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Abstract

Recently more and more attention has been paid to
the intrusion detection systems (IDS) which don’t
rely on signature based detection approach. Such
solutions try to increase their defense level by using
heuristics detection methods like network-level em-
ulation. This technique allows the intrusion detec-
tion systems to stop unknown threats, which nor-
mally couldn’t be stopped by standard signature
detection techniques.

In this article author will describe general con-
cepts of network-level emulation technique includ-
ing its advantages and disadvantages (weak sides)
together with providing potential countermeasures
against this type of detection method.

1 Introduction

Intrusion detection systems were designed to detect
and deny unauthorized access attempts launched
mainly through a network. Together with the
growth of the Internet number of such attempts in-
creased dramatically. Most of the known network
attacks are designed directly to compromise the se-
curity of a targeted computer system. This includes
variety of hacking attempts against vulnerable ser-
vices, unauthorized access to sensitive data and all
types of malware (viruses, worms etc.). We have
already seen worms that infected millions of com-
puter systems in a very short period of time, like
Blaster worm which infected more the 25 million
unique computer machines [11]. Intrusion detection
systems objective is to detect such attacks and take
all the necessary actions to prevent further spread.

Most of the IDS still rely on the signature (pattern)

matching approach. Basically they are constantly
listening to the network traffic and trying to
find specific signature inside the packet data.
When a potentially malicious pattern is found,
intrusion detection system blocks the packet from
going "deeper" into the network. The signature
detection approach often plagues IDS with high
number of false positives alerts [15, 22]. In fact,
there are many IDS attacks which make a nasty
usage of this issue (for example the old squealing
attack [14]).

The pattern matching approach was (and in
fact still is) heavily used in antivirus software.
Somewhere in the end of 80s (early 90s) first
polymorphic viruses started to appear [1, 9].
The 1260 virus (also known as Chameleon) is
considered as the first polymorphic virus. The
1260 virus, created by Mark Washburn, was in fact
a fusion between the Vienna virus (written, and
then published by Ralf Burger in his book) and the
Cascade virus (the first self-encrypting file virus).
Washburn extended the initial Cascade virus tech-
nique, which resulted in the creation of decryptor
with mutable body. Decryptor body was generated
(changed) upon infection - of course the general
logic of decryption algorithm was preserved. Soon
after this more and more complex polymorphic
engines started to appear, like the Mutation
Engine (MtE) (created by Dark Avenger) which
appeared in 1992 or the DAME engine (created
by Dark Angel from Phalcon/Skism group), which
appeared in 1993 as a part of 40Hex magazine.
Summing it up, polymorphism is a technique that
allows to evade signature detection by encrypting
code and creating a decryptor (decrypting stub)
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which is different every generation!. Polymor-
phism was applied multiple times [7, 20, 10, 3]
to shellcode generation process.  Polymorphic
shellcodes were and still are the ultimate weapon
against intrusion detection systems based only on
signature detection approach. However, like in
the antivirus software case, some countermeasures
were developed in order to stop polymorphic code.
For this purpose code emulation technique was
presented. Code emulation is a powerful technique
used already for a long time in the antivirus soft-
ware field (especially in dealing with polymorphic
viruses with encrypted bodies). Considering the
fact the decrypting procedure (decryptor) must
decrypt the actual body of the virus before it
actually get executed, an code emulator may be
used to simulate the work of decryptor. When
the original virus body is decrypted antivirus
software may proceed with standard pattern
matching detection. Of course this is the most
optimistic scenario. Not so far ago a group of
researchers [16, 17] proposed similar solution for
the purpose of intrusion detection systems. In
their approach called network-level emulation they
suggested using a CPU emulator to dynamically
analyze every potential instruction sequence in
the monitored network traffic in order to locate
execution behavior of potentially malicious code.
The network-level emulation does not rely on
pattern matching approach, what allows it to work
like an heuristics scanner and detect previously
unknown threats.

In this article, the author will describe general
assumptions used by intrusion detection systems
in terms of detecting attacks via using network-
level emulation technique. Potential evasion tech-
niques will be presented as well. To the author’s
knowledge the only emulation based "IDS" publicly
available is a library created by Paul Baecher and
Markus Koetter called libemu [2]. Libemu library
is developed more like a proof of concept than ac-
tual stable working product, so it’s functionality is
quite limited. Due to the lack of others real testing
environments, anti-emulation techniques presented
in this article should be treated mostly as theo-

LAuthor is refering here to the so called the fast-
polymorphism, not the slow-polymorphism approach where
the main goal is to limit the number of mutated samples -
this complicates the process of signature creation.

retical concepts. Bypassing techniques presented
in this paper will focus only (mostly) on defeating
network-level emulation approach. This paper will
also focus on Windows shellcodes, because they are
naturally bigger and more complicated then ones
designed to work in *nix systems. Author will also
refer to shellcode as a type of shellcode which re-
quires a decryptor.

2 Concepts of network-level

emulation

In order to perform code emulation intrusion de-
tection system necessary data must be gathered
first. To achieve this IDS monitors client-initiated
data of the network stream. Typically such data
may include malicious requests like exploitation
attempts. For TCP packets the application-level
stream is reassembled when necessary and in case
of large client-initiated streams only some limited
portion of it is inspected. When the information is
collected the emulation process begins. Since the
shellcode position is not known at this point and
the lengths of [A-32 instructions may differ, emu-
lator must treat every byte in the data buffer as a
potential entrypoint of the shellcode. Basically the
emulation process is repeated for each byte position
found in the gathered data buffer. Depending on
the emulated code behavior it is marked as poten-
tial shellcode or not. The detection method will be
discussed in the next section.

2.1 Shellcode Detection

This section will present general shellcode archi-
tecture and also the heuristics shellcode detection
mechanisms used in network-level emulation.

2.1.1 Shellcode Architecture

Typical Windows shellcode consists of three
parts: GetPC code, decryptor (decrypting stub),
encrypted payload (Figure 1).

Where:

e GetPC code - this part is important because
shellcode decryptor must calculate the correct
address of the encrypted payload - otherwise
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Figure 1: General composition of typical Windows
shellcode.

the decryption process will be done wrong.
Since the final location of injected shellcode
cannot be predicted and on the other hand IA-
32 architecture does not provide EIP-relative
addressing mode the shellcode address must be
calculated on-the-fly (while the shellcode exe-
cutes)?.

e decryptor - this part is responsible for de-
crypting the encrypted payload. In order to
decrypt the payload, decryptor must know its
location (this is provided by GetPC code),
must be able to read the data from the payload
and also must be able to write the decrypted
code back (usually to the same place). A typ-
ical decryption algorithm is a implementation
of simple XOR cipher.

e encrypted payload - this is the effective part
of the shellcode. It performs all the necessary
actions to satisfy the attacker, like binding a
shell to a specific port etc. In most of the cases
the payload must be encrypted to avoid using
restricted byte characters like NULL-bytes -
this is limited by the vulnerability itself. Once
the original payload data is decoded, the de-
coder stub passes execution to it.

2.1.2 Detection Methods (heuristics)

As it was presented in the previous section, en-
crypted shellcode payload must be decrypted in or-
der to retrieve its original functionality. The de-
cryption process itself depends on the body of en-

2Same mechanisms are also used in computer viruses.

crypted payload - which is obvious. Therefore the
decryptor always must make read requests to the
body of encrypted payload. This is the main as-
sumption of the network-level emulation technique
[16, 17]. Additionally, the read requests caused by
the decryptor must refer to the memory located in
range of current data buffer (basically to the con-
tents of shellcode). This was intially the only as-
sumption in this detection method. However it ap-
pears that sometimes random code can cause hun-
dreds of read requests of different memory locations
in range of the data buffer. This may lead to high
number of false positive alerts. Since this assump-
tion alone was not strict enough, additional one was
created. As it was stated before (section 2.1.1), typ-
ical shellcode uses GetPC code in order to obtain
its virtual address in the memory. This assumption
is used together with the previous one (decryptor
needs to make read requests). Whenever in the ex-
ecution path a GetPC code block is found and it is
followed by read requests to a memory location in
range of the data buffer, the data buffer is marked
as shellcode. Appending to the tests [16], by bas-
ing the detection method on those assumptions the
network-level emulator was able to detect all com-
mon polymorphic shellcodes without making false
positives alerts.

3 Limitations and countermea-
sures

Even though the network-level emulation technique
is able to detect most of the currently known poly-
morphic shellcodes generated by various tools like
ADmutate [10], CLET [20], TaPiON [3] there are
still some serious issues that should be taken into
consideration. This section will list some of them.
Some of the issues presented here have already been
mentioned [16], however for the sake of understand-
ing the general network-level emulation limitations
they are presented and described more deeply in
this section as well.

3.1 Address Space and CPU Con-

text State Problem

The main problem of the emulation approach is
that it cannot provide 100% correct memory view of



the process address space. Furthermore, it seems
to be impossible to find a solution for this issue,
especially in case of intrusion detection systems in-
stalled on the separate machines. Of course one
of the potential short-term solutions would be to
statically map some of the mostly used Windows
libraries like KERNEL32.DLL or NTDLL.DLL. How-
ever this is a very limited solution and not re-
ally satisfactory. It is highly probable that more
skilled attacker would know his target well, so in
case of exploiting an specific process he may not
reveal the decryption routine code if for example
some of the additional libraries (typically used by
the targeted process) are missing (this can be eas-
ily achieved by parsing PEB (Process Enviroment
Block) [18, 19, 13]). It is very unlikely that any
intrusion detection system based on the network-
level emulation approach will be able to solve such
issues, since typically such systems are completely
separated from the target process. Same goes for
the state of CPU context. Typically attacker can
assume some of the registers values - even if not
accurately the approximate value still can be cal-
culated. Since emulators are separated from the
running processes, they are unable to guess correct
values. For example libemu [2] nullifies all regis-
ters values (except ESP) before starting the emu-
lation process, and some other solution [16] keeps
all of the registers values randomized. Both of pre-
sented methods can be defeated very easily, since it
is very unlikely that generated random values will
meet ones from the attacked process.

3.2 GetPC Code

The GetPC code is often very important to
shellcode. In fact most of the known shellcodes
totally rely on it. The GetPC code is usually
implemented in two ways, by using relative CALL
instruction or by using the FSTENV instruction.
The implementation used in libemu [2] scans for
either CALL rel (0xE8) opcode and checks if the
call destination resides in data buffer or scans for
the FSTENV instruction. If even one of the variants
is located then code is marked as potentially
harmful. The libemu implementation is not really
accurate since instead of CALL rel instruction, a
CALL indirect may be used (where the operand
can be a memory location or a register). For
example following sequence of instructions (see

Listing 1) would initialize ESI register with the
address pointing to the first instruction after CALL.

PUSH
CALL

0C390565Eh
ESP

Listing 1: Variation of GetPC code using indirect
CALL instruction.

Other methods may be used as well, like the SEH
(Structured Exception Handler) method®[8|. Fur-
thermore, in some cases the GetPC code can be
simply omitted, by assuming one of the registers
or any other element from the attacked process ad-
dress space, point to the shellcode base address (or
somewhere near). Since emulator cannot predict
such values correctly (see section 3.1 for details)
this is a very good and nasty evasion technique.
For example if attacker can assume his shellcode
will be located somewhere at the stack space of
targeted module, he can use following algorithm to
find the shellcode memory address:

1. grab top stack address (FS:[0x04]) and bot-
tom stack address (FS:[0x08]) from TIB
(Thread Information Block)

2. scan the obtained stack memory range for a
shellcode marker

Presented method does not rely on hard coded val-
ues and practically can be applied to any Windows
shellcode (of course shellcode must be located at
the stack). Important fact is even if the shellcode
scans the stack memory space (makes a read re-
quests) it still does not trigger the IDS alert, be-
cause it does not fulfill the assumptions presented
in section 2.1.2.

3.3 Read requests

As it was previously presented (section 2.1.2) when
GetPC code is missing in the gathered data buffer
there is no need for the decryptor to hide the read
requests. However even with detected GetPC code
it is still possible to bypass the read requests de-
tection technique. This can be achieved by moving
the original shellcode data to other location (aside

3Matter of fact this technique is often used for anti-
debugging, anti-emulator purposes especially by executable
file packers.




from data buffer) like to an allocated memory
space. Problem of this technique is that in order
to copy the shellcode to other location decryptor
must still be able to read it - unfortunately such
action will result in setting of the IDS alarm. The
trick here is to force other system components
to make the read access instead of doing this
directly from the shellcode decryptor. This can be
achieved by variety of tricks since a lot of memcpy
alike functions are found in most of the Windows
libraries. The code presented below (Listing 2)
uses native API [12, 4] to allocate memory and
copy itself to the allocated region. In this example
ZwAllocateVirtualMemory (syscall #11h) func-
tion is used to allocate necessary memory space
and ZwReadVirtualMemory (syscall #BAh) is
used to copy the shellcode to the newly obtained
location. Both syscall numbers were targeted for
the Microsoft Windows XP SP2 operating system.

xXor eax,eax
push PAGE_READWRITE_EXECUTE
push MEM_COMMIT

push offset region_size_ptr
push eax

push offset out_base

push -1

push offset retl

push offset retl

mov edx ,esp

mov eax ,011h

sysenter

retl:

push eax

push REGION_SIZE

push dword ptr [out_base]
push offset shellcode

push -1

push offset ret2

push offset ret2

mov edx ,esp

mov eax ,0BAh

sysenter

ret2:

Listing 2: Assembly pseudo-code which can be used
to evade payload-read detection.

After the shellcode relocation execution can be con-
tinued from the newly allocated memory or just the
decryptor may refer to the allocated memory while
performing the decryption instead of using the code
from the data buffer. It’s obvious that in this exam-
ple if the native API functions will not be simulated

correctly future decryption process will fail.

3.4 Time Limit

An emulator, no matter if it is used in the intrusion
detection systems or antivirus software products,
must do the analysis in fixed period of time. This
is crucial and not possible to avoid. Generally code
emulation is hundreds times slower then native ex-
ecution. This is one of the biggest disadvantages of
the emulation approach. In the world of computer
viruses several anti-emulation techniques were de-
ployed to make use of this issue, like for example the
branching technique [6]. However shellcodes unlike
viruses are very limited in size so in this case tech-
niques like branching (which require a lot of ad-
ditional space) are not very useful. Some of the
known polymorphic shellcode generators [3] are us-
ing the RDTSC (Read Time Stamp Counter) instruc-
tion to detect debuggers or some of the emulators.
However emulator may simulate the RDTSC instruc-
tion and stay undetected. The most basic and sta-
ble attempt in this case would be to place several
delaying loops which would iterate enough times
until the finite time given for emulator to work will
not be consumed. Appending to the report [16]
additional heuristics were applied to detect endless
(infinite) loops which are sometimes found in the
random code. However proposed heuristic meth-
ods can be easily defeated and basically a specially
crafted endless loop may be used to consume entire
emulator time.

3.5 Other Techniques

There are quite a lot of other techniques that can
be used for bypassing network-level emulators. For
example, even if emulator traces all the memory
writes to the data buffer it can only predict situ-
ations where the memory is not written from ex-
ternal components (like for example the operating
system kernel itself). So if shellcode would use an
native API function like ZwWriteVirtualMemory
or any other suitable function to perform mem-
ory write, emulator would not be able to correctly
reproduce the changes. Using the Prefetch Input
Queue (PIQ) [21] tricks often cause a corruption of
the emulated code, because tis implementation is
not done correctly (like self-overwriting REP STOSB
etc.). Additionally it appears none of the network-



level emulators can properly emulate FPU or SSE
instructions, so in case where the shellcode de-
pends* on the results given by FPU, SSE instruc-
tions it highly probable that emulation process will
fail. The swarm attack [5] is also used against
network-level emulation systems. The main idea
of the swarm attack is to modify a control hijack-
ing attack so that the shellcode decoder will not
be present in any attack traffic. This is achieved
by building the decoder inside the attacked process
from a small pieces which are send by multiple at-
tack instances.
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5 Conclusion

In this paper the author presented main concepts
of network-emulation technique, together with its
advantages and weak spots. Appending to the re-
ports [17] real-world network-level emulation imple-
mentation provided good overall results in detect-
ing known polymorphic shellcodes. This paper il-
lustrated potential evasion techniques which would
make the detection harder or just impossible. It’s
obvious that together with the growth of instruc-
tion detection systems based on network emulation
approach presented evasion techniques will be ap-
plied to shellcodes creation process as well. From
the other hand network-level emulation solution re-
quires a lot of processing power so it is very unlikely
it will relieve the signature detection based solu-
tions soon if ever. Anyway time it occurs we will
be prepared.

4TaPiON [3] generates a decryptor together with FPU
instructions as well, however they are not a part of the de-
crypting process - they are used as NOP instructions. This is
not a good solution because emulator may just ignore such
instructions and still the decryption process will succeed.
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