
TLP:CLEAR

Safe Software Deployment:
How Software Manufacturers Can
Ensure Reliability for Customers
Publication: October 2024

Cybersecurity and Infrastructure Security Agency
Federal Bureau of Investigation
Australian Signals Directorate’s Australian Cyber Security Centre

This document is distributed as TLP:CLEAR. Recipients may distribute TLP:CLEAR information without
restrictions. Information is subject to standard copyright rules. For more information on the Traffic Light
Protocol, see cisa.gov/tlp.

TLP:CLEAR

TLP:CLEAR

TLP:CLEAR

2

CISA | FBI | ACSC

Table of Contents
Introduction .. 3

Objectives ... 3

Key Phases of A Safe Software Deployment Process .. 4

Planning .. 5

Key Considerations .. 5

Development and Testing .. 6

Internal Rollout (Dogfood) ... 6

Deployment and Canary Testing ... 7

Controlled Rollout... 7

Feedback Into Planning ... 7

Playbooks ... 8

Errors .. 8

Emergency Protocols ... 9

Incident Detection and Reporting ... 9

Engineering and Management Escalation Processes ... 9

Recovery and Rollback Procedures .. 9

Root Cause Analysis and Reporting .. 9

Customer and Partner Notification Plan .. 10

Customer Notification Plan ... 10

Additional Consideration: N-1 Releases .. 10

Conclusion ... 11

Disclaimer ... 11

Acknowledgements ... 11

Additional Resources... 12

TLP:CLEAR

TLP:CLEAR

3

CISA | FBI | ACSC

Introduction
Many software manufacturers and service providers deploy software and configuration updates as
part of their service offerings. These updates may enhance features and/or address security
vulnerabilities to provide benefits and security to customers. However, software and the systems that
deploy software are highly complex and continually evolving, making it challenging to deploy secure
updates.

It is critical for all software manufacturers to implement a safe software deployment program
supported by verified processes, including robust testing and measurements. The program should
support and enhance both the security and quality of the product and deployment environment. This
guide, authored by the Cybersecurity and Infrastructure Security Agency (CISA) and the following
partners (hereafter referred to as the authoring agencies), encourages software manufacturers to
establish a safe software deployment program as part of their software development lifecycle
(SDLC).

• U.S. Federal Bureau of Investigation

• Australian Signals Directorate’s (ASD’s) Australian Cyber Security Centre (ACSC)

Software manufacturers should incorporate safe deployment practices early in the SDLC. Safe
deployment processes do not begin with the first push of code; they start much earlier. To maintain
product quality and reliability, technology leaders should ensure that all code and configuration
changes pass through a series of well-defined phases that are supported by a robust testing
strategy. These phases are designed to catch any new issues and regressions, reducing the risk of
flawed software from impacting customers.

This guidance is part of CISA’s Secure by Design campaign. The guide is primarily intended for
software or service manufacturers deploying software to many types of customer systems, including
mobile devices and laptops, as well as for cloud-based services (which may consist of thousands of
physical and virtual systems organized into clusters). While the guide is not specifically focused on
internal IT teams deploying to internal systems, many of the same phases will apply—albeit in a
modified form. Other domains may require phases that are balanced differently. For example,
organizations will have to contemplate complexities in some deployment scenarios, such as OSS
software deployments, and the tradeoffs between automatic versus manual updates. This guide will
not cover all scenarios but can be a useful tool for organizations looking to mature their deployment
processes.

Objectives
A safe software deployment process aims to achieve several key objectives, contributing to the
success of secure software deployment efforts. These objectives help ensure that software is not
only reliable, safe, and secure for customers, but is deployed in a controlled, efficient manner. By
incorporating mechanisms for timely issue detection, continuous improvement, and support for agile
development, the safe software deployment process empowers teams to deliver high-quality
software while adapting to changing requirements and technologies.

https://www.cisa.gov/securebydesign

TLP:CLEAR

TLP:CLEAR

4

CISA | FBI | ACSC

1. Quality processes. Robust quality assurance processes help ensure that software products
function consistently and meet customer expectations without causing disruptions. This
focus on reliability enhances customer safety by reducing the risk of failures that could
compromise critical systems or data, resulting in increased customer trust.

2. Cost and impact management. For software manufacturers, technical and process defects
cost less to remediate when such defects are caught early in the process and cause less
damage to customer systems. Customers impacted by these defects can suffer downtime
and data loss, adversely affecting both their financial and reputational positions.

3. Controlled and measured deployments. A well-defined deployment strategy includes phased
rollouts, such as canary releases, allowing manufacturers to monitor performance in real-
world environments without impacting all customers at once. This reduces the risk of
widespread failures and provides valuable data to refine subsequent deployments.

4. Comprehensive testing. Early detection through comprehensive testing strategies, including
automated testing and monitoring tools, allows teams to identify and address defects before
they escalate into larger problems. Proactively catching issues early improves the quality of a
product and reduces the likelihood of expensive fixes later.

5. Continuous improvement. Feedback loops integrated into the development and deployment
processes enable teams to learn from each iteration and apply those lessons to future
releases. Using feedback loops helps evolve the safe software deployment process and
improves maintenance practices of security standards, as well as improves performance,
and better meets the needs of users. It is important to include “near misses” in the feedback
loop. “Near misses” provide an opportunity to enhance the program without the software
manufacturer or their customers experiencing the full negative impact of an actual incident.

6. Optimize for agility. Teams should be able to adapt quickly to changes in requirements,
emerging technologies, and security threats. Shorter development cycles, collaboration, and
iterative improvements help deliver high-quality software that meets evolving customer
expectations.

7. Secure development ecosystem. A secure development ecosystem is designed to support
developers while reducing the likelihood of defects entering the code base. Software
manufacturers have a greater chance of detecting and blocking issues earlier by
implementing automated technical controls throughout the development ecosystem.

Key Phases of a Safe Software Deployment Process
Successful safe software deployments are based on an established secure software framework such
as NIST Secure Software Development Framework (SSDF). Moreover, safe deployments hinge on a
structured, well thought out process incorporated into the SDLC that minimizes risk and promotes
reliability. Each phase of a safe software deployment process plays a critical role in guiding software
from initial planning to release. Strongly recommended practices for safely deploying software are
rigorous testing during the planning phase, controlled deployments, and continuous feedback. By
following these key phases, software manufacturers can enhance product quality, reduce
deployment risks, and provide a better experience for their customers.

https://csrc.nist.gov/Projects/ssdf

TLP:CLEAR

TLP:CLEAR

5

CISA | FBI | ACSC

The subsections below include common phases found in successful safe software deployment
programs:

Planning

Before writing any code, a clear plan should be established to define goals and build requirements,
understand customer needs, scope potential threats, and specify success criteria. The planning
phase sets the foundation for the entire deployment process, helping ensure teams are aware of the
scope, potential risks, and costs before moving into development.

Key Considerations

Operational Risk Assessment

Implementing a comprehensive, ongoing assessment of the risks and consequences of deploying
software in an environment reduces risk. An operational risk assessment includes understanding
system relationships and interdependencies, potential threats, safety, security, reliability,
performance requirements, and risks associated with common defects. For example, if a service
relies on another product’s service account (SA), and the permissions of that SA change, parts of the
system may fail in seemingly unexpected ways. It is essential to include the processes and
technologies of a safe software deployment program in the overall written product threat model.

Conduct a Failure Anticipation Review

Sometimes referred to as a “pre-mortem,” this review helps teams identify potential failures, drawing
on insights from previous retrospectives (or post-mortems).

Platform Scale and Diversity

Deployment teams should extensively document the multiple potential roll-out scenarios associated
with their products. Teams should plan for increasing platform and device diversity in cases where
the software operates across multiple environments. Consider more than just device count when
contemplating device diversity. Diversity can include different types of operating systems, hardware
brands, firmware versions, firmware settings, bandwidth speeds and reliability, environmental
settings, and geography. Teams should verify sufficient testing coverage before increasing their
internal deployment rate.

Online Service Diversity

Online service diversity may include data center regions and network configurations and include
failover and backup solutions as necessary.

Planning Deployment Cadence

Whether the organization sets a monthly “Patch Tuesday” or delivers multiple configuration updates
per day, the team should formalize this plan and communicate it clearly to internal stakeholders and
external customers.

TLP:CLEAR

TLP:CLEAR

6

CISA | FBI | ACSC

Monitoring and Reporting Strategy

Manufacturers should identify the signals that provide the clearest view of system health and report
identified issues to feed back into the continuous improvement process.

Staffing

Complex deployments require a team capable of monitoring both deployments and the refinement of
the safe software deployment process. A shortage of either operations staff or software/process
developers increases the risk of unexpected incidents.

Fault Tolerance

Systems can be designed to be resilient and/or fail safely even when presented with bad or
malicious code or configuration changes. Each organization should consider ways to build resilience
into the planning process.

Deprecation and End of Life

Software manufacturers should plan for feature deprecation and product end of life. Early warning
will reduce the impact to customers and reduce the likelihood of them facing adverse effects.

Patching

Software manufacturers should plan for patching the products and services they develop. They
should make the process of applying patches as seamless as possible. Security patches may require
subsequent updates to fix identified vulnerabilities that could be exploited by malicious actors.
Malicious actors may reverse engineer patches to identify vulnerabilities that may not yet be publicly
disclosed. By leveraging information from newly released patch advisories, malicious actors can
exploit customer systems that lack the most recent security patches. (see the N-1 Releases section
below).

Development and Testing

This phase involves coding and continuous testing. Testing at this phase typically includes unit,
integration, and automated (including static and dynamic) tests to catch issues early. Code should
be tested in an environment that closely mirrors typical customer environments to help ensure
accuracy and reliability. Organizations should consider devoting resources to actively trying to cause
the deployment process to fail under controlled circumstances to preempt a failure in the field.

Internal Rollout (Dogfood)

When appropriate, based on the type of software and internal enterprise needs, internal teams
should be the first to use new software versions. This “dogfooding” phase allows organizations to
catch issues before the software reaches external users. By testing the product in real-world
scenarios, internal users provide valuable feedback that helps improve the product’s stability and
performance. The number of devices and amount of time needed to obtain sufficient coverage will
vary; organizations should establish standards and adjust them with input from previous release
cycles. Additionally, organizations should establish a culture of encouraging staff to report potential
problems, even when the problems seem negligible.

TLP:CLEAR

TLP:CLEAR

7

CISA | FBI | ACSC

Deployment and Canary Testing

The deployment to customers should be completed in a controlled way. Deployment options can
include canary deployments (small-scale deployments to a limited number of customers or systems),
allowing teams to monitor performance and resolve issues before a wider rollout. For software-as-a-
service (SaaS) products, this may involve deploying the update to a small portion of servers or
directing limited traffic at updated components. For on-premises products, the update may first be
released to only a subset of customers. Organizations may wish to consider variations, such as
“blue/green” deployment models or splitting customers into “Stable” and “Early Access” groups,
allowing them to match access to new features with their risk tolerance.

Controlled Rollout

After verifying successful canary deployments, the deployment team can release the new version to
more users. As confidence in the new version grows, the deployment can gradually expand to more
devices or systems. This controlled rollout prevents sudden, widespread failures. Organizations will
want to consider the appropriate velocity of a deployment for urgent security fixes compared to more
routine content deployments. Organizations will need to factor in both their risk tolerance with
expectations and the risk appetites of customers. During a rollout, teams may need an automatic
breaker or the equivalent of an emergency stop button to halt the rollout, especially during an
incident.

Feedback Into Planning

Continuous feedback is critical throughout the entire process, but particularly after release. Insights
from customers, development and quality teams, system logs, examples of unexpected or abnormal
system behavior, and performance metrics should feed directly back into the planning phase of the
next development cycle. This feedback will enable continuous improvement and a faster response to
issues.

Figure 1 shows these phases over time. Each software and service provider will tune the slope of the
curve to their risk tolerance and other business considerations. Providers should also factor in their
customer risk tolerances.

TLP:CLEAR

TLP:CLEAR

8

CISA | FBI | ACSC

Figure 1: Deployment Timeline

Playbooks
Playbooks serve as essential tools for ensuring that safe software deployment processes are well-
documented, repeatable, and resilient. They provide clear guidelines, best practices, and
contingency plans to help teams navigate each phase of deployment. Playbooks also help software
manufacturers reduce risks and respond effectively to any issues that arise, ultimately safeguarding
both the software and the customers who rely on it. Automation, where possible, can help align the
above factors to the deployment objectives.

Like all playbooks, deployment teams should have regular training and simulated incident testing.
The time to learn how to react is not when the system is failing and potentially causing customer
issues. It is essential to determine how people, processes, and technologies work together before an
incident.

It is important to recognize that deploying software to customer systems involves business
considerations, not just technical considerations. Senior business leaders should ensure teams
curate the playbook over time, request changes, and formally approve playbooks at least annually.
The joint guide, Shifting the Balance of Cybersecurity Risk emphasizes the principle of “leading from
the top.” Having a business leader take ownership of the process will help ensure the organization
allocates the necessary resources to achieve successful outcomes.

Like all other elements of an SDLC, playbooks require regular maintenance to monitor and improve
their level of maturity and ability to achieve the organization’s mission.

Errors

At any phase of the deployment process, the product or support system may encounter errors. These
errors may be the result of latent coding errors in the software or deployment system that escaped

https://www.cisa.gov/resources-tools/resources/secure-by-design

TLP:CLEAR

TLP:CLEAR

9

CISA | FBI | ACSC

testing measures. They can include performance issues, compatibility issues, or even security
issues.

It is important that the technology leadership team establish written playbooks to guide staff when
they encounter these types of errors. These playbooks should include thresholds for acceptable error
rates, staff response, and command chain escalation.

Organizations that deploy real-time monitoring systems and automated alerting and escalation
systems can react more quickly to anomalies and errors than those that rely solely on human
operators. Earlier detection of issues and automated remediation reduce the time between
identification and resolution, leading to fewer impacted customers and minimized downtime.

Emergency Protocols

The playbook should include detailed steps for handling emergencies during or after software
deployments, including detailed recovery tasks. At a minimum, the following topics should be
covered.

Incident Detection and Reporting

Clearly define how issues are identified, whether through automated monitoring systems, internal
testing and/or customer reports. Social media may also be a source of important information that
may be missing from other, more formal channels.

Engineering and Management Escalation Processes

Outline a structured escalation path that indicates when and how incidents are escalated to senior
engineers, management, or even external partners.

Recovery and Rollback Procedures

Document a detailed recovery plan that can be executed quickly if a deployment causes significant
failures. This should include the steps needed to revert systems to a previous stable state, validation
checks to ensure the rollback is effective, and safeguards to prevent data loss. Understanding how
to bring customers back to the last known “good” state will require careful planning, especially if the
target systems are highly diverse. One common strategy is to enhance systems to degrade gracefully
by, for example, disabling certain configurations, rather than stopping a deployment entirely.

Note: Recovery planning scenarios where automated rollback cannot be implemented require
additional care.

Root Cause Analysis and Reporting

After resolving the immediate issue, conduct a thorough root cause analysis (RCA) as part of a
blameless retrospective to identify what went wrong and why. RCA should be followed by
documentation of the findings and corrective actions that can prevent similar incidents from
occurring in future deployments. “Near misses” can provide significant value in this step.

TLP:CLEAR

TLP:CLEAR

10

CISA | FBI | ACSC

Customer and Partner Notification Plan

Ensure there is a plan in place for notifying customers and partners in the event of a critical issue.
This includes determining the appropriate communication channels (email, social media, in-app
notifications) and message timing and providing clear information on the issue, its impact, and
expected resolution time. Revalidating customer and partner contact information can prevent costly
delays in communication. See below for more detail.

Note: The safe software deployment process should be referenced in the larger incident response
plan (IRP). Integrating the deployment process into the incident response plan allows for a seamless
transition from deployment management to incident handling. It also helps ensure that all relevant
stakeholders—developers, operations teams, security personnel, external communications, and
customer support—are aligned and equipped to minimize downtime, address security vulnerabilities,
and maintain business continuity.

Customer Notification Plan

Even with a safe software deployment process, incidents may still occur. To maintain transparency
and trust, software manufacturers should have structured plans for notifying customers. The
following elements should be considered in the notification plan:

1. Pre-deployment notifications: Before any major update, notify customers about upcoming
deployments, including the expected timeline, potential impact, and any planned downtime.
Note: This element needs to be calibrated to avoid alert fatigue.

2. Support customer controlled deployment: Allow customers control over the deployment
schedule and how they receive updates.

3. Rollout status update: During the deployment process, provide real-time or frequent updates
on the rollout status via an appropriate channel, such as a well-known and continuously
updated public web portal.

4. Incident and outage reporting: If an issue arises during deployment, quickly inform
customers about the nature of the incident, its impact on their systems, and the steps being
taken to resolve it.

5. Post-deployment notification: Once the deployment is complete, send a follow-up
communication to confirm the successful rollout. Include details of any new features, bug
fixes, or changes and provide a channel for customers to report any post-deployment issues
they may encounter.

Additional Consideration: N-1 Releases
Some customers prefer to stay on older versions of software or configurations—often referred to as
N-1 (the previous release) or N-2 (two releases back)—to avoid potential risks associated with new
updates. These risks may include bugs, compatibility issues, or disruptions that could affect their
systems or operations.

TLP:CLEAR

TLP:CLEAR

11

CISA | FBI | ACSC

However, while staying on older versions may seem safer, delaying updates can introduce
unmanaged risks, particularly when updates include critical security enhancements or vulnerability
patches. Software manufacturers should focus on improving their deployment practices and
demonstrating their reliability to customers. Rather than slowing down deployments, software
manufacturing leaders should prioritize enhancing deployment processes to ensure both security
and stability.

Conclusion
Safety and security incidents often result from multiple contributing factors, including people,
processes, and technology elements working together in a system that may become misaligned
(sometimes in unexpected and unlikely ways). A safe software deployment process should be
integrated with the organization’s SDLC, quality program, risk tolerance, and understanding of the
customer’s environment and operations. By adopting a systems-thinking approach, teams may
reduce the likelihood of their deployment process operating outside the safety boundary.

Two approaches can help teams maintain this safety boundary. First, foster a blameless
retrospective (also called “postmortem”) culture, where teams analyze both positive and negative
outcomes by focusing on the processes that contributed to the result, rather than assigning blame to
any individual. Individual actions should not lead to an incident if the environment and processes are
resilient.

Second, treat “near misses” as real incidents. “Near misses” provide significant information to
improve processes. They offer an opportunity to evolve programs without suffering the consequences
of an actual incident. Analyzing “near misses” allows teams to uncover weak points in the system
and address them proactively, reducing the likelihood of future failures. By studying these events,
organizations can build a culture of continuous improvement that strengthens security and
operational resilience.

Organizations should formally evaluate their software deployment processes based on the points
outlined herein and develop a plan to address them through a continuous improvement program. A
well-designed software deployment process can ensure that customers receive new features,
security, and reliability in a timely manner, while minimizing unplanned outages.

Disclaimer
The information in this report is being provided “as is” for informational purposes only. CISA, the FBI,
and ASD’s ACSC do not endorse any commercial entity, product, company, or service, including any
entities, products, or services linked within this document. Any reference to specific commercial
entities, products, processes, or services by service mark, trademark, manufacturer, or otherwise,
does not constitute or imply endorsement, recommendation, or favoring by CISA and co-sealers.

Acknowledgements
This information includes input from the following Joint Cyber Defense Collaborative (JCDC)
participants: Microsoft, CrowdStrike, and Google contributed to this guidance.

TLP:CLEAR

TLP:CLEAR

12

CISA | FBI | ACSC

Additional Resources
• National Institute of Standards and Technology (NIST) Special Publication (SP) 800-218: Secure

Software Development Framework (SSDF) Version 1.1: Recommendations for Mitigating the Risk
of Software Vulnerabilities.

• Australian Signals Directorate – Australian Cyber Security Centre’s Secure-by-Design Foundations

https://csrc.nist.gov/pubs/sp/800/218/final
https://csrc.nist.gov/pubs/sp/800/218/final
https://csrc.nist.gov/pubs/sp/800/218/final
https://www.cyber.gov.au/resources-business-and-government/governance-and-user-education/secure-by-design/secure-design-foundations

	Introduction
	Objectives
	Key Phases of a Safe Software Deployment Process
	Planning
	Key Considerations
	Operational Risk Assessment
	Conduct a Failure Anticipation Review
	Platform Scale and Diversity
	Online Service Diversity
	Planning Deployment Cadence
	Monitoring and Reporting Strategy
	Staffing
	Fault Tolerance
	Deprecation and End of Life
	Patching

	Development and Testing
	Internal Rollout (Dogfood)
	Deployment and Canary Testing
	Controlled Rollout
	Feedback Into Planning

	Playbooks
	Errors
	Emergency Protocols
	Incident Detection and Reporting
	Engineering and Management Escalation Processes
	Recovery and Rollback Procedures
	Root Cause Analysis and Reporting
	Customer and Partner Notification Plan

	Customer Notification Plan

	Additional Consideration: N-1 Releases
	Conclusion
	Disclaimer
	Acknowledgements
	Additional Resources

