

Host Fingerprinting and Firewalking
With hping

Naveed Afzal

National University Of Computer and Emerging Sciences, Lahore, Pakistan
Email: 1608@nu.edu.pk

Naveedafzal <AT> gmail.com

Abstract: The purpose of this paper is to discuss some techniques that can be effectively used in remote host fingerprinting. The
paper will specially cover the cases where network hosts are behind firewalls. We will explain the techniques with various tools
but the majority of the work is based on a simple and powerful utility named hping. This paper assumes that reader has a basic
understanding of remote host fingerprinting and Transmission Control Protocol/Internet Protocol (TCP/IP). We will review both;
the service port fingerprinting and OS fingerprinting in certain fire walled environments and will try to analyze the methods in
detail that brings us the advantages and disadvantages of some techniques. Familiarity with hping and nmap will be useful for
understanding the methods.

Key words: hping, nmap, iptables, tcpdump, sniffing, NAT, VMWare

1. Introduction
Remote host fingerprinting is the process of

identifying the opened service ports and operating system of
a machine over the network. This is usually achieved by
various kinds of active and passive scanning techniques, by
sending several packets to the remote machine and reviewing
the responses. The generally available tools including nmap
do a fairly good job in scanning and guessing the remote
operating system. But in the cases where a host is fire walled
these tools do not help much, either producing ambiguous or
incorrect results. This is especially true for the machines,
which are heavily fire walled and only allow very small
number of packets to be forwarded and replied. In those
cases we require some other methods to correctly determine
the state of a remote machine. We will examine some of
these methods including RING scan and ICMP scans. The
first section describes various port scanning techniques while
the next section throws some light on OS fingerprinting.

2. Port Knocking
We start with general port scanning techniques with

certain tools including nmap and hping. We will discuss the
common SYN, SYNACK scanning first and the behavior of
various hosts upon reception of these TCP packets. Then we
will see how the results may vary with the machines that are
fire walled with those ones, which are not. Afterwards some
advanced techniques will be discussed including the FIN
scans and UDP scans on firewalled hosts.

2.1 Hping
Hping is described as one of the tools that can be

effectively used for scanning, fingerprinting and firewall
testing. Some of its powerful features include the ability to
send custom crafted packets with several protocols and
performing remote scanning. This is very handy for examining
the response of various custom created packets.

2.2 Nmap
Network Mapper (nmap) is a famous network-

auditing tool that can be used for advanced port scanning and
OS detection. It has a powerful set of features available
including passive scanning and idle scanning, though it does
not have the ability to send custom packets like hping.

2.3 Testing with half open scan (SYN)
The idea of half open scanning (also referred as

SYN scanning) is simple. Without completing the TCP three
way handshake, send an initial SYN packet and wait for the
response, if the SYN ACK is received it means the remote
port is opened, otherwise you will receive a packet with RST
flag set that is an indication of closed port.

2.3.1 Filtered and Closed Ports
However in the case of some firewalls, the firewall

can simply block access to certain ports, which are opened,
those are said to be filtered ports. In these situations we do
not get any response of our initial SYN packet. Also many
firewalls block RST packets in response to closed ports. Thus

in those situations its hard to differentiate which ports are
closed and which are filtered. Here are the results of
scanning a live host without any firewall with normal nmap
scans

root@life#nmap –P0 –p 1,2,21,80
202.83.174.99
Interesting ports on
(202.83.174.99):
PORT STATE SERVICE
1/tcp closed tcpmux
2/tcp closed compressnet
21/tcp open ftp
80/tcp open http
Nmap finished: 1 IP address (1 host
up) scanned in 1.140 seconds

As we can see from the output, the host doesn’t seems to be
fire walled, we have scanned for ports 1,2,21,80 and it has
indicated that ports 1,2 are closed and other two are open.
Lets take an example of another host.

root@life#nmap –P0 –p 1,2,21,80
209.41.165.180
Interesting ports on
(209.41.165.180):
PORT STATE SERVICE
1/tcp filtered tcpmux
2/tcp filtered compressnet
21/tcp open ftp
80/tcp open http
Nmap finished: 1 IP address (1 host
up) scanned in 4.047 seconds

If you see this one you can instantly find the change the
STATE of first two ports 1,2 is marked as filtered. Just by
looking at this information you cannot tell exactly whether port
1 and 2 is closed or opened. The only information available is
that this port is being filtered. However as we know that all
closed ports should send out an RST packet in normal
circumstances if they are not filtered. Lets try sending some
custom packets to generally used ports with hping and see
the behavior

root@life#hping -S -p 80 -c 2
209.41.165.180
HPING 209.41.165.180 (WAN (PPP/SLIP)
Interface 209.41.165.180): S set, 40
headers + 0 data bytes
len=44 ip=209.41.165.180 ttl=63 DF
id=62648 sport=80 flags=SA seq=0
win=65535 rtt=2359.0 ms

len=44 ip=209.41.165.180 ttl=63 DF
id=63296 sport=80 flags=SA seq=1
win=65535 rtt=1359.0 ms

--- 209.41.165.180 hping
statistics ---

2 packets transmitted, 2
packets received, 0% packet loss
round-trip min/avg/max =
1359.0/1859.0/2359.0 ms

Here I have issued the command
hping -S -p 80 -c 2 209.41.165.180
to send 2 packets with SYN flag set at port 80 and as we can
see the response, we got two packets with flag=SA which is
an indication to our SYN acknowledgement. The DF indicates
that do not fragment bit was set. Now return to our previous
problem , we sent the same two packets to the port 1

root@life#hping -S -p 1 -c 2
209.41.165.180
HPING 209.41.165.180 (WAN (PPP/SLIP)
Interface 209.41.165.180): S set, 40
headers + 0 data bytes

--- 209.41.165.180 hping statistics -
--
2 packets transmitted, 0 packets
received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0
ms

Here we got nothing back, the two packets were lost which is
verifying that this port is being filtered by the firewall and it is
blocking any kind of response at this port. Now lets send
same packet to some more ports

root@life#hping -S -p ++20
209.41.165.180
HPING 209.41.165.180 (WAN (PPP/SLIP)
Interface 209.41.165.180): S set, 40
headers + 0 data bytes

len=44 ip=209.41.165.180 ttl=108 DF
id=9352 sport=21 flags=SA seq=1
win=16616 rtt=1062.0 ms

len=40 ip=209.41.165.180 ttl=108
id=10442 sport=22 flags=RA seq=2
win=0 rtt=562.0 ms

len=40 ip=209.41.165.180 ttl=108
id=11643 sport=23 flags=RA seq=3
win=0 rtt=562.0 ms

len=44 ip=209.41.165.180 ttl=108 DF
id=13778 sport=25 flags=SA seq=5
win=16616 rtt=562.0 ms

len=40 ip=209.41.165.180 ttl=108
id=40085 sport=49 flags=RA seq=29
win=0 rtt=562.0 ms

len=40 ip=209.41.165.180 ttl=108
id=40941 sport=50 flags=RA seq=30
win=0 rtt=562.0 ms
^C
root@life#
Here I have asked the hping to send SYN packets to the ports
starting from 20 and increment port number by one each time.
We can clearly see the difference that the values at certain
ports include some flag=RA packets (Reset Acknowledged)
which is indicating that those ports are closed and not being
fire walled. Since we did not get any response from ports
20,24,26-48, which are being blocked by firewall. Thus it is
an indication that those ports may also be closed. Because
the firewall policy is set in such a way that all generally used
ports are not being filtered. As we can see the port 443
(which is used for https and is generally opened) is
responding with RST packet, which tells us that https service
is not running and also it is not being blocked.

root@life#hping -S -p 443
209.41.165.180
HPING 209.41.165.180 (WAN (PPP/SLIP)
Interface 209.41.165.180): S set, 40
headers + 0 data bytes
len=40 ip=209.41.165.180 ttl=108
id=40924 sport=443 flags=RA seq=0
win=0 rtt=23
8.0 ms
^C
root@life#
2.4 Testing with FIN packets

This is based on the fact that when a closed port
receives a packet with FIN flag set , the normal behavior is to
respond with RST packet. The open ports do not respond to
this packet either. This is very useful for the cases where
SYN packets are being blocked by the firewall. However this
is not applicable when scanning the Windows machines as
they do not respond to the individual FIN packets either.

Let us simulate a network with two hosts in
Vmware. We install a Linux host in a vmworkstation and sent
the FIN packets from another host. On the Linux host we first
disabled all the normal SYN traffic . To block all the incoming
packets with SYN flag set we can use the iptables.

2.4.1 Iptables
Iptables is basically a Linux based packet filtering

tool that can be used for filtering the network packets. There
are three built-in tables, each of which contains some
predefine chains. The filter table is responsible for filtering
(block or permit) and it consists of three chains namely
INPUT, OUTPUT and FORWARD.

So we just add an entry in the INPUT chain for dropping the
TCP packets with SYN flag set

life1# iptables –A INPUT –p tcp –tcp-
flags SYN –j DROP

This will allow all other traffic except SYN packets, now test
our machine by sending FIN packets from a windows
machine, (here I have used hping windows built on a win2k
machine). By default the Linux host is listening on ports
21,22,80
Here is the output of sending SYN packets targetting port 80

E:\hping>hping –S –p 80 –c 10 LIFE1
HPING LIFE1 (LAN eth1) Interface
192.168.10.2): S set, 40 headers + 0
data bytes

--- LIFE1 hping statistics ---
10 packets transmitted, 0 packets
received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0
ms

Here we can see that all the 10 packets that are being sent to
the machine are lost. If we send the packets to the port, which
is known to be closed on the Linux machine, we get the same
response.

E:\hping>hping –S –p 50 –c 10 LIFE1
HPING LIFE1 (LAN eth1) Interface
192.168.10.2): S set, 40 headers + 0
data bytes
--- LIFE1 hping statistics ---
10 packets transmitted, 0 packets
received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0
ms

Now lets send the packets with FIN flag set

E:\hping>hping –F –p 50 LIFE1
HPING LIFE1 (LAN eth1) Interface
192.168.10.2): F set, 40 headers + 0
data bytes
len=40 ip=202.83.174.99 ttl=56
id=30859 sport=50 flags=RA seq=0
win=0 rtt=24.0 ms
len=40 ip=202.83.174.99 ttl=56
id=30863 sport=50 flags=RA seq=1
win=0 rtt=14.0 ms
^C
E:\hping>

Here we see that we got RA packets on a closed port, which
was not responding previously, which is a clear indication that
port is closed. Reader can verify that same packet at ports
21,22 and 80 is not responded which can be identified as
open ports while all other responds with RA.

2.5 UDP ports
Scanning the UDP ports is relatively a tough job

mostly because of its inhibit unreliability. Most common
technique is to send packets to the UDP ports if you get back
nothing, it is assumed that port is open because on closed

port you get a Port Unreachable ICMP message from the
target operating system under the normal circumstances. This
is not always necessary that you get same type of response.
Here is a UDP scan of a typical host with nmap

root@life#nmap -sU -p 21,53,80
yns1.yahoo.com

Interesting ports on 66.218.71.205:
PORT STATE SERVICE
21/udp open|filtered ftp
53/udp open|filtered domain
80/udp open|filtered http

Nmap finished: 1 IP address (1 host
up) scanned in 3.141 seconds

The results above seem not very interesting , nmap has failed
to determine which ports are open and which are filtered or
closed. It is ending up saying all the three ports either open or
filtered, which is not the case. Since the host is a Name
Server there is a huge probability that its UDP port 53 is
opened for DNS type queries. So we do a little trick and scan
it with hping. With the normal hping UDP type scan we also
didn’t got any response.

root@life#hping -2 -p 50++
yns1.yahoo.com
HPING yns1.yahoo.com (WAN (PPP/SLIP)
Interface 66.218.71.205): udp mode
set, 28 headers + 0 data bytes
6 packets transmitted, 0 packets
received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0
ms

Lets change our strategy, we first created a simple text file
with junk data of around 120 bytes and then scanned the host
again with the data as payload to each packet by the
following command and at the same time I started tcpdump in
a separate window and puts it into promiscuous mode and
sniff all the network traffic

root@life/tmp#tcpdump
root@life#hping -2 -p ++50 -d 120 -E
file.txt yns1.yahoo.com
HPING yns1.yahoo.com (WAN (PPP/SLIP)
Interface 66.218.71.205): udp mode
set, 28 headers + 120 data bytes

len=46 ip=66.218.71.205 ttl=49
id=37187 seq=3 rtt=531.0 ms
^C
root@life#

As apparent here , we got a response lets view the tcpdump
output for further analysis

root@life#tcpdump
tcpdump: listening on
\Device\NPF_GenericDialupAdapter
00:42:50.484375 IP life.2950 >
yns1.yahoo.com.50: UDP, length 120
00:42:51.484375 IP life.2951 >
yns1.yahoo.com.51: UDP, length 120
00:42:52.484375 IP life.2952 >
yns1.yahoo.com.52: UDP, length 120
00:42:53.484375 IP life.2953 >
yns1.yahoo.com.53: 24930 updateM+
[b2&3=0x6364][24930a] [25958q]
[25444n] [25958au][|domain]
00:42:53.953125 IP yns1.yahoo.com.53
> life.2953: 24930 updateM FormErr-
[0q] 0 /0/0 (12)
00:42:53.953125 IP life >
yns1.yahoo.com: ICMP life udp port
2953 unreachable, length 36
00:42:54.484375 IP life.2954 >
yns1.yahoo.com.54: UDP, length 120

The interested thing to note is that upon reception of our junk
data the UDP port 53 is responded with an error message,
which indicates it is opened. All the other packets were not
responded at all. Another interesting way through which we
can scan the udp ports is by checking the returned ICMP
messages. In normal circumstances if we send a packet
without any payload to a UDP port, which is closed the
system, responds with an ICMP port Unreachable message.
The opened ports do not respond to zero payload packets.
This can be seen in the following example.

root@life#hping -2 -p 11 –c 3
202.179.137.59
HPING 202.179.137.59 (WAN (PPP/SLIP)
Interface 202.179.137.59): udp mode
set, 28
headers + 0 data bytes
ICMP Port Unreachable from
ip=202.179.137.59
ICMP Port Unreachable from
ip=202.179.137.59
ICMP Port Unreachable from
ip=202.179.137.59

--- 202.179.137.59 hping statistics -
--
3 packets transmitted, 3 packets
received, 0% packet loss
round-trip min/avg/max = 0.0/0.0/0.0
ms

As you have noticed, I sent 3 packets to the UDP port 11
which are responded with Port Unreachable ICMP type
message. However the firewalls usually block such outgoing
packets and we have presented a way to bypass the firewalls
rule set in the previous example.

3. OS Fingerprinting
OS fingerprinting is usually harder in the firewalled

environments as in those cases the firewalls may alter the
contents of TCP/IP packets thus making the guess work
wrong. The OS fingerprinting is categorized as either Active
fingerprinting or Passive.

3.1 Passive OS Fingerprinting
In case of Passive fingerprinting the person who

wants to fingerprint the target does not send any packet to the
target , instead it uses some intermediate host (known as
zombie) and tries to guess the target OS by calculating the
difference between IPID sequence numbers. This is known as
idle scan method. Or in some other way one can get the
traffic going to and from the target and then can judge the
target OS without any direct interaction with the target.
Without discussing the passive fingerprinting lets talk about
Active fingerprintg.

3.2 Active OS Fingerprinting
In Active fingerprinting a host normally sends some

packets to the target and try to determine the OS from the
responses by calculating some values in the options field of
TCP/IP packets, this includes the timestamp values or the
IPID sampling, type of service TOS,TCP ISN sampling, and
fragmentation handling etc. Another old technique is to use
the TTL value of an ICMP echo packet to determine the target
OS and this is an easy way to differentiate between various
OS, however this cannot differentiate the variants of same OS
like win98 with XP or win2k. Usually the TTL values are set to
a fixed one in each OS. Microsoft family sets it to default of
128 while Linux sets it to 256. Here is an example to
determine the OS by the returned TTL value of ICMP echo
packets. I simply sends a ping to the target machine and
check the TTL value , the returned TTL value in this case is
113 a quick guess tells me that this may be some windows
OS since they have a starting TTL of 128 and the remote host
is around 16 hopes away from my machine (as it can be
verified with traceroute) so 113 +15= 128

E:\>ping 209.41.165.180
Pinging 209.41.165.180 with 32 bytes of
data:
Reply from 209.41.165.180: bytes=32 time
38ms TTL=113
Reply from 209.41.165.180: bytes=32 time
51ms TTL=113
Ping statistics for 209.41.165.180:
 Packets: Sent = 2, Received = 2, Lost
= 0 (0% loss),
Approximate round trip times in milli-
seconds:
 Minimum = 38ms, Maximum = 51ms,
Average = 44ms

However it is not a very reliable guess , there may be some
routing device or if the host is behind some NAT(Network
Address Translation) this technique fails. Without going into
the other common OS fingerprinting techniques which are

being used by the tools like nmap, I cover a technique that is
usually hard to implement but it can provide a good guess of
remote OS detection ,it is known as the RING scan and there
was also a tool available a while ago which can be used for
guessing the remote OS. The idea here is to send some SYN
packets to an open port and wait for the SYN ACK packets,
but when you get back a SYN ACK packet silently drops it,
the remote hosts will timeout after a certain delay and will
resend the SYN ACK. By carefully calculating the delay
between successive SYN ACK packets sent by various
different hosts you can differentiate what is the target OS
since various OS send back the packets with a certain
amount of delays. This can be used very effectively for
differentiating between the OSs, which have same kind of
TCP stack and are behind a firewall , an example is that of
FreeBSD and Windows2000, which share the same type of
TCP stack. I am presenting here an example in which the
nmap failed to determine the correct OS and simply guessed
it both as FreeBSD , the reason being that one of the hosts
was behind a firewall.
Scanning the first host 202.83.174.99

Interesting ports on ntc.net.pk
(202.83.174.99):
(The 97 ports scanned but not shown below
are in state: closed)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
80/tcp open http
Device type: general purpose
Running: FreeBSD 4.X
OS details: FreeBSD 4.6.2-RELEASE - 4.8-
RELEASE

The other one yielded

Interesting ports on 202.83.162.27:
(The 99 ports scanned but not shown
below are in state: filtered)
PORT STATE SERVICE
80/tcp open http
Device type: general purpose
Running: FreeBSD 4.X|5.X
OS details: FreeBSD 4.3 -
4.4PRERELEASE, FreeBSD 4.9 - 5.1,
FreeBSD 5.0-RELEASE,

Now lets scan it with the SYN ACK technique discussed
earlier, for that first you have to set up a local firewall rule to
drop all packets SYNACK packets from the remote host.

life1# iptables –A INPUT –p tcp –j
DROP –s 202.83.162.27

Now send the SYN packets to its port 80 which is open and
watch the tcpdump output, here is the log of tcpdump output
which we received after issuing

root@life# hping -S -p 80 -c 1
202.83.162.27

17:22:51.079596 202.134.134.230.1816 >
202.83.162.27.http: S win 512

17:22:51.208938 202.83.162.27.http >
202.134.134.230.1816: S ack win 5840

17:22:53.218939 202.83.162.27.http >
202.134.134.230.1816: S ack win 5840

17:23:57.218939 202.83.162.27.http >
202.134.134.230.1816: S ack win 5840

17:23:03.218939 202.83.162.27.http >
202.134.134.230.1816: S ack win 5840

17:23:11.468939 202.83.162.27.http >
202.134.134.230.1816: S ack win 5840

17:24:21.618938 202.83.162.27.http >
202.134.134.230.1816: S ack win 5840

If we calculate the time difference between each received
SYN ACK packet it is around 2,4,6,7,10 seconds
successively.

Now lets do the same scan with first host, which we
are sure running a FreeBSD operating system. The tcpdump
output is given below after the command

root@life# hping -S -p 80 -c 1
202.83.174.99

17:45:50.019746 202.134.134.230.2644 >
202.83.174.99.http: S win 512

17:45:50.148940 202.83.174.99.http >
202.134.134.230.2644: S ack win 5840

17:45:54.108939 202.83.174.99.http >
202.134.134.230.2644: S ack win 5840

17:46:00.108939 202.83.174.99.http >
202.134.134.230.2644: S ack win 5840

17:46:12.308939 202.83.174.99.http >
202.134.134.230.2644: S ack win 5840

17:46:36.378938 202.83.174.99.http >
202.134.134.230.2644: S ack win 5840

The calculation here tells us that the difference now is around
4,6,12,24 and then no SYN ACK is received. Experiments
with some other hosts we can determine that the
retransmission time of SYN ACK packets in FreeBSD system
is usually 3,6,12,24 while the windows hosts goes in this way
2,4,6,8,10. This can provide a useful hint for determine the
correct Operating system when the other tools fails and
unable to provide the correct results. Note however that these
values presented above are not much accurate and have
been determined by judging a few hosts, I have provided two
host values one with Windows2000 and other with FreeBSD

4-6. One may get the more accurate values by examining
several dozen hosts. This technique has several other
extensions as well , for example instead of checking for the
initial SYN ACK response lets continue and complete the
standard TCP three-way handshake and then close the
connection by sending FIN packet but now don’t send any
Acknowledgements to the FIN packets , the situations
becomes this
Host1 -- SYN ---- Host 2
Host2 -- SYN ACK --- Host1
Host1 -- ACK --- Host2
Host1 -- FIN ---- Host2
Host2 -- FIN ACK ----- Host1
Host2 -- FIN ACK ----- Host1
Host2 -- FIN ACK ----- Host1
……………………………………………………
And so on, the first host didn’t send any response to the Host
2 for the FIN ACK packet. Still another option is to use the
RST packets.

4. Conclusions
The conventional automated methods for

fingerprinting can although achieve good results, they are not
well suited for the changing environments several different
techniques may be combined to get most accurate results.
The techniques described in this paper are the manual
techniques which may be used intelligently to know more
about the network. However the list provided is not complete
and there are several other ways available. For example in
this paper passive fingerprinting has not been discussed
because of its wide scope.

We have seen that most firewalls do not allow certain normal
traffic and in most of the cases they hide their identity like the
systems which do not send any kind of response against
various request packets. But a careful examination of this
behaviour can lead to finding closed, filtered and opened
ports of both TCP and UDP and the variation of such
behaviour can make one guess the remote operating system.

Acknowledgements

Sherjeel A. Qureshi, for his feedback and support.
A. Salman , for his appreciation and suggestions.

REFERENCES

[1] Hping, a command-line oriented TCP/IP packet
assembler/analyzer. Http://www.hping.org
[2] Network Mapper (nmap) . A utility for network
exploration and auditing. http://insecure.org/nmap
[3] Ring out the old, RING in the New, Franck Veysset,
Olivier Courtay, and Olivier Heen April 2002.
[4] Advanced Fingerprinting , Erwan Arzur March 2005.
[5] Chatter On The Wire ,OS Fingerprinting Erric
Kollmann August 2005.

