other. This scenario is the origin of

 the Internet's network structure as we know it today. Many of today's protocol

 standards for data transmission and packet switching have been designed in an

 environment in which essentially everyone was considered trustworthy. These

 standards can no longer satisfy today's ever-growing demands of industrial,

 civil and commercial applications. These traditional protocols and methods

 are still being deployed on the homogeneous, un-trusted Internet of today,

 while the rate of its members is drastically increasing, and its overall

 bandwidth is growing by nearly one hundred percent every year. Through the

 latest incidents and attack methods, it has become obvious that new

 standards have to be defined and implemented to suit the high performance

 and security demands of today and the future.

 4.4.1 Routing security

 4.4.1.1 Improving availability

 With steadily growing bandwidth, the impact which intentional disturbances

 can have on network availability have become more serious than all other

 weaknesses and common malfunctions. Therefore, a central point of future

 routing technology has to be the prevention of intentional attacks by

 minimizing the opportunity for attackers to commence such attacks.

 To protect against source address spoofing, all routers should perform

 mandatory sanity checks in form of forcibly blocking traffic coming

 from local network ports with foreign source addresses, and dropping

 packets for which no predetermined routes exist, when they experience

 large amounts of traffic with different source addresses that exceeds

 a threshold after which it is considered as a packet flooding attack

 which employs randomly forged IP source addresses, in order to assure

 better service for machines already known to have authentic IP addresses.

 Approaches to preventing attack and optimizing traffic flow will often

 require expensive routing features, complicated algorithms for routing

 large amounts of traffic between different prefixes efficiently, and access

 control lists, while the use of these techniques can degrade the performance

 of routing significantly. To limit the necessity for increasingly

 sophisticated and expensive hardware, a solution should be designed that

 makes use of different multiprocessors to handle separate tasks.

 For example, one processor (or one set of processors) takes care of

 maintaining, parsing and applying extensive routing policies to traffic,

 and the other processor is just instructed with the results (i.e. the

 defined route) and can concentrate on I/O operations for optimal traffic

 forwarding performance. An additional advantage that this concept could

 bear, is processors mutually substituting each other to prevent complete

 routing outages. For example, if the I/O forwarding processor would get

 overloaded, the other one would recognize that it is no longer responsive,

 and fall back to autonomous I/O forwarding mode, using static routing from

 a predefined set of restrictive backup routes, and if only the route-

 determining part would get overloaded, the I/O processor would also use this

 set to operate independently. The router could then also possibly reset the

 overloaded CPU and re-initialize it, without needing to reboot and

 interrupting any active traffic, while the remaining processor stays in

 emergency mode until the other one is back.

 Another source of errors that have big impacts on network availability are

 misconfigurations in routing tables. Routers should encourage engineers to

 make extensive use of dynamic routes determined by the router, by presenting

 easy and feasible approaches for large and medium networks to migrate from

 static routes. Static routing, mostly via plain RIP, is still too popular

 and can cause big errors which are hard to track, if a large amount of route

 configuration is done manually. Routers, in general, should be less error

 tolerant when discovering that routes to unreachable hosts are set. [49]

 A capability of the Internet Protocol are Type Of Service and Quality Of

 Service facilities, which make it possible to set different priorities

 for different kinds of data streams. These facilities should not only be

 utilized to determine different types of sessions, but also to determine

 different security and authentication levels of traffic. For example, traffic

 from a host using a protocol which can reliably identify the host as the

 authentic origin (such as IPSEC or IPv6), and traffic transported by

 reliable connection-oriented protocols (after the session link has been

 established) should be able to be routed with a higher TOS or QoS priority

 on demand. This could improve availability of legit network traffic, while

 the priority and therefore the impact of packet flooding attacks, which

 mostly base on forged and connectionless traffic, could be reduced.

 4.4.1.2 Improving access controls and authenticity

 The authentication features which need to be improved are mostly of

 internal nature (i.e. routing protocol related). Routers need to operate

 in a stable and tamper proof manner, which includes that no data may be

 manipulated from arbitrary sources. Therefore, cryptographic user and

 session authorization should be mandatory for all future internal routing

 protocols and administration interfaces.

 Authenticity, in this case, is especially a problem when it comes to

 reliable detection of the origin of traffic. IPv6 and other future

 versions of protocols which implement security will improve the level

 of authenticity. However, they cannot fully and immediately eliminate

 these issues [50], therefore, measures of origin determination by

 tracking back traffic (see also 3.1.3.2) have to be evolved additionally

 to migrate to new protocol standards.

 As it is known, actively tracing traffic back to its origin can be a

 hard task. The issue is complicated due to co-operation problems with

 other networks and due to the fact that the tracing process via routing

 table information has to be done very quickly after the traffic is received

 in order to be successful. My suggestion is to develop a fast, remotely

 accessible traffic accounting facility which should be implemented in

 the routers of Internet backbones and big networks which route global

 traffic. Although read access to routing information is not generally

 considered as confidential, it can reveal the internal routing structure

 of networks, and may therefore be limited to authorized hosts. The routers

 should each recognize the routers authorized for tracing directly connected

 to them. A backtracking feature could work much like the RECORD_ROUTE

 facility in ICMP, and could be implemented as follows.

 An administrator logs into a router and requests origin information for

 a packet which pretends to be coming from a certain address. The router then

 determines from which external port, and therefore, from which directly

 connected router the packet came. The router issues a request to that

 router, which then determines its own port from which the packet entered.

 That router then tries to query the next router, and the chain of queries is

 followed until a router is reached which does not respond to backtracking

 queries. If this is the case, the last backtracking router sends information

 back to the router which originally requested a trace, submitting it the

 address of the last determinable router. If such a feature would be developed

 and actively implemented, an easy interface to gathering origin data, which

 would help to narrow down the real origin of any traffic, could be designed,

 which could represent an interesting alternative to the necessity of

 Internet-wide co-operation between backbone and service providers.

 4.4.2 Protocol security

 Improved Internet protocol standards, which offer enhanced integrity,

 confidentiality, and availability have already been due for some time.

 Internet transport and session layer protocols lay the foundation of

 network traffic, and if they have weaknesses, the chain of network

 security architecture consists of a weak link, at which it can be broken.

 Additionally to these issues, the currently available space for Internet

 addresses will not be sufficient anymore for a long time. In a period of

 as short as five years, all current IP addresses could be used up, and

 the industry will be forced to migrate. However, this weakness of IPv4 has

 had an impact on the Internet's infrastructure already [51].

 However, many of the next generation protocols have actually been around

 for some time. Clearly defined and suitable standards for protocols like

 IPv6 already exist. They have been created more than two years ago, and offer

 transport-level encryption, reliable origin determination via authentication

 header (this does take care of spoofing attacks and reliable authentication

 of connectionless sessions), and different traffic priority levels. If two

 parties both employing these techniques communicate using these standards,

 high authentication and confidentiality demands can be satisfied. Therefore,

 it should be considered as an alternative to non-standardized VPN technology,

 which can often be quite expensive and hard to implement. Everyone is

 encouraged to make use of the new IP security standards, as migration is

 quite feasible. IPv6 addresses are already being assigned by ARIN since 1999,

 and used on the Internet. Until the public breakthrough of the new version

 of IP, alternatives in form of IPSEC tunneling via IPv4 should strongly be

 considered. Besides implementing IPSEC capabilities at operating system or

 protocol stack level, there are other good approaches to implement IPSEC

 with a minimum of effort. Other security improved protocols worth mentioning

 include SDNS (Domain Name Service Protocol with secure authentication), ICMP

 next generation (which will be implemented along with IPv6), and RIP II (which

 can easily be employed in current networks and is strongly recommended

 for medium to large networks still using RIP I).

 When it comes to introduction of security enhanced protocols, a fundamental

 problem the Internet society is facing is the lack of current Public Key

 standards and a Public Key Infrastructure, which are needed because a core

 aspect of the security features of security enhanced protocols is mostly

 cryptography using asymmetrical cryptography.

 4.4.3 Public Key Infrastructure

 One of the crucial reasons why there has not yet been a breakthrough in

 using IPv6 and other protocols based on public key cryptography on standard

 environments, are the difficulties in establishing a worldwide Public Key

 cryptography standard and infrastructure. Although PKI is an important

 matter and should therefore be standardized with scrutiny, a standard that is

 acceptable for everyone should be found as soon as possible, as the further

 development of the Internet depends on it. Apparently, there are more

 factors than only the technical aspect involved, for example national

 cryptography laws and design of individual policies involving PKI.

 The proposal in this paper, however, concentrates on the technical aspects

 of implementing a PKI solution for Internet Key Exchange (IKE) which is

 needed for transport-layer encryption and authentication, because this

 could drastically improve general security standards on the Internet.

 The basic requirements that an IKE solution should implement are a

 transparent exchange of public host keys (so that it can be integrated

 in applications and protocol stacks), providing authentic verification

 of the key exchange servers, and a distributed design that makes a

 decentralized key server structure possible. One of the currently

 proposed protocols is ISAKMP, which makes use of cryptographic

 challenges and signatures to authenticate requests, and can be used for

 exchanging keys for arbitrary algorithms and protocols. While ISAKMP

 could become a good choice for exchange of public keys for a variety

 of different services with cryptographic authentication, it relies on the

 existence of a hierarchical set of Certification Authorities [53]. Therefore,

 alternatives should be considered for the key exchange of host keys.

 The IPv6 Security Association, which is used to authenticate and encrypt

 traffic at the transport layer, associates each host with a unique public

 key identification number.

 My suggestion is to use an improved version of the Domain Name Service

 protocol to exchange public keys amongst the Internet, since the DNS protocol

 is extremely suitable for associating a unique value with a certain Internet

 address. Additionally, there is already a working DNS zone hierarchy

 present on the Internet, which eliminates the inevitable necessity of a

 global Certification Authority infrastructure. A new DNS protocol version,

 which employs key- or challenge-based authentication would be sufficiently

 secure to authenticate domain name servers as being authoritative for a

 specific domain, and for the keys associated with the hosts on that domain.

 This system would additionally improve protection against spoofing attacks

 which involve attacks against the Domain Name System, and there are good

 technical approaches present to implement it [54].

 The Security Parameter Index could then contain information about the

 authoritative DNS records. In this model, the registration of new

 IP addresses could also contain public key generation and assignment

 on authoritative Domain Name Servers by address registration centers with

 local, national or worldwide authority for the assigning of IP addresses.

 4.5 Improving software design

 Nearly every information security problem of the past has been a result

 of vulnerable, insecure or otherwise weak software. Conceptual approaches

 to the design of standards and software have been done with merchantability,

 ease of use, and ease of implementation in mind. While such concepts are

 good, they should never lead to security and stability issues being

 disregarded. Within this scenario, better approaches to developing, designing

 and implementing code are essential. The following section will offer

 approaches to systematically designing and assessing secure software, and

 point out some of the most important security considerations that

 should be made in the basic security design for software.

 4.5.1 Technology standards

 A major deficit of today's technological standards are vague specifications

 and lack of technical detail. When a new protocol architecture is being

 described, software developers should at least given hint about where

 possible caveats and vulnerabilities could be present. Often, developers have

 to analyze such weaknesses themselves when designing software that should

 suit new standards. Since standards generally take time to fully understand

 and to implement, people who implement them should at least be given support

 in the form of descriptions in the nature of a standard, along with their

 strengths and weaknesses. As a positive side effect, this requires designers

 of standards to analyze and rethink details of their technical proposals.

 Drafts for completely new concepts should also contain the descriptions of

 mechanisms that can systematically help to eliminate weaknesses and security

 hazards. It is suggested that they at least describe one valid, complete

 configuration of a functional software implementation under which no

 fundamental security vulnerabilities are present.

 Developers and software vendors should always be given the opportunity to

 use identical interfaces and methods for their implementations. That way,

 a security and usage policy determined suitable for one product could affect

 security for other products and could be universally applicable, without

 having to regard technical differences on specific platforms or brands.

 Technical concepts which leave the definitions of exact structures and

 methods of a programming standard to the developers will result in

 products based on the same standards which are factually different in

 detail, and possibly in error susceptible code. Examples include the

 network file system, remote procedure calls and other applications using

 the early external data representation standard as well as early versions

 of Internet smtp agents. For organizations and communities which are actively

 developing production standards, it is strongly recommended to include

 details and practical examples, and to think over the architectural design

 of standards in general to make sure that the concept is foolproof.

 Something else that the stability of software industry is also relying on is

 the fast development of and agreement upon practical standards. If

 responsible organizations completely fail to develop such a particular

 standard in a special case, leaders in the software and security industry

 should be encouraged to cooperate with each other and develop a self-approved

 de facto standard which complies to the appropriate criteria. [55]

 4.5.2 Network application security

 Network applications should be designed with special care about their

 security, because they are generally supposed to be used in a non-trusted

 environment in which anyone can access them, and therefore exploit present

 weaknesses in their architecture. The security demands of network application

 include stability, integrity (i.e. they must be fool- and tamper proof),

 performance and confidentiality. The latter should be achieved by routine

 encryption of sessions using SSL or similar techniques. Cryptographic

 authentication is also an important issue, which should be used to enhance

 verification and authenticity insurance of transmissions on both client and

 server side, to prevent insertion and manipulation of traffic, and to

 generate audit trails whose content cannot be affected by bogus connections,

 and uses the cryptographic origin verification to generate a reliable

 transcript of all security events and the actual parties involved.

 For this purpose, a challenge protocol should be used, for example Kerberos,

 that never sends actual authentication data in plaintext across the wire.

 To design stable and reliably working programs, the complexity of source

 code and functions should be reduced and kept on a minimal basis.

 It is also a generally bad idea to introduce default configurations which

 with a program runs. Flexibility and options can help a user to

 customize the behavior of a program and therefore improve security in

 detail where it is needed. The introduction of more intelligent and user

 friendly configuration management would be beneficial, but is not required.

 Instead, developers should hire people for the purpose of writing more

 comprehensible documentation. The documentation should not only describe

 the usage and features of a program, but try to explain the technical

 methods it uses to fulfill its tasks. Educating users to understand the

 programs they use can be a great method of improving security that should never

 be underestimated. Networking daemons should ideally work in a secure, custom

 environment, i.e. under a separate account with the minimum of privileges

 needed to fulfill its task, to prevent access and possible compromise of

 large parts of a systems resources by remote users.

 A final important thing that should be mandatory for the development of all

 networking applications is systematic auditing of the program. Developers

 should try to systematically uncover all implementation flaws, beginning

 with main features and supposedly fragile aspects of the program and

 proceeding to data structures and overall layout.

 4.5.3 Software development security design methodology

 Despite all security improvements of access control measures, conceptual

 design, policies and standard, the most important issue to consider is

 the authoring of secure code. This can quite be a challenge for software

 producers, while the actual difficulty of design methods are not the major

 problem, but the fact that many programmers are unaware of these methods. The

 following section will try to help programmers to recognize the basic aspects

 that need to be considered for writing program code which is sufficiently

 secure for the implementation of future applications and systems. First,

 most programmers need to realize that security has nothing to do with

 functionality. Most software vendors do not have standard security systems

 for code creation and review in place. They are relying on a method of

 software development that focuses on immediate results. While this approach

 does lead to fast development of feature-rich software, it fails horribly at

 implementing stability and reliability into the software's operations.

 Before explaining in detail how to apply secure coding methodology, I am

 going to explain where to apply it. It is mandatory to employ secure,

 fail-safe coding practice when designing network daemons, suid/sgid

 applications and all other software that runs with elevated privileges

 (most commonly root in today's environments). Programs with elevated

 privileges sit on security boundaries. Most of the time they take input

 from other programs that have lower access privileges than they do.

 This means, a program running with elevated privileges can, at worst,

 be forced into executing arbitrary instructions that have the elevated

 privileges of that program. This is the reason why such programs have to

 be designed with extreme scrutiny. Generally, program security should

 always be considered when writing program code, as code can and is often

 being reused for completely different tasks and purposes.

 Some basic guidelines for program design include writing simple code.

 Avoiding complexity and reducing the code size greatly decreases the

 amount of bugs and potential bugs in the form of weaknesses in your code.

 Another crucial point is open design. Nobody should rely on security

 through obscurity, as every publicly available program, even if it is

 closed source, can be completely reverse engineered. Your code should

 also be comprehensible for yourself and others, so that code reuse

 is feasible without having to completely re-analyze it. To realize this,

 code should be well-structured and commented. When it comes to user

 interaction, programs should be easy to configure and control in a

 secure manner. They should also offer options to generate extensive

 audit trails for verification and event recapitulation purposes.

 The default configuration of a program should be made fail-safe, i.e.

 so that it denies any form of access and disables extended features by

 default. Additionally, programs with elevated privileges should employ

 separation of privileges. Necessary privileges should only be gained

 or activated at different times in different routines or processes,

 and generally, the principle of least privilege should be enforced.

 To get more into technical details, common programming mechanisms and

 functions should be evaded, along with using shared system resources,

 which all can increase the volatility of the program. Your own, already

 audited and approved, secure code should be frequently improved and

 reused in new programs. Inheritance of large, bulky types and functions

 which call sub functions themselves, should be avoided. Instead, code

 should be re-implemented where it is beneficial to overall program security.

 Outside input (as in users, network traffic, system signals and events)

 should generally be mistrusted, and even considered to be able to take

 direct malicious actions against a program at the worst time and in

 the worst way imaginable. Internal protective and preventive measures

 against vulnerabilities to which a program might be exposed due to its

 nature, should be implemented, for example in the form of sanity checks,

 excessive load- and internal resource usage quotas. Special methods and

 constructions that should be avoided at all costs include all non-bounds-

 checking functions, complex and foreign data handling algorithms, such as

 getopts(), string parsing operations without bounds checking, gethostbyname()

 (note: due to weaknesses in the current DNS protocol, hostnames should be

 determined via dual-reverse lookup, meaning that a normal query and an

 additional inverse query should be performed for each lookup), handling of

 symlinks and other special files, checking files before overwriting and

 accessing them and using secure, non-predictable temporary file names to

 prevent race conditions, preventing direct memory access and core file

 creation in critical situations, using real randomness and unpredictable

 random seed for random number generators, making sure that buffers are

 always bound with a terminating binary zero, setting timeouts on network

 operations, and running in a restricted (for example, chroot()'ed)

 environment, where possible.

 Additionally to all these security precautions that can be taken, code

 auditing and reviewing is absolutely necessary to ensure the stability

 and security of programs, just as both preventive and proactive auditing

 have to be used to adequately secure a computer system. Code auditing

 includes trying to overflow every static buffer, creating all conceivable

 race-conditions, looking for exploitable vulnerabilities from the perspective

 of an intruder who tries to use weaknesses in the code to gain elevated

 privileges. Secondly, the code has to be audited systematically. This means

 to review every access to any functions and to any objects in the code,

 making sure that operations do not fail in the presence of an intelligent

 and malicious adversary who is trying to forcibly generate faults.

 As a last bit of advice, it should be regarded that spotting bugs in a piece

 of software which is currently in production usually requires having other

 people test the code than those who designed it, to review it from an

 independent perspective.

 5 Final words

 I hope that this paper has been able to give you some insights pertaining to

 methods that can be used to improve information security in the future.

 I know that the work on this subject was certainly interesting for me and

 helped me to better understand some security issues in context. I hope that

 my attempt to put different aspects and problems of today's security issues

 on the Internet into coherent context has been successful, and that the

 proposed solutions are useful and comprehensible as well.

 The Internet is a medium with a high potential for development, however,

 one of the side effects is the unlimited flow of information. It is therefore

 quite important to use ones common sense and judgement, without being

 influenced by unreliable sources of information. This also means that

 authorities and established organizations as well as common standards should

 not blindly be trusted. Instead, relying on one's common sense to assess

 proposed and established solutions regarding criteria of security, economy

 and feasibility is essential. Static guidelines such as described in the

 rainbow books, early Internet standards and international standards represent

 the foundation of many parts of today's current security architecture.

 However, some of these guidelines are no longer applicable to the dynamic,

 evolving Internet of today and need to be replaced or renewed.

 Additionally, experience has shown that hierarchic and centralized

 structures, while normally being useful, are often weak points on the

 Internet whose structure itself promotes decentralization.

 One should be aware that misinformation can spread quickly on the Internet

 and cause severe effects. Making up concepts such as Information Warfare,

 are, in my opinion, counterproductive, as focusing on educative approaches is

 generally much more beneficial to the Internet community than counting

 on scare tactics. For example, increased break-in rates into banks lacking

 fundamental security would not be considered as warfare, either. What can

 be considered as Information Warfare is mostly unrelated to information

 security issues on the Internet and should not be used to generate hysteria

 with little factual background in reality.

 Authorities, especially among different governments, political groups, and

 the media have been propagating the solution to security problems in a way

 that promotes security through obscurity.

 But I am confident that the society will tend to walk on the right way

 in the future.

 Even simple or small solutions can help to improve security in general,

 if security issues and measures are identified and treated properly.

 6 Footnotes: technical background, definitions and explanations

 [1] Information security has to be understood as a process aiming

 to improve protection of confidentiality of information, protection

 against unauthorized access and modification of data and the

 protection of the availability of resources and services.

 [2] I am applying the term 'intrusion software' to any kind of software

 that has the single and sole purpose of assaulting or gaining access,

 information or privileges to resources unauthorizedly, including

 vulnerability exploits, although it should be noted that they generally

 do not themselves represent a security issue, but can multiply a threat

 potential that exists due to a present security vulnerability.

 [3] Distributed attack tools are a kind of software that allow processing

 of tasks using distributed resources, in this case with a malicious or

 intrusive intent, such as Denial Of Service.

 References:

 http://packetstorm.securify.com/distributed

 http://www.cert.org/incident_notes/IN-99-07.html

 http://www.cert.org/advisories/CA-99-17-denial-of-service-tools.html

 [4] Resources is a very general term. In the context of this paper, consider

 them as server processes giving access to different privileges, available

 computer memory and processor time, different network capabilities and

 devices, and different kinds of confidential data.

 [5] Known methods of security compromises take advantages of a small set of

 known vulnerability categories, such as weak system kernel protection

 of privileges, undefined behavior on exceptional conditions, unchecked

 data structure bounds / buffer overflowing, unreliable input parsing,

 configuration problems, unreliable access validation, and file/resource

 temporary access insecurity known as race conditions or atomicity errors.

 [6] Access control is a concept that must be able to isolate the full access

 to a systems privileges and capabilities and delegate it selectively to

 different users, resources and processes. Without access control starting

 at the system kernel, access to a system could not be effectively

 authorized and validated, and a separation of privileges that can be

 gained by remote, local, and physical access to a computer system

 could not be achieved.

 [7] As shown by Bruce Schneier and many others, cryptography can be applied

 to improve and secure numerous computing processes. Without access

 controls on a lower level, like a system kernel effectively enforcing

 basic security, most cryptographic measures would be futile because they

 could be circumvented on a lower level; for example, encryption keys and

 system encryption functions could be compromised.

 References:

 http://www.counterpane.com

 "Applied Cryptography: Protocols, Algorithms, and Source Code in C"

 by Bruce Schneier (John Wiley & Sons, 2nd edition, October 1995)

 [8] I define a point of access as any feature or service that has the purpose

 of giving a user access to a systems resources - that is, privileges,

 data or access to other facilities or machines. Practically, a point of

 access is a remote server program, or a local running / suid application

 giving access to higher privileges and data. Every point of access must

 be considered as a possible source for security vulnerabilities and entry

 point for intrusions, while the highest possible access that can be gained

 through an access point is the complete set of system privileges the

 access points' compromisable process thread has at its disposal.

 [9] Denial Of Service is a category of attacks aimed against availability

 of any resources. Exploits of structural weaknesses that result in DoS

 include packet flooding with superior bandwidth, syn flooding and other

 bogus service requests, and exploiting specific vulnerabilities in

 server or operating system software to crash it; while no unauthorized

 access is gained via those attacks, they are much easier to commence and

 sometimes only avoidable with expensive and extreme protective measures.

 [10] Probes can consist of any unusual traffic to your networks host, such as

 connections from the same remote host to all of your services ports,

 unusual errors like reset connections, and incoming packets that seem

 not to serve the purpose of actively communicating with a known service.

 A Network Intrusion Detection System can help in identifying such

 irregularities, while it is, however, not completely reliable and

 leaves the duty of interpreting threat potential and imminence to you.

 [11] Network egress filtering is a measure to identify and minimize incoming

 traffic with spoofed IP addresses and is accomplished by configuring your

 border routers to refuse incoming traffic from unassigned and unreachable

 (not present in global routing tables) hosts, and traffic with IP addresses

 that should not be coming from a specific router port (for example, source

 IP addresses from your local network coming from an outbound port). Network

 ingress filtering, as described in RFC2267, basically means not to permit

 traffic from an inbound port with source IP addresses other than from your

 local network emanating to external networks. While these measures cannot

 protect from DoS attacks or intrusions, they can be used as an extra

 facility for logging and detecting DoS and intrusion attempts that make

 use of spoofed IP addresses.

 References:

 RFC 2267 - Network Ingress Filtering: Defeating Denial of Service

 Attacks which employ IP Source Address Spoofing

 [12] A loghost should be a secure machine with a minimum of remote access

 points to which log data is forwarded in real-time. To forward sysklogd(8)

 traffic to a loghost, syslogd.conf entries like this one are added:

 .			@loghost.mydomain.com

 If you use Cisco routers, forward IOS system logs there as well:

 service timestamps log datetime localtime

 logging loghosts.ip.address

 [13] Reliable remote OS identification can be done by querying a machine with

 a set of TCP packets to which response is undefined in official protocol

 standards, and identifying the operating system by evaluating the

 individual replies to these packets. This can be done with many auditing

 tools, and was originally implemented in Queso and nmap. To avoid remote

 identification, one has to use special firewalls or change the kernel

 behavior (for example, by modifying tcp_input.c in the Linux kernel).

 References:

 http://www.insecure.org/nmap/

 http://www.apostols.org/projectz/queso/

 [14] A network information center provides authoritative administrative

 information about networks that belong to the Internet. Like Domain

 Name Services, it employs a hierarchical structure of NICs, InterNIC

 and ARIN being the highest authoritative source for information about

 domains and networks and information about further network information

 centers that provide information about local networks, such as RIPE,

 APNIC, and country specific sources (like whois.nic.<domain/country code>).

 A WHOIS query can be made using the UNIX tool whois, or simply by

 connecting to a NIC's whois server with a telnet connection to port 43,

 and entering a domain name, word, or network address to inquire about.

 [15] The definition of the last trusted state before a compromise is a

 delicate subject. The most reliable backup is the backup made before the

 system was connected to any network in the first place. Before making

 a backup, one should briefly analyze the system, and perform a checksum

 comparison to ensure the trusted state of the system.

 [16] An easy way to do this with md5 checksums and PGP would be:

 find / -type f -exec md5sum '{}' \; > tmp ; pgpe -r me tmp -o checkfile

 To verify system integrity, you would decrypt the file and check the

 file changes with md5sum -c checkfile.out from a trusted environment.

 [17] Possessing only a small history of security vulnerabilities is solely

 a significant indicator for open-source software that can be audited and

 examined over a long time by a big group of people. While non-open-source

 cannot generally be considered as less secure, cases where only few

 vulnerabilities in such a system have been found yet are less significant,

 because spotting the same vulnerabilities in different software is much

 easier and performed faster if its source code is publicly available.

 [18] Many recent security hazards were a result of vulnerabilities in software

 packages, which got fixed relatively soon after their release, but to which

 many large networks and companies were vulnerable, because they immediately

 installed new versions of operating system and software distributions after

 they had been released. 'Good' examples include vulnerabilities of the

 IMAP/POP mail application suite, Qpopper, recent Solaris 2 vulnerabilities,

 vulnerabilities in RedHat and SlackWare Linux distributions, beta versions

 of ProFTP/wu-ftp servers, KDE/Gnome programs, countless experimental CGI

 scripts and many other cases.

 [19] The method of authenticating access with passwords is a weak and

 theoretically outdated security mechanism, and represents a fundamental

 weakness in today's overall security architecture. Besides buffer

 overflowing and password sniffing, brute force password cracking is one

 of the most efficient and popular intrusion methods, for which many

 local password crackers like John the ripper and session brute forcing

 programs are out. A recently upcoming trend is to use distributed

 technology to defeat even strong passwords; while distributed password

 crackers such as Saltine are already public, in my opinion it is very

 possible that distributed session brute forcing tools have already

 privately been developed and can defeat most password authentication.

 References:

 http://www.false.com/security/john

 http://www.thegrid.net/gravitino

 [20] Password aging, which can be enabled in many authentication systems,

 forces the password to expire and a new one to be chosen after a

 specified amount of time. This reduces the risk of passwords being

 brute-forced by front-door login attempts, password file cracking

 or traffic sniffing, all of which takes an intruder a reasonable amount

 of time to be successful. It is of course also required to enforce

 the use of strong passwords to maximize the duration of brute force

 attacks, in which every possible password combination is tried or

 passwords from a wordlist are used to guess a password. This can be

 done by enlarging the systems password dictionary file with bigger

 word lists (it contains all passwords that cannot be chosen), and

 by enforcing stronger criteria (length, mixed case, special characters).

 An approach in which all this can be easily configured are authentication

 systems that employ PAM (Pluggable Authentication Modules).

 References:

 Open Software Foundation RFC 86.0 - Unified Login with Pluggable

 Authentication Modules (PAM)

 [21] A quick approach to find common coding flaws is to search for use of

 functions belonging to the strcpy, strcat, sprintf, gets and scanf families

 in the C source code, in order to find possible buffer overflow

 vulnerabilities, as shown by Aleph One. A more detailed analysis means to

 specifically analyze functions which parse user and file input, and doing

 process traces (e.g. to analyze the possibility of race conditions).

 References:

 Aleph One, "Smashing The Stack For Fun And Profit", Phrack Magazine,

 Volume 7, Issue 49, File 14 of 16, 1996, www.phrack.com.

 [22] Real-time event monitoring software often comes with the feature of

 remote management access. Any remote access represents a theoretical

 vulnerability potential and should be avoided, most of all if you need

 a high-security solution involving real-time monitoring. Besides the

 categoric problems, there have been actual weaknesses of remote management

 facilities, for example in older versions of the Checkpoint Firewall-1

 Authentication Agent, which could, if poorly configured, be used to add

 remote authentication access from any host without authorization.

 References:

 "fw1-lpsnoop.pl" - exploit against FW-1 Auth. Agent by acd@weirdness.net

 [23] While remote scanning and auditing tools, which search vulnerabilities in

 a way an intruder would do (i.e. proactively), have been around for some

 time, they have been gaining popularity since 1994, when it became popular

 using such methods to improve system security, and they were started being

 used by an increasing number of people to actually gain unauthorized access.

 A pioneering paper is certainly "Improving the Security of Your Site by

 Breaking Into it", which was developed in parallel to SATAN, one of the first

 publicly used security scanners. This paper also already identified the

 main problem of vulnerability scanning; that new vulnerabilities appear

 frequently and scanners have to be updated to include detection of those

 vulnerabilities. My private humble approach, NSAT, attempts not to scan for

 known holes only, but for the presence and versions of remote services,

 with the aim of producing detailed, vulnerability-independent scan and

 exploit result logfiles that leave a maximum of possibility to evaluate

 them for the user. (Ahem ok, a little, cough, private advertisement here ;)

 There are many other good freeware programs out with databases that are

 being frequently updated with new vulnerabilities, of course...).

 References:

 http://packetstorm.securify.com/docs/hack/security.html

 http://packetstorm.securify.com/UNIX/audit/saint-1.4.1.tar.gz

 http://packetstorm.securify.com/UNIX/scanners/nsat-1.11.tgz

 http://packetstorm.securify.com/UNIX/audit/nessus/nessus-0.99.2.tar.gz

 [24] A definitive guide to protecting confidential data locally is

 "Anonymizing UNIX Systems" written by van Hauser of THC, which describes

 how to reconfigure a Unix operating system to resemble a confidential

 and anonymous source for multi-user information exchange and storage,

 while in my opinion it also exposes that today's operating system

 technology is lacking basic data confidentiality achievement standards.

 References:

 http://www.infowar.co.uk/thc/files/thc/anonymous-unix.html

 [25] To penetrate a networks availability via DoS, almost any compromised

 system is a big advantage for an intruder, who can use the systems

 resources / bandwidth and the anonymity to hide his true origin in an

 attack against you. Therefore, the problem of Internet security has

 to be seen in a bigger context; the security infrastructure of all

 systems has to be improved to effectively protect single systems.

 [26] A popular application-/system-based DoS attack, the SYN flood, consists

 of sending spoofed packets representing tcp connection attempts,

 resulting in filled up tcp connection tables and unresponsive tcp

 services due to many half-completed connections at the victim's site. The

 cryptographic challenge protocol known as SYN cookies authenticates real

 connection attempts, dropping spoofed packets from sources that

 remain unauthenticated for a certain amount of time.

 [27] There exists a technique called firewalking, named after the

 auditing tool by Mike Schiffman, that can reliably predict which protocols

 will pass a point behind a filtering gateway, and which tcp/udp ports on

 firewalled systems are open, by sending tcp or udp packets with a IP TTL

 value that causes the packets to expire just before they reach their final

 destination, thus sending back an ICMP_TIME_EXCEEDED reply to the

 firewalking source host. Therefore it is recommended to prevent emanation

 of these ICMP messages to external networks.

 References:

 http://www.packetfactory.net/firewalk

 [28] Simple Network Management Protocol is a universal protocol that can be

 used to record various information and statistics about network

 configuration and traffic. It can, for example, assist in detecting sources

 of high traffic coming from or to your network. However, by default, SNMP

 is using no password authentication, and UDP sessions, which can easily be

 spoofed. A MIB (Management Information Base) can contain sensitive

 information and remote access to routing interfaces, connection tables,

 plaintext passwords, administrative info, system configuration, and even

 remote command execution, all of which can be compromised. Using the most

 secure configuration available must therefore be mandatory, i.e. SNMPv2

 with password protection, no default MIB names, no remotely writable MIBs,

 strong passwords, and filtering of traffic to SNMP facilities. There are

 also free auditing / brute forcing tools out which can be used to secure

 (or compromise) SNMP servers, like snmpwalk(1) (which has become a

 common unix system command on many systems), and the snmp scanning and

 wordlist brute forcing tool by ADM.

 References:

 ftp://adm.freelsd.net/pub/ADM/ADMsnmp.0.1.tar.gz

 [29] TCP interception is a feature introduced by Cisco routers, but possibly

 present on products from other vendors which can be used to mitigate

 the impact of TCP SYN flooding attacks. A router that uses this feature

 will act as a proxy, responding to a remotely initiated tcp connection

 attempt in the first place, and only relaying it to the actual hosts when

 it has been established. By utilizing the bigger connection tables routers

 have at their disposal, and allowing minimal connection timeout values,

 the tcp interception feature can, if properly configured, help to

 withstand moderate SYN floods.

 References:

 http://www.cisco.com/univercd/cc/td/doc/product/software\

 /ios113ed/113ed_cr/secur_c/scprt3/scdenial.htm

 [30] For high availability it is advisable to block tcp/udp ports of services

 which should not or do not need to be available to the rest of the

 Internet, because they could be penetrated from external hosts, harming

 internal network availability, or specific services could be used to

 multiply an attackers bandwidth, e.g. if a connectionless service replies

 with a larger amount of data than is needed for the initial service

 request. An example DoS can be commenced using forged bind queries (but

 note that the external DNS, i.e. the nameserver authoritative for your

 domain must be available from the whole Internet!).

 [31] Patterns that can indicate DoS attacks include unusually high amounts

 of packets of any protocol, but most of all ICMP (because DoS often

 generates ICMP error messages or echo replies). Further patterns include

 many tcp or udp packets with sequentially incrementing or decrementing

 destination ports, or destination ports that appear to be unused or random,

 and icmp/udp traffic coming from sites that don't block directed broadcast

 traffic, which is detectable by searching for incoming packets that seem

 to come from different hosts on the same subnet, or by comparing suspicious

 IP addresses with public known-broadcast databases from projects which

 periodically scan the complete Internet broadcast address range (see

 references below) or probing the sources' IP broadcast addresses for

 multiple replies from different hosts (seen as DUP's if using ping(8)).

 References:

 http://www.netscan.org

 http://users.quadrunner.com/chuegen/smurf.cgi

 http://www.powertech.no/smurf

 [32] The figure below shows how a DoS attack commenced by a distributed attack

 tool (floodnet) would need to be traced back. This particular trace

 would require coordination with at least two other networks, on which

 the distributed software is installed, and all backbone providers

 responsible for routers between the attack victim and one of the flood

 daemons, and the backbone providers responsible for the routers between

 the flood daemon and the master server or controlling client, if the

 distributed tool would employ forged IP addresses in its client/server

 communication process.

 (Note: I know that my ascii drawing style sucks, my apologies :)

 [Attack Victim] <---- Incoming packets with spoofed IP source address

 | ^^^

 | ^^^ sending out DoS packets

 \-- hop-by-hop trace --> [Flood daemon]

 | ^^^ client/server traffic,

 | ^^^ possibly also spoofed

 \-- trace -> [Master control server]

 |

 | By watching outgoing

 Fig. 1: Tracing Flood Network attacks from \ traffic, or examining

 the perspective of a victim files on the server, the other

 of a distributed DoS attack flood daemons can now be found

 [33] Recently, there have been reported incidents that NIC's were tricked

 via mail spoofing to change DNS authority records. Once this was done,

 attackers used their own, now authoritative DNS records to point domain

 names to different IP addresses, hijacking site traffic. A popular method

 of social engineering is also to create and post PGP keys or certificates

 carrying the same or a similar name as an authoritative institution, then

 using them for spreading trojans or whatever from 'trusted' sources. As it

 shows, services using hierarchical structured authorities inside the

 decentralized Internet are quite susceptible to such attacks.

 [34] Another structural problem is that resources of hosts lacking security can

 be used by attackers to penetrate other, secure hosts and networks that

 have nothing to do with the insecure ones. Multiplying attack potential

 through insecure systems for DoS purposes has its own history, starting

 with forged connections between udp services (chargen, echo, etc.), smurf

 attacks, compromising systems to scan or flood other systems, and lately

 distributed DoS, and exploiting, for example, DNS service or the MacOS9

 protocol stack to multiply bandwidth, using hosts completely unrelated

 to a victims site to penetrate it.

 [35] Since being developed and discovered in 1983, computer viruses and

 worms have been propagating in executable files, boot sector code,

 ansi characters, system libraries, interpreted scripts, vulnerability

 bulk scanning and exploiting packages, news groups, web documents and

 scripts, document macros and interpreted html code. They've been using

 everything from basic machine code instructions to script and system API

 functions to operate, and there are several thousand different viruses,

 which all use slightly different techniques to operate. All completely

 new virus code being invented has its own, new and unique pattern.

 As shown by the theorem of Dr. Fred B. Cohen, due to the nature of

 viruses, virus detection can never be reliable, as the occurrence of false

 positives and false negatives can never be completely eliminated.

 References:

 "A Short Course on Computer Viruses",

 Dr. Fred B. Cohen, ASP Press, 1990

 [36] There are already numerous different approaches to bypassing today's

 NIDS software, and I am sure that their number will increase further as

 intrusion detection gains more popularity. You might say that making use

 of these techniques is hard and requires technical knowledge and skill,

 however it is no problem to code intrusion software that employs these

 techniques in a sophisticated manner and makes them available to everyone

 using an easy program interface. Evasion tactics include using requests

 which are rfc compliant, but seldom to never used to get the same

 intrusion or scanning results (i.e. requests that are supported by servers

 but not used by most clients). Also, using non-rfc compliant, but silently

 supported requests that differ from normal sessions, or exploiting server

 bugs which make them accept non-compliant behavior can be used to fool ID

 systems; basically anything that uses different commands or data encoding

 has a high chance of being a pattern that works to accomplish the original

 server communication but is not being scanned for by many IDS. As IDS need

 to be optimized to parse much traffic, overloading an IDS with bogus

 connections can also distract its attention from you; moreover, it can even

 act as a network wide Denial Of Service, if a NIDS is required to process

 all traffic before it is forwarded. Another method with many possibilities

 is to use transmission protocol capabilities and options that are normally

 not encountered in normal sessions. Capabilities unexpected by IDS are

 IP fragmentation, TCP segmentation, IP and other protocol extra options,

 and traffic that looks invalid to the IDS but will be processed by the

 protocol stack and applications without causing sessions to end, for

 example fake SYN/FIN packets, TTL values, sequence numbers, overlapping tcp

 segments, and sending tcp packets which contain each only partial requests.

 References:

 "A look at whisker's anti-IDS tactics", rfp, http://www.wiretrip.net/rfp/

 horizon, "Defeating Sniffers and Intrusion Detection Systems",

 Phrack Magazine, Volume 8, Issue 54 Dec 25th, 1998, article 10 of 12

 [37] Assume you are establishing network intrusion detection to protect an

 ISPs NOC hosts, being on the same class C subnet as dialup hosts. Nowadays,

 BO and other windows backdoor scans, or netbios sweeps are occurring very

 frequently on most dialup host subnets. However, if you run something like

 OpenBSD with high security, and now get hundreds of alarms that you are

 being scanned for windows holes (false positives), it distracts your

 attention from real problems. Keep in mind that not everyone has the time

 to find out how serious a particular intrusion attempt has to be taken

 (there are already thousands that most IDS scan for). Additionally, IDS

 logs should be kept small because they are generally checked on a daily

 basis if not more frequently. Therefore, my advice is to perform a system

 audit and only activate IDS alarms for attacks against services or

 protocols that you really use and especially ones that could be security

 critical. That way, you know that something serious might be going on

 when you are actually getting IDS alerts.

 [38] Scanning for timestamp changes can indicate many of the intrusions that

 involve accessing (reading or listing) and modifying your trusted system

 data. Scanning for access/modification time and permission changes is easily

 done with the find(1) command, or using script languages like Perl or Tcl,

 which feature many functions for file examining and scanning. This tactic

 is even popular among intruders, who use this to detect activity by legit

 users or other intruders active on the same host. While this narrows down

 the possibilities of undetected activity, timestamps can be changed

 arbitrarily or copied from other files timestamps by anyone having write

 access to the file via touch(1) command or using the utime(2) function.

 References:

 http://mixter.void.ru/suspend.c

 [39] Remote access backdoors do not necessarily have to use established network

 connections or open ports. As any technology advances, so does intrusion

 software. Backdoors can be listening on raw sockets, waiting for packets

 that match magic values, or that only make sense if decrypted with a secret

 pass phrase. Some example backdoors are ICMP tunneling backdoors, which

 have been around for some time, kernel module backdoors that can grant

 remote interactive or non-interactive access when receiving magic values

 in IP packets, or backdoors that listen to traffic on data link or raw

 protocol level. Examples of a remote access backdoor and a sniffer written

 by me, both featuring remote access on decrypted magic values, traffic

 encryption, and random communication protocols are Q, an on-demand

 shell daemon and e4d, a distributed sniffer.

 References:

 http://mixter.void.ru/Q-0.9.tgz

 http://mixter.void.ru/e4d.tgz

 [40] Thinking like a hacker includes questioning concepts, especially

 technological ones, and examine them in detail rather than just acquiring

 and using them. Note the difference between individuals I use to refer as

 intruders or attackers, who are in fact penetrating system security and

 might be using their hacker ambitions which help them in accomplishing

 this, or just could be using intrusion methods and software which almost

 everyone could use. Educating users, employees and administrators to think

 and solve problems this way would be greatly beneficial to security, as

 many security problems and incidents which nowadays have to be worked

 against using extensive coordinated time and money resources, could be

 prevented and resolved individually if people were taught how to acquire

 appropriate technical background knowledge themselves.

 [41] Law enforcement, when dealing with computer crime, is especially

 inefficient because it can be hard or even impossible to track an intruder.

 Intruders can strike from any country in which they are possibly safe from

 foreign law enforcement, and sophisticated intruders can and will cover

 their identity by traversing through compromised machines or manipulating

 phone networks. Additionally, active intruders seem to be very little

 afraid of being caught and possible consequences they would be facing, even

 when not being able to efficiently cover their tracks, as shown in the

 statements in the article by YTCracker, who is actively attacking systems.

 References:

 http://www.hackernews.com/bufferoverflow/99/yesitis.html

 [42] A growing amount of mis- and overreactions to scanning and probes is a

 doomed strategy that actually leads to security through obscurity. If

 anyone performing extensive network connections to acquire information

 about a system has to watch out for consequences, network security will

 no longer be transparent. This is an advantage to intruders, who can

 utilize previously compromised machines to hide their origin, but a big

 disadvantage to individuals who care about the security of systems. For

 example, I routinely examine servers before I do electronic financial

 transactions over them, to ensure that my information is safe from

 manipulations or eavesdropping. There have also been interesting scanning

 projects, which helped to discover and fix vulnerabilities, such as

 broadcast scanning (see [13]) or the Internet Auditing Project using

 BASS. Such beneficial projects are increasingly harder to perform using

 legit resources without having to think about possible consequences.

 References:

 http://www.securityfocus.com/data/tools/network/bass-1.0.7.tar.gz

 [43] Facilities whose protection is critical include file system attributes

 such as immutable or append-only which are used to protect trusted

 system binaries and audit trails from manipulations, as well as access

 to network interface capabilities and other special devices and resources

 like hard drives, read/write access to kernel memory, functions and

 control facilities, which all could, if accessed at low level with

 user or root privileges, be used to harm system security or stability.

 [44] A general technical approach to establishing separation of user level

 privileges could be realized by a kernel performing verification of current

 access permissions as part of the built-in system calls, or a system in

 which the kernel checks the called function with parameters and the

 mandatory privileges of the calling process each time a process hands

 execution control to the kernel via interrupt with the request of calling

 a system function that can be managed using access control.

 [45] Cryptographic challenge protocols can greatly improve authorization

 and confidentiality aspects of sessions. A challenge function such as

 Kerberos would consist of a client request which transmits an encrypted

 magic value to an authentication service. The authentication service then

 responds with a message digest (generated by a cryptographic one-way hash

 function) which contains the unique session identifier (or one-time

 password) and the magic value. The client then adds a secret known by the

 server and generates another digest which is sent to the actual server to

 establish a session. If both the unique session identifier and the secret

 match, the client is authenticated. In similar ways, a session encryption

 can be securely obtained over untrusted network links without having to

 be transmitted in plaintext and a secure session can be established.

 [46] The current standard unix permissions consist of user and group

 ownership identification, read, write and execution privileges separated

 for owners, group members and others, and suid/sgid flags which instruct

 the kernel to initially start a program with its owners effective user

 or group identification and the related permissions. File system attributes

 which can only set by the super user at a low secure level include file

 immutable and append only prevention.

 The POSIX file system privileges, which are proposed standard for the

 ext3 file system, already implement permission bits that assign

 privileges to do special networking operations (binding to privileged

 ports, opening raw sockets, accessing special files, etc.) to the process

 which is executed from a properly flagged binary.

 [47] Intruders commonly structure their activity into different phases, and

 it is also often unavoidable for them to do so. For example, attackers

 first have to gain information about their targets by using dns zone

 transfers, ping sweeps, or connections to their services, then examining

 the versions and configurations of running servers and as the next step

 launch exploit attempts. While the first steps an attacker performs are

 legit network traffic which constitute no intrusion, they should be

 recognized by heuristic intrusion detection to flag further traffic from

 the same hosts to be monitored with increased attention.

 [48] Vulnerability scans and compromises have been performed by intruders

 with distributed methods for a long time, while the actual use of

 distributed attack and intrusion software seems to be gaining popularity

 only recently. Intruders operate within a circular scheme; they first scan

 a host, then compromise it. Next, they install intrusion tools to hide

 themselves and commence further scans from their victims. The intruders

 use compromised resources at their disposal to perform further scans,

 sniffing attacks, and remote compromises from there. The more machines an

 intruder compromises, the larger is the amount of resources he can use for

 distributing scanning and compromising tasks amongst different computers,

 enabling him to seize control of more resources and so on.

 [49] Misconfigurations, which are in this case represented by static routes

 which propagate reachability of certain networks through one gateway, but

 are unable to actually deliver the traffic reliably, can act as the cause

 of major network congestion. Additionally, attackers can take advantage

 of static routes which are less error tolerant by attacking gateways which

 are configured to be accountable for a big amount of traffic. Therefore,

 routers in general should be less error tolerant when it comes to

 misconfigured and unreliable static routes, as mentioned in RFC 2725,

 which consists of valuable information to improve routing security. It

 should also be considered to develop advanced, open interfaces between

 routers, so that they can remotely exchange information and policies to

 determine if a route is allowed or appreciated by a remote Autonomous

 System instead of routing statically and blindly without being able to

 reliably predict if the traffic will ever reach its destination.

 References:

 RFC 2725 - Routing Policy System Security

 [50] Migration from old to new protocol standards with improved security,

 such as IPv6, will be done in partial steps, and networks based on

 protocol standards with improved security features will therefore

 require to be downward compatible until the migration is completed,

 in order to be accessible by the rest of the Internet. Until this

 compatibility is given, the possibility is left for attackers to

 use old protocol versions to operate in networks with improved

 security protocols in a way that they can still hide their origin.

 [51] The Internet Protocol version 4 only reserves 32 bit for address storage.

 This has lead to network address space tending to become rare, and

 the establishment of some well-constructed, but temporary solutions,

 for example Network Address Translation and Classless Inter-Domain Routing

 (CIDR). CIDR employs a tactic that disregards the traditional separation

 into network classes, making it possible to assign addresses to networks

 with arbitrary amounts of hosts. However, CIDR concepts have drastically

 affected the complexity of routing methods, and have caused some

 confusion where they were applied improperly. Despite their usefulness,

 such concepts have also weakened formerly coherent Internet structures.

 For example, Routing Information Protocol version I, which is still the

 most commonly deployed routing protocol, has not been designed to be

 compliant with CIDR. The introduction of this concept therefore

 made it necessary for many routers to employ new methods, or just use

 static routes, which can represent structural weaknesses [49].

 References:

 RFC 1519 - Classless Inter-Domain Routing (CIDR):

 An Address Assignment and Aggregation Strategy

 [52] As described by the concerning RFC, and already implemented in

 existing solutions, IPSEC capabilities can be established either in form

 of "Bump-in-the-stack" implementations, which are inserted at network

 driver level, and transparently convert locally used traditional IPv4

 traffic and traffic with IPSEC features deployed on the network.

 Another method is the use of the "Bump-in-the-wire" implementation,

 which employs similar transparent traffic conversion techniques at the

 network interface by using dedicated cryptographic processor hardware.

 Using the latter, it is also possible to establish traffic conversion

 at the network border, by using a security gateway to verify and convert

 IPSEC traffic to plain IPv4 before passing it to internal hosts, and

 transparently converting outgoing traffic to IPSEC, making it possible

 for hosts on the local network to continue using traditional IPv4.

 References:

 RFC 2401 - Security Architecture for the Internet Protocol

 [53] Certification Authorities are a concept meant to generate a

 hierarchical set of institutions which issue and authenticate public

 keys. Each CA's authority and trust is verified by a higher CA,

 leading to a structure of a Root CA and different lower authority

 layers of Trust Centers, which register and assign public keys. The

 have been problems of cooperation and administration that are presently

 complicating the introduction of this concept, and the trustworthiness

 and security of Certification Authorities are further issues. It should

 be considered to establish a PKI concept without the inevitable necessity

 of a working CA hierarchy, as the secure implementation of centralized

 structures generally stands in conflict with the decentralized nature

 of the Internet and is therefore hard to realize.

 References:

 RFC 2407 - The Internet IP Security Domain of Interpretation for ISAKMP

 RFC 2408 - Internet Security Association and Key Management Protocol

 RFC 2409 - The Internet Key Exchange (IKE)

 [54] Using cryptographic authorization, association of public keys with IP

 addresses would be more secure than the association of hostnames with

 addresses currently is. The present DNS protocol is susceptible to

 spoofing and insertion attacks, which could however be eliminated in next

 generation DNS, using cryptography and high level authority public keys

 for name servers to reliably verify the origin of each other. The DNS

 protocol could then easily be enhanced by new DNS record types to request

 public key and key ID transmission, as it was proposed in RFC 2539.

 References:

 RFC 2535 - Domain Name System Security Extensions

 RFC 2539 - Storage of Diffie-Hellman Keys in the

 Domain Name System (DNS)

 [55] For example, the International Standards Organization (ISO) had

 recently decided not to standardize cryptographic algorithms for security

 software and networking applications. Such decisions can throw back

 technological efforts which depend on a certain standard being

 developed. In such situations, developers should consider not to

 rely on certain standard organizations, but work together with other

 leaders in the industry to develop and deploy their own, self-approved

 standards. Additionally, all developers are generally welcome to issue

 RFC (Requests For Comments), a method, from which the Internet community

 is always going to benefit, and which should be used by everyone when new

 standards are necessary or desirable, but have not yet been formulated.

