

 As of July 2024 cisa.gov central@cisa.dhs.gov @CISAgov @CISACyber @FBI @cisagov @FBI

Secure by Design Alert:
Eliminating OS

Command Injection

Vulnerabilities

Malicious Actors Use OS Command Injection Vulnerabilities to Compromise Systems

Operating system (OS) command injection vulnerabilities are a

preventable class of vulnerability in software products. Software

manufacturers can eliminate them at the source by taking a secure by

design approach. Despite this fact, OS command injection

vulnerabilities continue to surface, allowing adversaries to exploit them

to cause harm. CISA and FBI are releasing this Secure by Design Alert

in response to recent well-publicized threat actor campaigns that

exploited OS command injection defects in network edge devices (CVE-

2024-20399, CVE-2024-3400, CVE-2024-21887) to target and

compromise users. These vulnerabilities allowed unauthenticated

malicious actors to remotely execute code on network edge devices.

OS command injection vulnerabilities arise when manufacturers fail to properly validate and sanitize user input when

constructing commands to execute on the underlying OS. Designing and developing software that trusts user input

without proper validation or sanitization can allow threat actors to execute malicious commands, putting customers at

risk.

CISA and FBI urge CEOs and other business leaders at technology manufacturers to request their technical leaders to

analyze past occurrences of this class of defect and develop a plan to eliminate them in the future.

To further prevent these vulnerabilities, technical leaders should:

• Ensure software uses functions that generate commands in safer ways by preserving the intended syntax of the

command and its arguments,1

• Review their threat models,

• Use modern component libraries,

• Conduct code reviews,

• And implement aggressive adversarial product testing to ensure the quality and security of their code throughout

the development lifecycle.2

Despite widespread knowledge and

documentation of the OS command

injection vulnerabilities over the past two

decades, along with the availability of

effective mitigations, software

manufacturers have continued to develop

products with this defect, which puts

customers at risk.

Secure By Design Lessons to Learn

Products that are secure by design reasonably protect against malicious cyber actors exploiting the most common and

dangerous classes of product defects3. Incorporating security at the outset—beginning in the design phase and continuing

through development, release, and updates—reduces the burden on customers and risk to the public. OS command

injection vulnerabilities have long been preventable by clearly separating user input from the contents of a command.

Despite this finding, OS command injection vulnerabilities—many of which result from CWE-78—are still a prevalent class

1 Input Validation Cheat Sheet. OWASP Cheat Sheet Series.

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
2 Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology, U.S. Department of

Commerce. (n.d.). Secure Software Development Framework | CSRC | CSRC. https://csrc.nist.gov/Projects/ssdf
3 CWE - 2023 CWE Top 25 most dangerous software weaknesses. (n.d.). https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

mailto:central@cisa.dhs.gov
https://www.cve.org/CVERecord?id=CVE-2024-20399
https://www.cve.org/CVERecord?id=CVE-2024-20399
https://www.cve.org/CVERecord?id=CVE-2024-3400
https://www.cve.org/CVERecord?id=CVE-2024-21887
https://www.cisa.gov/securebydesign
https://cwe.mitre.org/data/definitions/78.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://csrc.nist.gov/Projects/ssdf
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

2 cisa.gov central@cisa.dhs.gov @CISAgov @CISACyber @FBI @cisagov @FBI

Secure by Design Alert: Eliminating OS Command Injection Vulnerabilities

As of [Insert Date]

of vulnerability. CISA has recently added CVE-2024-20399, CVE-2024-3400, and CVE-2024-21887 into the KEV Catalog,

which documents vulnerabilities exploited in the wild. Note: CWE-78 is the child weakness of CWE-77 and is related to

several other weaknesses.

How Can Software Manufacturers Prevent OS Command Injection Vulnerabilities?

During the design and development of a software product, developers should take steps to prevent OS command

injection vulnerabilities at scale including, but not limited to:4

• Whenever possible, use built-in library functions that separate commands from their arguments instead of
constructing raw strings that are fed into a general-purpose system command.

• Use input parameterization to keep data separate from commands; validate and sanitize all user-supplied input.

• Limit the parts of commands constructed by user input to only what is necessary.

Example: In Python, a developer who would like to create a folder given a user’s input should use the os.mkdir()

function rather than invoking a command.5 If such a built-in library function is not available, the developer should invoke

the command in a manner that separates the command’s arguments from the OS command itself—for example, by

sanitizing the user’s input and then invoking subprocess.run([“mkdir”, user_input]). Software manufacturers

can enforce this process by writing rules at time of pull requests to disallow risky command invocation, such as, banning

os.system, subprocess.run when supplied with a string (as opposed to an array), and subprocess.run when

supplied with the shell=True argument.6

Secure By Design Principles to Follow

CISA and FBI encourage manufacturers to learn how to protect their products from falling victim to OS command injection

exploits and other preventable malicious activity by reviewing the three principles laid out in the joint guidance Shifting

the Balance of Cybersecurity Risk: Principles and Approaches for Secure by Design Software.

Principle 1: Take Ownership of Customer Security Outcomes

Software manufacturers should take ownership of their customer’s security outcomes by eliminating OS command

injection vulnerabilities from their products. There are key security areas manufacturers should invest in to protect their

customers as well as the public. These include providing safe building blocks for their developers to ensure that a single

error does not compromise the data of millions of users. The cycle of vulnerability detection, mitigation, and patch

deployment for vulnerabilities that have been understood for years is not a lasting approach to security. Effective

mechanisms to prevent classes of vulnerability at scale are available and software manufacturers should implement

them as early in the development cycle as possible. Adopting standard best practices, such as the guidance listed above,

can help manufacturers root out OS command injection vulnerabilities at the source, as opposed to relying on customers

to apply fixes. Manufacturers should also implement automated mechanisms that prevent their software from using

unsafe functions.

Additionally, senior executives at software manufacturers must take accountability for the security of their customers

starting by regularly testing and conducting code reviews to determine product susceptibility to exploitation. The Open

Web Application Security Project (OWASP) and other entities provide guidance on testing methods with available

techniques.

4 OS Command Injection Defense - OWASP Cheat Sheet Series. (n.d.).

https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html#defense-option-3-parameterization-

in-conjunction-with-input-validation; A03 Injection - OWASP Top 10:2021. (n.d.).
5 Ensure that the arguments to os.mkdir() do not create a path traversal vulnerability. See previous Secure by Design Alert:

https://www.cisa.gov/resources-tools/resources/secure-design-alert-eliminating-directory-traversal-vulnerabilities-software.
6 Command injection prevention for Python | Semgrep. (2023, April 12). https://semgrep.dev/docs/cheat-sheets/python-command-

injection.

mailto:central@cisa.dhs.gov
https://www.cve.org/CVERecord?id=CVE-2024-20399
https://www.cve.org/CVERecord?id=CVE-2024-3400
https://www.cve.org/CVERecord?id=CVE-2024-21887
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://cwe.mitre.org/data/definitions/77.html
https://www.cisa.gov/resources-tools/resources/secure-by-design
https://www.cisa.gov/resources-tools/resources/secure-by-design
https://owasp.org/
https://owasp.org/
https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html#defense-option-3-parameterization-in-conjunction-with-input-validation
https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html#defense-option-3-parameterization-in-conjunction-with-input-validation
https://www.cisa.gov/resources-tools/resources/secure-design-alert-eliminating-directory-traversal-vulnerabilities-software
https://semgrep.dev/docs/cheat-sheets/python-command-injection
https://semgrep.dev/docs/cheat-sheets/python-command-injection

3 cisa.gov central@cisa.dhs.gov @CISAgov @CISACyber @FBI @cisagov @FBI

Secure by Design Alert: Eliminating OS Command Injection Vulnerabilities

As of [Insert Date]

Principle 2: Embrace Radical Transparency and Accountability

Manufacturers should lead with transparency when disclosing product vulnerabilities. To that end, manufacturers should

track the vulnerability associated with their products and disclose these to their customers via the CVE program.

Manufacturers should ensure that their CVE records are correct and complete. In addition to providing CVEs, it is

especially important that manufacturers supply an accurate CWE mapping so the industry can track classes of software

defect, and customers can understand areas where a given vendor’s development practices may require improvement.7

Many, but not all, OS command injection vulnerabilities are the result of CWE-78. As such, manufacturers should identify

and document the root causes of OS command injection vulnerabilities and declare it a business goal to work toward

eliminating the entire class. Software manufacturers should also maintain a modern vulnerability disclosure program

(VDP). Note: CISA provides resources to assist organizations in establishing and maintaining a VDP.

Principle 3: Build Organizational Structure and Leadership to Achieve These Goals

Technology manufacturing executives should:

• Give the security of their products the same level of care they give to cost.

• Consider the full picture: that customers, our economy, and our national security are currently bearing the brunt

of business decisions to not build security into their products—as illustrated by the recent threat actor campaigns

referenced in this Alert.

• Be aware that fully implementing secure by design software development can reduce financial and productivity

costs as well as complexity.

• Make the appropriate investments and develop the right incentive structures that promote security as a stated

business goal.

• Lead programs to root out entire classes of vulnerability rather than addressing them on a case-by-case basis.

• Establish organizational structures that prioritize proactive measures, such as adopting standard best practices,

to root out OS command injection vulnerabilities at the source.

• Ensure their organization conducts reviews to detect common and well-known vulnerabilities, like OS command

injection, to determine their susceptibility, and implement the existing effective and documented mitigations.

o Organizations should conduct these reviews continually to root out classes of vulnerability, as some

vulnerabilities may change or develop over time.

o Executives should request regular updates to assess: (1) the company’s progress at identifying recurring

classes of vulnerability, (2) the company’s progress to eliminate them, and (3) the appropriate resources

needed to continue making progress.

Action Item For Software Manufacturers

To demonstrate their commitment to building their products to be secure by design, software manufacturers should take

the Secure by Design Pledge. The pledge lays out seven key goals that the signers commit to demonstrating measurable

progress towards, including reducing systemic classes of vulnerability like OS command injection.

This Secure by Design Alert is part of an ongoing series that aims to advance industry-wide best practices that eliminate

entire classes of vulnerability during the design and development phases of the product development lifecycle. Through

the Secure by Design initiative, we seek to foster a cultural shift across the industry by normalizing the development of

technology products that are secure to use out of the box. Visit cisa.gov to learn more about the principles of Secure by

Design, take the Secure by Design Pledge, and stay informed on the latest Secure by Design Alerts.

7 Common Weakness Enumeration (CWE) classification identifies classes of software/hardware weaknesses (including vulnerabilities and

defects); Common Vulnerabilities and Exposures (CVE) classification identifies and labels unique vulnerabilities in specific

software/hardware products.

mailto:central@cisa.dhs.gov
https://www.cve.org/About/Overview
https://cwe.mitre.org/data/definitions/35.html
https://cwe.mitre.org/data/definitions/78.html
https://www.cisa.gov/vulnerability-disclosure-policy-template
https://www.cisa.gov/securebydesign/pledge
https://www.cisa.gov/
https://www.cisa.gov/securebydesign
https://www.cisa.gov/securebydesign
https://www.cisa.gov/securebydesign/pledge
https://www.cisa.gov/securebydesign/alerts

4 cisa.gov central@cisa.dhs.gov @CISAgov @CISACyber @FBI @cisagov @FBI

Secure by Design Alert: Eliminating OS Command Injection Vulnerabilities

As of [Insert Date]

Disclaimer

The information in this report is being provided “as is” for informational purposes only. The authoring organizations do not

endorse any commercial entity, product, company, or service, including any entities, products, or services linked within

this document. Any reference to specific commercial entities, products, processes, or services by service mark,

trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by the

authoring organizations.

mailto:central@cisa.dhs.gov

