

Software Transparency in SaaS
Environments

Executive Summary
Producers of software as a service (SaaS) should maintain Software Bill of Materials (SBOM)
data about their software, SaaS operators should request that data from the SaaS producers,
and those considering subscribing to SaaS should request SBOMs from the operators. The
benefits of transparency for software are well documented. Software transparency allows the
choosers and operators of software to make informed decisions and supports software
Operators in managing risks and responding to vulnerabilities. SBOM has emerged as a key
tool for communicating data about the components in packaged software. Through an SBOM, a
software Producer can communicate information about the components and dependencies of a
software instance in a machine-readable procedure. Furthermore, by generating and
maintaining an SBOM, Producers signal to Operators, Choosers, and Subscribers the maturity
of their software security practices.

While there has been extensive work produced on the benefits of software transparency in
packaged software, there remains ambiguity regarding how software transparency can be
achieved for SaaS. This community-drafted white paper1 argues for the value of SBOM-driven
transparency, while identifying four key differences: (1) the frequency at which SaaS is updated;
(2) the volume of software and services intertwined with SaaS; (3) the lack of definitive
boundaries that determine the horizontal and vertical extent of software composition data; and
(4) the opacity of SaaS systems. Using four roles (Producer, Chooser, Operator, and
Subscriber), this paper discusses who could benefit from SBOM in SaaS environments and lays
out a path to address current challenges.

The complexity of services offered through SaaS is one of the factors that limit established
software transparency approaches like SBOM. In acknowledgment of the necessity for
transparency in SaaS services, in addition to software components, this paper proposes
preliminary data fields SaaS software Producers should communicate to software Choosers and
Operators.

Introduction
In an era marked by growing cybersecurity concerns, conversations around software security
have increasingly centered around transparency. Transparency is not a goal in and of itself but

1 This document was drafted by the SBOM Cloud and Online ApplicationsWorking Group, a community-
driven workstream. For more information see About this document. https://www.cisa.gov/resources-
tools/resources/sbom-community-legal-explanation

https://www.cisa.gov/sites/default/files/2024-01/SBOM-Community-Legal-Explanation_508c.pdf
https://www.cisa.gov/resources-tools/resources/sbom-community-legal-explanation
https://www.cisa.gov/resources-tools/resources/sbom-community-legal-explanation

1

rather a means to several ends. The benefits include identifying vulnerable components or
libraries, risk factors, fortifying the software ecosystem against potential threats, and extending
beyond security to improve efficiencies and better-aligning incentives. Much of these
discussions are focused on customer-managed software, but many of these also apply to the
Software as a Service (SaaS) ecosystem.

While many of the core concepts of Software Bill of Materials (SBOM) can be applied to SaaS,
there are some characteristics that complicate the direct mapping. However, SaaS is software,
and SBOMs generally provide insights into the software itself. This paper concludes that, while
there are limiting factors in the efficacy of SBOMs for communicating software component data
for SaaS, SBOM concepts provide a valuable jumping-off point toward transparency for SaaS.

Building on prior work2 regarding SBOM and its role in software and supply chain transparency,
this community-drafted white paper examines how to map the concepts and mechanics of
SBOM to modern online applications and also how to address the opacity of SaaS instances.3
In light of the complexity of SaaS software components and services, this paper discusses
software component transparency4 and software service5 transparency,6 two parts of the larger
software transparency.

SBOM is one type of software component inventory. Though others exist, SBOM has emerged
as a key tool for software component transparency and has become the leading method for
documenting and communicating the components that comprise a software instance. This paper
also proposes an inventory for an online service from the perspective of a stakeholder using the
service’s exposed endpoints, such as a service API, and the consumer data that the service will
be ingesting, transporting, and/or storing.

Scope
This document provides background and a conceptual grounding in the significance of software
component transparency and software service transparency in the context of SaaS. While
acknowledging that SBOMs for SaaS are not yet mature or well-defined, discussions touch on
both the current state of SBOM and SaaS and potential future data fields for SBOM that
address some transparency concerns unique to SaaS. The recommendations proposed in this
paper are intended to be a starting point for SaaS Choosers, Operators, and Subscribers to
request transparency for SaaS components and services from Producers. Direct mapping to
specific kinds of SaaS can be explored in later work.

2 Resources from the NTIA and CISA SBOM working groups can be found at cisa.gov/sbom

3 A software component participating in a service-oriented architecture that provides functionality or
participates in realizing one or more capabilities. NIST. Glossary: Service.
https://csrc.nist.gov/glossary/term/service
4 Software component transparency supports understanding the composition of software.

6Service transparency supports understanding the general function of an online service.

https://csrc.nist.gov/glossary/term/service

2

This document should not be viewed as a technical specification of SBOMs for SaaS. Nor will
this document provide normative guidance regarding legal, procurement, regulatory, or policy
requirements for SBOM and software service transparency, or touch on infrastructure as a
service (IaaS).

Definitions
To clarify discussions on SaaS transparency, the following definitions for frequently used terms
are used. The definitions are grounded in existing work, and tailored for the SaaS context.

SaaS
Some definitions of SaaS center on the locus of deployment, contrasting “SaaS” or “Cloud”
software with “on-premises” software. The National Institute of Standards and Technology’s
(NIST) 2011-era “The NIST Definition of Cloud Computing”7 takes this approach, although
notably in the cloud-native context of a narrow contrast between “SaaS,” “PaaS” (platform as a
service), and “IaaS.”

Instead, this document highlights the key distinction that SaaS is not customer-managed; it is
provider-managed. With this framing in mind, it is worth noting that SaaS software can be
deployed on-premises (e.g., a managed appliance mounted in an office rack), and non-SaaS
can be deployed in the cloud (e.g., a customer-managed VM or cloud project).

7 NIST. Special Publication 800-145: The NIST Definition of Cloud Computing. September 2011.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

3

Figure 1 —The defining characteristic of SaaS is that it is provider-managed.

For the purposes at hand, this paper uses SaaS to mean software whose deployment,
support, management, maintenance, and entire lifecycle are controlled by a supplier
external to the consuming organization; typically, such software is hosted in the cloud by the
service- supplier. This stands in contrast with non-SaaS software which is delivered as
executable bits and bytes to a customer for the customer to deploy and operate, either in the
cloud or on-premises.

Roles
The following roles represent the blending of unique and complex stakeholder identities found
throughout the software lifecycle. A stakeholder may take on one or more of these roles at any
given time. For example, during the renewal period, a Subscriber may transition to a Chooser as
they reevaluate continuing with the SaaS. In addition, an organization can be both a Producer
and an Operator, as they develop their own software (Producer) and operate software they have
purchased (Operator).

The roles of Producer, Chooser, and Operator are grounded in the National
Telecommunications and Information Administration (NTIA) Document “Roles and Benefits for

4

SBOM Across the Supply Chain”8 and adapted for a SaaS context. The Subscriber role is new
to the software transparency conversation.

Producer: A Producer is the creator of the software. The Producer holds information regarding
the software that Choosers, Operators, and Subscribers may be interested in.

Chooser: A Chooser is looking for software and/or services that meet their organization’s needs
(e.g., development, acquisition, procurement). Choosers are interested in information regarding
the software and services to determine if it is the best choice for them. For some subscription
models, organizations may revisit the Chooser role on an annual or other regular cycle.

Operator: Operators are currently managing a system using the SaaS in question. They are
looking for up-to-date information—to which they will subsequently respond—regarding the
software that would affect system performance or security. For SaaS, the Operator role often
includes the application service provider that is maintaining the software, as well as the
enterprise customer that is using the software. Operators are sometimes, but not always, the
Producer of the software. Operators must communicate meaningful changes in the SaaS to
Subscribers and mitigate their risk.

Subscriber: Having chosen the Producer-drafted software, provisioned by the Operator, the
using organization or user understands the inherent risks of the SaaS and must monitor for any
changes in risk. For packaged software, the Operator and the user are often synonymous. For
SaaS, the user or organization that uses the SaaS has a different set of activities. The
Subscriber receives information on the SaaS from the Operator.

Comparing SaaS and Non-SaaS
SaaS is often distinguished from non-SaaS software in discussions around software
transparency. While there are some unique aspects to SaaS as defined above, both are
software with dependencies.

Shared Responsibility Model
Discussions around the security of cloud applications may build upon the idea of a “shared
responsibility model.”9 This model spreads responsibility for risk management among cloud

8 NTIA Open Working Group on Use Cases and State of Practices. Roles and Benefits for SBOM Across
the Supply Chain. November 8, 2019.
https://www.ntia.gov/sites/default/files/publications/ntia_sbom_use_cases_roles_benefits-nov2019_0.pdf
9NIST. SP 500-291: NIST Cloud Computing Standards Roadmap. August 10, 2011.
https://www.nist.gov/publications/nist-sp-500-291-nist-cloud-computing-standards-roadmap;
NIST. SP 500-322: Evaluation of Cloud Computing Services Based on NIST SP 800-145.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-322.pdf; UK NCSC. Cloud Security
Guidance. https://www.ncsc.gov.uk/collection/cloud/understanding-cloud-services/cloud-security-shared-
responsibility-
model&sa=D&source=docs&ust=1697652518825890&usg=AOvVaw3u4MitjxfGzicexAUdjp3U; CISA.

https://www.ntia.gov/sites/default/files/publications/ntia_sbom_use_cases_roles_benefits-nov2019_0.pdf
https://www.nist.gov/publications/nist-sp-500-291-nist-cloud-computing-standards-roadmap
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-322.pdf
https://www.ncsc.gov.uk/collection/cloud/understanding-cloud-services/cloud-security-shared-responsibility-model&sa=D&source=docs&ust=1697652518825890&usg=AOvVaw3u4MitjxfGzicexAUdjp3U
https://www.ncsc.gov.uk/collection/cloud/understanding-cloud-services/cloud-security-shared-responsibility-model&sa=D&source=docs&ust=1697652518825890&usg=AOvVaw3u4MitjxfGzicexAUdjp3U
https://www.ncsc.gov.uk/collection/cloud/understanding-cloud-services/cloud-security-shared-responsibility-model&sa=D&source=docs&ust=1697652518825890&usg=AOvVaw3u4MitjxfGzicexAUdjp3U

5

service providers and cloud service users. This document will apply a similar taxonomy for
software Producers, Operators, Choosers, and Subscribers. While software writers focus on
code quality, software Operators share operational and risk management responsibilities with
SaaS Producers; the distribution of responsibility is dependent on the makeup of the service
and its use. This includes understanding the specific risks that concern the Operator, such as
third-party risk management. Choosers are responsible for ensuring compliance to standards
and best practices, which can include the use of SBOMs as well as additional software and
service transparency tools.

Security is seldom a single party’s responsibility: it is more often a shared responsibility among
multiple parties. The nature of most SaaS products is to hide the Producer’s internal solution
from the Chooser and Subscriber; Operators know and are able to leverage the functional
capabilities of the SaaS but not its internal workings – which increases the security
responsibilities of the Producer. This generally results in the Operator operating SaaS products
and services that are well-defined but opaque to Choosers and Subscribers. Ideally, the
Producer would rapidly remediate all known security issues and be able attest to their actions as
part of their compliance responsibilities. The Operator can then choose to trust the Producer on
the basis of their regulatory compliance attestations.

What the Shared Responsibility Model Means for SBOM
SBOMs inventory the software componentry for a software product. When the control of a non-
SaaS software product is transferred from the Producer to the Operator, the Operator can store
its corresponding SBOM in their SBOM management system. Whenever a new version of the
software product is issued, the SBOM for the product must be updated in the SBOM
management tooling.

Value of SBOMs in the SaaS Context
Both SaaS and non-SaaS software can be large, complicated, and likely to include third-party
components, including open source software (OSS). Consequently, both suffer from risks
associated with complex software supply chains, including but not limited to the inclusion of
security vulnerabilities. For both SaaS and non-SaaS software, Choosers and Operators have a
natural interest in understanding the composition of the software in use in order to better select
and maintain the security of the environment.

Cloud Security Technical Reference Architecture. June 2022. https://www.cisa.gov/resources-
tools/resources/cloud-security-technical-reference-architecture; Amazon. Shared Responsibility Model.
https://aws.amazon.com/compliance/shared-responsibility-model/; Google. Shared Responsibilities and
Shared Fate on Google Cloud. August 21, 2023.
https://cloud.google.com/architecture/framework/security/shared-responsibility-shared-fate; Microsoft.
Shared Responsibility in the Cloud. September 29, 2023. https://learn.microsoft.com/en-
us/azure/security/fundamentals/shared-responsibility; IEEE SA. Standard for Cloud Computing Shared
Function Model. September 23, 2021. https://standards.ieee.org/ieee/2304/10690/.

https://www.cisa.gov/resources-tools/resources/cloud-security-technical-reference-architecture
https://www.cisa.gov/resources-tools/resources/cloud-security-technical-reference-architecture
https://aws.amazon.com/compliance/shared-responsibility-model/
https://cloud.google.com/architecture/framework/security/shared-responsibility-shared-fate
https://learn.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://learn.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://standards.ieee.org/ieee/2304/10690/

6

The use cases in the Appendix make it clear that there are concrete benefits to understanding
software composition that apply to much of the SaaS ecosystem as to that of packaged
software. Indeed, for the Producer of the software and the Chooser, the benefits of SBOMs are
largely the same for SaaS as for packaged software. In addition, in the case of SaaS Operators,
SBOMs can help with defense-in-depth efforts by increasing the visibility into parts of, or the
whole, system without introspecting the system itself (e.g., to determine the risk of an attack or
the impact of a vulnerability).

Using SBOMs at this scale requires the coordination of disparate teams and a high level of
automation. At this time, there are no defined specifications, processes, or tools that perform
this task holistically; nor, as noted above, are there norms or standards governing the meaning
of SBOM comprehensiveness in a SaaS context.

Limitations of SBOM in the SaaS Context
For packaged software, an SBOM provides Choosers and Operators with greater transparency
into its composition. A common example of the use of an SBOM is in the case of a critical
vulnerability,14 where a software Operator can analyze the SBOM to determine whether a
solution includes an affected version of a particular component. It should be noted that Producer
SBOMs are likely to be large and complex, and a manual process does not scale.

In contrast, four key aspects necessitate additional considerations for the applicability of SBOM
for SaaS. First, SaaS systems are frequently changing, and the change is outside the control of,
and often not visible to, the Chooser and Subscriber. Operators may deploy continuously,
potentially pushing code multiple times a day with small engineering changes made each time.10
The frequency of change raises the question, for all actors, of how to keep track of the
composition of the software.

Second, SaaS systems are often part of a larger ecosystem of associated services and tools, so
they have more options available when applying security mitigations. For example, a SaaS
system may resolve a remote execution issue in a component by stopping all inbound traffic
including the malicious payload at the perimeter. This form of mitigation is likely to be much
faster to deploy than component updates and, as a change to deployment configuration, does
not affect the actual software composition.

Furthermore, more than one party may be involved in delivering functionality to the Subscriber.
For example, an Operator may use a third-party identity provider to provide authentication to a
service, or use a third-party storage provider to store customer data. The net result for the
Subscriber is a service with little to no transparency as to the provenance or the maintenance of
the network of services that are in use. There is no consistent machine-readable way to collate

10 Not all updates will change the software composition, but the software composition, and therefore the
SBOM, is still changing at a higher rate than non-SaaS. Furthermore, while the software composition may
not change, the data (e.g. version) in the SBOM may need to be updated.

7

all the data required to either make decisions on choosing or troubleshooting systems that are in
operation.

Third, the technical boundaries of a SaaS product are not as intrinsically defined as that of
packaged software. No widely accepted definition exists as to the appropriate horizontal or
vertical extent of software composition data for SaaS. Because of this, individual component
inventory implementations may vary, and understanding vendor-specific nuances becomes an
important and unfortunate part of reasoning about SaaS composition. Machine-readability of a
data format is little help without a shared understanding of semantics.

Lastly, SaaS systems are often, by their nature, opaque as to their implementation. A packaged
solution may be directly analyzed by an Operator to determine its composition. A SaaS system
does not typically offer this affordance. While these factors make the transparency challenging,
they do not make it intractable.

Recommendations
Recognizing the limited transparency measures for SaaS software, the recommendations below
are offered as initial steps towards Choosers, Operators, and Subscribers gaining visibility into
the software components and services that comprise a Producer’s SaaS product.

Software Component Transparency
Choosers: Request an SBOM from the Operator

Operators: Request an SBOM from the Producer

SBOMs offer SaaS Choosers and Operators some insight into the components within the SaaS
product. Component transparency allows Choosers to evaluate the included components as
part of the purchase decision for the SaaS product and would enable Operators to make better-
educated decisions when managing vulnerabilities, risks, and cybersecurity incidents.

As SBOM consumers, Choosers and Operators should request details regarding how frequently
the SBOM is updated or what actions trigger a new SBOM. For example, Producers may only
be updating the SBOM when components change (e.g., new components or updated
components) and not updating the SBOM with each production change.

In addition, Choosers and Operators should make sure that they have a clear understanding of
the scope of any SBOM for SaaS, keeping in mind the blurred lines bounding the extent of
SaaS software, which is currently an underspecified area. Differences in approach between
SBOM suppliers will in general frustrate attempts to compare SBOMs across SaaS products,
limit automated aggregation of SBOMs, and circumscribe conclusions which may be drawn from
the presence or absence of a given component.

8

As transparency measures for SaaS software mature and best practices emerge, Choosers and
Operators will be better equipped to request specific information in SBOMs that will provide
them with the insights necessary to manage risk across their SaaS software.

Software Service Transparency
Organizations Responsible for Standards and Guidance: Specify a software service
transparency interchange format.

Standards organizations across the software ecosystem should create a standard way for
Producers, Operators, and Choosers to consolidate, exchange, and potentially automate
processing metadata about a service’s configuration and deployment.

This paper scopes SBOMs to provide rich machine-readable data inventorying the component
parts of a software product. Security and compliance relevant macro-level properties of the
service as deployed are not a part of SBOM specifications today, but they are nonetheless
important from the perspective of those accountable for risk management when choosing,
operating, and using SaaS software.

The following sections are intended to highlight the current gaps in software service
transparency information. The proposed data fields would benefit from additional exploration,
analysis, and detailed specification. The data fields are intended to be illustrative in nature, and
are not intended to be exhaustive, normative, fully specified, or scoped in detail. Notably,
however, in the absence of a formal specification, it may be useful to collect this data from
actors upstream in the supply chain, even in an ad-hoc manual way.

Proposed Data Fields
The data fields11 below are offered as usefully suggestive of information that Operators,
Choosers, and Subscribers may find valuable regarding SaaS software Refer to the Appendix
for detailed treatment of use cases and scenarios that may help with understanding the SaaS
landscape.

Service Functions
Service functions are the types of functions the service provides. Examples include identity,
authentication, certificate authority, CNA, load balancing, etc. This data field benefits the
Chooser and Subscriber, and the data can be applied to infrastructure governance and
regulatory compliance.

Service Location
Service location is the geographical location where the service is hosted. Cloud Providers list
these as us-east, brazil-south, etc. Multiple locations may be listed here. This data field benefits
the Chooser and Operator, and the data can be applied to data governance and regulatory
compliance.

11See Table 1 Illustrative Software Service Transparency Data Fields in Appendix

9

Service Protocol

Service protocol is the communication protocol used by service endpoints (e.g., http, https,
mqtt). This data field benefits the Chooser and Operator, and the data can be applied to
infrastructure governance and regulatory compliance.

Service Agreement
Service agreement is the text from, or link to, the terms of service agreed to by the consumer of
the service. Services use terms of service agreements to settle the conditions under which
users can access the service, distribute and operate with the data received from the service, as
well as the conditions under which the user can store data and the service can operate with that
data. Additionally, it may include code copyright along with installation and distribution
conditions that fall under the end-user license agreement and are not subject to this advisory.
This data field benefits the Chooser, Subscriber, and Operator, and the data can be applied to
service availability.

Service Status
Service status is a link to the status page showing service uptime information. This data field
benefits the Subscriber, and the data can be applied to service availability.

Data Flow
Data flow is either selected as “unidirectional” or “bi-directional.” This data field benefits the
Operator, and the data can be applied to data governance.

Data Classifications

Data classification refers to the sensitivity of the data being processed by the service (as
opposed to classification in machine learning). Examples of data classification include PII, PHI,
confidential, and public. Each organization has a different way of classifying data based on
government regulations and internal policies. This field is left generic to accommodate the
different types of data classifications that may exist and future regulations that will arise. There
is currently no canonical standard for classifying data,12 but in general, levels of sensitivity are
indicated by some string which can be used in this field. This data field benefits the Chooser
and Operator, and the data can be applied to data governance.

Conclusion
The frequency with which SaaS products are updated, the multitude of services and software
components, the blurred lines of responsibility for vulnerability management, and the general
opacity of SaaS compound to give the impression that transparency solutions for non-SaaS
software are not applicable to SaaS. However, the fact that SBOMs for SaaS are (a) currently
underspecified; and (b) cannot offer complete transparency for SaaS does not preclude them

12 There are national level definitions, for example HIPAA PII, PHI, GLBA, PCI DSS, SOX, GDPR

10

from being a promising direction for transparency of SaaS. Even for non-SaaS software,
SBOMs are not a silver bullet, and they never claimed to be.

SBOMs can be used in conjunction with other transparency practices to enable Choosers and
Operators to make informed decisions regarding the software that they incorporate into their
operational domains. These transparency practices include but are not limited to requesting
information regarding service identifier, provider, function, protocol, location, agreement, and
status, as well as data flow and classifications. The additional data fields supplement the
software component data provided through the SBOM. SBOMs can also serve as an important
part of a Provider’s documentation that is integral to obligations for regulatory compliance
requirements.

Future Work

To address the gaps in transparency for SaaS, additional discussion and analysis from the
perspectives of practitioners across the software ecosystem is needed, as well as future work
exploring data governance indicators, service availability indicators, risk indicators, transitive
dependencies of services, and other risk indicators.

Data Governance
The work of defining data governance indicators usually falls to compliance or regulatory
experts in organizations based on existing policy. One area of discussion is defining “data
handling” descriptors such as whether data is ingested, processed, or forwarded by the service,
what other services have access to the data, and what encryption is being used in transit and at
rest. Another area of discussion is “data discovery,” which is concerned with identifying user
data location and classification. Although the recommended data fields include service location
and data classification, using the fields to facilitate data discovery is not addressed and requires
further discussion.

Service Availability Indicators
The terms of service that are accepted by the consumer typically govern the availability of a
service. It would be useful to convert service level agreements into a machine-readable format
so they can be understood by Choosers, Operators, and Subscribers. An example application of
this data would be identifying when there is a change in the terms of service so an alternative
may be planned for and put in place. Another application is identifying when a certificate
expires, and the service is no longer accessible.

Risk Indicators
It is well understood that hosted services change frequently due to the DevOps deployment
workflow development teams adopt to add features, fix bugs, and make updates. Introducing
change in a system introduces risk. Inventory, by design, takes a snapshot of the system at a
point in time. It becomes extremely inefficient to keep track of every single change introduced to

11

the system. Furthermore, not every change is risky. Discussion on how to identify what parts of
transparency data is applicable for risk analysis and what parts can be safely ignored, as well as
the scenarios governing these decisions, need further discussion.

Transitive Service Dependency Considerations
Transitive service dependencies are important for transparency into SaaS services, but
encompassing transitive dependencies in a standardized format is not sufficiently mature to
propose at this stage. In a “traditional” approach to SBOM, it is acknowledged that risks are
often not top-level dependency, but in dependencies of dependencies. The NTIA has
recommended using interlinking SBOMs.13 The need for transparency through multiple levels in
a supply chain is demonstrated by observing risks from low-level inclusions, such as the
canonical 2021 Log4J example14.

The same can be applied here, including the ability to signal known unknowns. However,
tracking this data has several important limitations. Not all transitive service dependencies are
visible. Some services are more stochastic or driven by user input or user properties. At a
logical extreme, by using third-party services that in turn could rely on other large services, the
scope could extend to the entire Internet.

Further work is required to clarify this transitive service dependency approach, with a focus on
mapping to the risk management goals of transparency. Requesting information on direct
dependencies in the meantime also offers value, especially for use cases dealing with sensitive
data to be compliant with relevant standards and regulations. In the absence of standardized
formats for communicating software component and service transparency data, Choosers and
Operators should initiate discussions with Producers to ensure mutual understanding of SBOM
in a SaaS context.

13 NTIA Open Working Group on SBOM Framing. Framing Software Component Transparency:
Establishing a Common Software Bill of Materials (SBOM). October 21, 2021.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
14 Cyber Safety Review Board. Review of the December 2021 Log4j Event. July 11, 2022.
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf;

https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf

12

Acknowledgments
Adrian Diglio, Microsoft
Allan Friedman, CISA
Bhargav Vivekanandan, Blue Shield of California
Cassie Crossley, Schneider Electric
Charles Kelly, SAP
Christine O’Leary, Intel
Craig Rubin, HPE
Daniel Bardenstein, Manifest
Deanna Medina, Honeywell
Doug Cavit, Cavit and Hohman
Duncan Sparrell, sFractal Consulting
Emily Fesnak, Deloitte
Isaac Hepworth, Google
Ivana Atanasova, VMware
Ixchel Ruiz
Jeremiah Stoddard, INL
Jim Routh, Saviynt
Joerg Eschweiler
Joyabrata Ghosh, CARIAD SE
Lynn Westfall
Michael Greco, ServiceNow
Nisha Kumar, Oracle
Rene Pluis, Philips
Ricardo Reyes, Tidelift
Scott Armstrong, Interos
Shafia Zubair, JCI
Steve Springett, ServiceNow/OWASP
Tom Alrich
Trevi Housholder, Prudential
Victoria Ontiveros, CISA

13

Appendix

Use Cases
Organizations along the software lifecycle face different information gaps, risks, and
responsibilities regarding the security of SaaS. Using the framing of the four roles (Producer,
Chooser, Operator, Subscriber), the introduction of this document noted that the benefits of
SBOM apply to multiple roles and points in the software lifecycle. The use cases below do not
apply to all SaaS contexts, but they should help the reader understand the landscape of how
transparency can make the overall market for security more efficient.

Producer
The motivations for a SaaS Producer to generate an SBOM are the same as those of a
Producer of non-SaaS. In fact, given the rapid pace of modern application development and the
increased number of dependencies used to build and run these applications, tracking
components with automation-friendly data is even more important. Providing an SBOM, either
as a document or as a managed service, to internal teams within the Producer’s organization
improves interoperability among internal teams and provides a better picture of the state of the
overall service at a given point in time. Sharing SBOM data with a customer communicates
transparency and may therefore, increase vendor trust. Furthermore, providing an SBOM may
be required by relevant standards or regulatory bodies or may be used to comply with standards
of transparency or vulnerability management. Lastly, a Producer may generate an SBOM to
fulfill a customer’s request.

Chooser
The phase of choosing software applies to the process through which an organization selects
and opts to use a SaaS product. During this process, the software component and service
transparency data also supports the Chooser in addressing concerns and performing due
diligence to ensure they are meeting their commitments to protect company and customer data
that the SaaS Producer and Operator might be responsible for. SBOM data can support this
decision in a number of ways beyond checking for known vulnerabilities. Automated analysis
can surface questions about risks from end-of-life or end-of-support versions, or risks from OSS
projects with insufficient support. SBOM data can also be used in analysis around technical debt
or licensing concerns, which would help a potential customer get a more realistic picture of total
cost-of-ownership or potential risk of data and functional lock-in.

The Chooser should be aware that they are receiving SBOM data that represents a static
snapshot; this is particularly important to note given the dynamic nature of SaaS products. Since
the SaaS Producer and Operator will be accepting a greater share of the risk (compared to the
distribution of risk management responsibility in non-SaaS) to protect the potential customer,
understanding the potential risks in the SaaS product is an important part of the decision-
making process. There is value in knowing that a supplier can produce an SBOM, as this
demonstrates some level of maturity.

14

Operator
The Operator is responsible for the delivery and maintenance of the SaaS, including maintaining
service level agreements, service up-time, and mitigating risk, e.g., patching vulnerabilities.
Operators use a combination of acquired software and subscriptions to other SaaS products to
create value for their users. SBOMs give Operators insight into critical components of the SaaS.
As such, and in part due to the complexity of SaaS systems, Operators benefit significantly from
increased transparency into SaaS. Software component and service transparency is useful to
SaaS Operators as it allows them to understand how their acquired software works in the
context of other service providers.

Subscriber
The primary mediation method between the Subscriber and the SaaS is through legal contracts
(e.g., Terms of Service), a news feed, or status feed provided by the Operator. From this
perspective, an SBOM itself does not provide any relevant information to the Subscriber.
However, Subscribers can ask for other information described in this document’s
recommendations. During the lifetime of the Subscriber’s use of the SaaS, the Subscriber may
transition to the Chooser persona in response to new information about the security or
performance of the SaaS.

Illustrative Use Case: Recent Vulnerability Example

In September 2023, a critical vulnerability, CVE-2023-486315 (heap buffer overflow in libwebp),
was found in the webp format widely used by software producers as part of their products and
services. This vulnerability created confusion and extra work to determine if a particular piece of
software was vulnerable due to the lack of software component transparency for the affected
products.

This scenario offers an opportunity to discuss how the four actors respond to new vulnerability
information. The owner of libwebp provided a fix for the vulnerability and published the issue.
The library component producer did what was required of them. Now, everyone who utilizes this
software will need to recognize their responsibility to patch using the provided software. The
library component producer does not have visibility into where their vulnerable code is being
used to be more proactive in helping to mitigate this vulnerability.

The following use cases are examples that illustrate an organization’s concerns and
considerations in light of the vulnerability scenario described above. These examples offer one
possible path forward for responding to a CVE in the SaaS context and are not intended to be
restrictive or prescriptive.

Producer
SaaS Producers using this library as a first-level dependency may choose whether to update
the library. The SaaS Producer may have transitive dependencies that use the library, and
those third-parties may also choose whether to update the library. An SBOM tree provides a

15

checklist that helps ensure that no vulnerable code is left in the SaaS. The SBOM may also
serve as proof of mitigation if the SBOM is detailed enough (includes transitive dependencies).

Chooser
An organization is looking for a SaaS solution for managing its customer data. In considering
cloud-based options from SaaS vendors, the organization requests an SBOM from vendors and
uses the SBOM in its decision-making process. An SBOM allows the Chooser to identify
vulnerabilities, in this case libwebp. This is important considering the libwebp vulnerability, as
the library’s presence in an SBOM is now an indicator of a risk that a Chooser has to be
concerned about when making risk management decisions. They may also be considering
vendor transparency, response times, and the quality of the vendor’s response to the
vulnerability. The risk, especially in a SaaS environment, can be best evaluated in detail based
on Producer attestations in the form of an SBOM.

Operator
In response to the CVE, the Operator reviews available resources to gather information about
the vulnerability to find the relevant services, libraries, and transitive dependencies. This
research may include reviewing relevant SBOMs to assess the vulnerability’s impact on the
Operator’s software. Based on this information, the Operator may take actions to mitigate
immediate risk and may also evaluate and consider more secure software development
practices.

Subscriber
The Subscriber, in this scenario, uses a SaaS to host their data. In light of the CVE, the
Subscriber may be concerned about the security of their data and look for information from their
SaaS Operator. The Subscriber does not have direct visibility into the vulnerability’s impact on
the SaaS. As a result, the Subscriber will be working with the SaaS Operator to obtain
information and/or mitigations for the impact of the vulnerability on their service.

When the subscription cycle allows, the Subscriber may revisit the Chooser role and re-evaluate
continuing the service relationship with the Operator. See above for the Chooser’s
considerations.

Architecture Example
The examples below describe scenarios where additional software service transparency would
provide substantive value to each of the stakeholders interacting with the SaaS.

Application using Third-Party Services
The term application can mean a desktop application, mobile application, or an edge device (IoT
or OT) that may look self-contained when distributed or installed but calls to one or more third-
party services when running. A Chooser would want to know about these third-party services,

16

and an application Operator may need to monitor the network traffic from the application to the
third-party services.

Service using Third-Party Services
A service is any software that is accessed over a network. A service may use one or more third-
party services to deliver some business value. The Producer of the service may want to
inventory their third-party services to design the service for redundancy and security. A Chooser
would want to know about these third-party services in order to understand and manage risk. An
Operator of the service may need to monitor the availability of the third-party services.

Services used by Thin Clients
A thin client is an application that has just enough functionality to access the service’s
Application Programming Interfaces (APIs).

Figure 2 – Services Used by Thin Clients Architecture.

In this example, the Producer and Operator belong to the same organization. The Producer
creates both the hosted service and the thin client. The Operator operates the hosted service.
The Producer and Operator’s organization provides instructions to Subscribers on how to
operate the clients. The thin client’s functionality is very minimal. Therefore, there may not be
much difference in SBOM among the distributions. However, the service itself is composed of a
combination of services operated by the Operator and third-party services. A Chooser would
want to know details described in the Data Fields section along with a traditional SBOM for the

17

thin clients. If the Producer and the Operator belong to the same organization, the Operator may
already have access to the service transparency data.

Web Applications using Third-Party Functionaries
Producers and Operators such as websites or web applications use third-party services to
integrate certain functions such as authentication, payment, or federated access to other
services. In the following example, a hosting service uses a content delivery network (CDN)
provider. The CDN, in turn, has an identity provider integration. A hosting service may provide
this identity provider integration as a service option for a Subscriber.

Figure 3 – Web Applications using Third-Party Functionaries Architecture.

The Chooser would want to know the list of third-party functionaries used by the service, with
details concerning data governance. The Producer may use information about the third-party
services to design their web application for security and availability.

Cloud Services
Cloud Service Providers (CSP) take on the role of Producer and offer a variety of services
depending on how much a consumer would like to offload to them. Every service offering is
backed by a few internal services which are in turn backed by hundreds of microservices, all
operated by the CSP within their own infrastructure. Depending on the type of service, a
Chooser and Operator have, to some degree, access to information regarding the services, as it
is their responsibility to set up and run the service.

18

For example, a storage service is a typical cloud provider service offering. It is up to the
Operator of the service to control access to the service and take care of the data classification
within the service. The CSP, as Producers and Operators, in turn ensures the service is always
functional, and the data and service is recoverable in the event of an outage. A CSP would
benefit from maintaining SBOM and service transparency information for their own infrastructure
and operation.

Data Fields Table

The data fields proposed here for software service transparency in SaaS software are intended
to be a starting point, the first step in a longer journey towards establishing best practices for
SaaS software transparency.

Table 1: Proposed Service Transparency Data Fields

Field Description Persona Who
Benefits

Data Application

Service Functions The types of
functions the service
provides. (e.g.,
identity,
authentication,
certificate authority,
CNA, load balancing,
etc).

Chooser, Subscriber Infrastructure
Governance,
Regulatory
Compliance

Service Location The geographical
location where the
service is hosted.
Cloud Providers list
these as us-east,
brazil-south, etc.
Multiple locations
may be listed here.

Chooser, Operator Data Governance,
Regulatory
Compliance

Service Protocol Communication
protocol used by
service endpoints
(e.g., http, https,
mqtt).

Chooser, Operator Regulatory
Compliance,
Infrastructure
Governance

19

Service Agreement The text from or link
to the Terms of
Service agreed to by
the consumer of the
service.

Chooser, Subscriber,
Operator

Service Availability

Service Status A link to the status
page showing service
uptime information.

Subscriber Service Availability

Data Flow Unidirectional or bi-
directional.

Operator Data Governance

Data Classifications The classification of
the data being
ingested by the
service (e.g., PII, PHI,
confidential, and
public).

Chooser, Operator Data Governance

Glossary
Software-as-a-Service (SaaS) Software whose deployment, support,

management, maintenance, and entire
lifecycle are controlled by a supplier external
to the consuming organization.

Chooser A Chooser is looking for software and/or
services that meet their organization’s needs.

Operator Operators are currently managing a system
using the SaaS in question.

Producer A Producer is the creator of the software.

Subscriber The Subscriber receives information on the
SaaS from the Operator.

	Software Transparency in SaaS Environments
	Executive Summary
	Introduction
	Scope
	Definitions
	SaaS
	Roles

	Comparing SaaS and Non-SaaS
	Shared Responsibility Model
	What the Shared Responsibility Model Means for SBOM
	Value of SBOMs in the SaaS Context
	Limitations of SBOM in the SaaS Context

	Recommendations
	Software Component Transparency
	Software Service Transparency
	Proposed Data Fields

	Conclusion
	Future Work
	Data Governance
	Service Availability Indicators
	Risk Indicators
	Transitive Service Dependency Considerations

	Acknowledgments
	Appendix
	Use Cases
	Producer
	Chooser
	Operator
	Subscriber

	Illustrative Use Case: Recent Vulnerability Example
	Producer
	Chooser
	Operator
	Subscriber

	Architecture Example
	Application using Third-Party Services
	Service using Third-Party Services
	Services used by Thin Clients
	Web Applications using Third-Party Functionaries
	Cloud Services

	Data Fields Table
	Glossary

