“In the name of God”

Author: Soroush Dalili

Email Address: irsdl {a7} yahoo {d07} com

Website: Soroush.SecProject.com

Title of Report: Finding vulnerabilities of YaFtp 1.0.14 (a client-side FTP application)
Application Website: http://sourceforge.net/projects/yaftp/files/

Language: Java

Purpose: Educational Purpose (Secure Programming 2008/09 Exercise)

Abstract
In this report we are going to find the vulnerabilities of YaFtp program, a client-
side FTP application, and we are also going to suggest some mitigation
methods. This process will be performed by using a specific plan which plays an
important role in finding the security issues and analyzing the program. First of
all we must understand the problem and gather the information which is
related to this program. In fact, gathering the information is the most
important phase in finding the vulnerabilities which clears the problem for us.
In the next phase, model of the application will be drawn. Then, possible
vulnerabilities will be discussed and we will draw two possible attack trees for
YaFtp program. Finally, by using some automation tools and also manually, we
will find the vulnerable candidate points, and we will investigate them to find
the vulnerabilities. To summarize, 9 important vulnerabilities were found in
this report. And, there are some solutions and suggestions in the last section of
this report for developers of this application.

1 Introduction

YaFtp (Yet Another File Transfer Program) is a stand-alone application which is used to connect to the
FTP server. So, this program is a client-side FTP application. At first sight, it seems very difficult to find
vulnerability in this program. Because it is used on the client-side and it does not listen to any port by
default, and also it does not use any databases; moreover, the language of this program is Java. So,
there is not any general vulnerability such as a buffer overflow or a SQL injection in it. However, by
having critical and precise look, we can understand that this program is also vulnerable to some kinds of
attacks. And in this report, we want to discuss about finding and preventing from these security issues.
In the next chapter, the plan of performing the security analysis will be described.

2 General Plan

Having a specific plan plays an important role in finding the vulnerabilities and security analyses of a
program. The plan which is used in this report is based on the [1] and also experience of the author
about reporting the security vulnerabilities:
- Understanding the problem (basic information)
- Information gathering
0 View the related documents and RFCs about the technology which is used
0 View the application’s programming language security guidelines

1

0 View documents of the program
0 View the older vulnerabilities in the program and also the similar applications.
O Files and directories
= Directory structure
= Find important files and folders which are contain sensitive data
0 Source code of the program
= General idea of the program according to the source code
= Executable modules
= External libraries or packages which are used
= Imports and exports any external resources such as the connection, files,
and so on (entry and exit points of the program)
- Modeling the application
- Possible Vulnerabilities - Drawing the Attack Trees
- Finding the vulnerabilities (Detailed security audit)

Following chapters follow this plan to get the best result.

3 Understanding the Problem (Basic Information)

We are going to find the vulnerabilities of YaFtp program. YaFtp is a client-side application which is run
on the pc of a user. This program is based on the FTP RFCs and its language is Java.

4 Information Gathering

The specific information of the program which is going to be analyzed in this report is in appendix A.
The useful RFCs to study for FTP are [2], [3], and [4]. Moreover [7], [8], [9], and [10] are some good
documents about the FTP and its functionality.
Useful security guidelines of Java are in [5] and [6].The documents of the program are in “/doc” folder.
There was not any vulnerability for this application to the date of this report in public. But, there were
some vulnerabilities in some other FTP clients and their links are in the appendix B.
Directory structure of the application is coming in appendix C.
Important files and directories are:
“ftpTraces.trc” which is in “/init” or “/” directories. (Contains trace information).

- “Ftp.properties” which is in “/init” folder. (Contains application settings and configuration)

- Ftp work directory which is set in “/init/Ftp.properties”. (Contains downloaded files)
There are 6 packages in this application:

- com.yaftp.ftp (Contains main FTP classes)

- com.yaftp.ftp.gui (Contains GUI classes)

- com.yaftp.ftp.gui.images (Contains GUl images + 1 old .trc file)

- com.yaftp.ftp.mvsjobs (Contains MVS idiosyncrasy classes)

- com.yaftp.utils (Contains general and utility functions)

- com.yaftp.utils.images (Contains utilities images)
This program uses Swing and also AWT in some places.
The explanation of the methods and classes are in the source code and also JavaDocs of the program.
There is some more functionality for IBM 0S390 FTP server in comparison with the Linux and Windows
FTP which must be tested as well.

5 Modeling the Application

As YaFtp is a FTP client and we want to audit its security, so the trust boundary zone is around the client.
And, server and other users can assume as external entities (or attackers). The simplest shape of the
modeling of this application is in figure 1:

RS

FTP Request

FTP Server

FTﬁ’ Response

Figure 1 - Simplest DFD context diagram
The details of FTP transactions itself are in [8].

YaFtp send a FTP request and receive a FTP response and by using this response decide what it should to
do next. For instance, by sending a CWD command (for changing the directory) to the server, it receives
some information and if there is not an error from the server, it will show the results of directories for
the user otherwise shows that error. Other information of this program is achieved in the section 4 and
also by looking at its JavaDocs.

6 Possible Vulnerabilities - Drawing the Attack Trees

According to [1], we must start writing the attack trees and possible vulnerabilities before entering to
the finding section. Reference [1] defines vulnerability as a bug which allows attackers to do something
they normally wouldn't be able to do. And, everything that threat the CIA triangle (Confidentiality,
Integrity, and Availability) can be assumed as vulnerability or a security flaw. Since our scope is bounded
to the client, server can be also assumed as an attacker.
There are some possible vulnerabilities for a client FTP:
- Compromising the FTP confidential information. (For Ex. disclosure of username and password
of the FTP server)
- Compromising the client confidential information. (For Ex. disclosure of the open ports)
- Malicious file manipulation on the client. (For Ex. copy a file on the startup folder)
- Executing arbitrary commands on the client. (For Ex. executing another part of the program)
- Attacking a FTP server to another system by using the FTP client application. (For Ex. force the
client to send username and password of another open FTP server to the attacker FTP server)
- Exploit the internal modules of the FTP client to perform some other kinds of attacks. (For Ex.
performing a cross site scripting attack in the internal html browser of the FTP client)
- Performing a denial of service on the client.
Although the above list may not be a complete list, it helps us to understand how to draw the attack
trees.
The attack tree for “compromising the user confidential information” is in figure 2. In fact, this
application stores username and password of the user on the memory and also on the hard disk if the

“trace” option of the program has been selected. So, this attack tree contains the threat about

“information disclosure” and also “information leakage”.

Another attack tree for “changing the normal work of the application to do some malicious things” is in
figure 3. This attack tree includes all those types of attacks which are not related to the information

disclosure.

After designing the attack trees, we must start finding these vulnerabilities at the target program which
is YaFtp. Furthermore, by using some methods and techniques in finding the security flaws in some

cases, we can complete and precise our attack trees more than before.

1 Compromising the user confidential
information

1.2 Gain direct
access to the
system files

1.1 Passively
intercept the
user data

.1.2 Steal the
transferred
files

1.1.1 Steal
username and
password

.2.1 Read the
trace file by
exploiting a
hole in client
system
application or
kernel

1.1.1.1
Identify user
connection
initiation or
revival the
connection

1.1.2.1 Sniff
network traffic
for transferred
file

1.1.1.2 Sniff

network traffic
for personal

data

Figure 2 — Attack tree for “compromising the user confidential information”

to the memory

1.2.2 Enable
the trace
option

1.3 Gain
direct access

of the
program

1.3.1 exploit a
hole in client

system
application or
kernel

1.4 Force the
FTP client
program to

reveal some
information

1.4.1 exploit a
hole in FTP
client to find
some critical
information

2 changing the normal work of the
application to do some malicious things

2.1 Fake
answer from

2.2 Copya
malicious file

2.4 Attack to

2.3 Executing

. : another 2.5 Exploit the 2.6 Stop the
an attacker on the client arbitrary .
. system by internal program from
instead of the system by commands on using the modules workin
server to the using the FTP the client 9 9

application

client client

.3.1 Sending
malicious input

2.2.1 using

some traversal 4.1 Change

the source IP

2.6.1 Use

2.1.1 Find the 2.5.1 Exploit

techniques to to the '
FTP connection d - address of a | | the browsers | | some kinds of
X change the execution d the edit DoS to stop
Rort on the clien directories functions packetand | @nd e ediiors
senditto the | | inside of the | | the program
FTP client from working

client

2.1.2 Identify the
client request by
some methods such
as sniffing

(also other
modules if
there is any)

Figure 3 — Attack tree for “changing the normal work of the application to do some malicious things”

7 Finding the Vulnerabilities (Detailed Security Audit)

In this section, finding the vulnerabilities is performed in three stages:
- Using automation tools to find the candidate points for the security flaws and check them
manually.
- Searching for dangerous functions or methods.
- Looking for some scenarios which are written in the attack trees and are not found by two
previous stages.

Notel: To examine the security vulnerabilities and simulating the FTP server, “jftpd” [11] is used which is
free and open source Java application.

Note2: In this Java application, executable modules which contain “main” method are not really
important to check as no one can run them directly. But perhaps in some rare situation these become
important. For instance, assume a situation in which an attacker only can run a java applet or a java class
on the victim system, and he or she can point to these executable and vulnerable modules to exploit
them. So, if it is an important function, it must be private to prevent from a security flaw otherwise we
can assume it as vulnerability.

7.1 Using Automation Tools
Three automation tools are used in this section:

e Klocwork [12]
e Findbugs [13]

PMD [14]

Pictures of these programs are in appendix D.

7.1.1 Using Klocwork

In the severity of “Review”, “Style”, and “Suggestion” there are some points about the performance of
the program and suggest replacing some Java codes to have better performance and improvement.
Because of the fact that these kinds of performance problems never make a security issue such as a
denial of service for a client, there is not any important thing related to the security flaws in them.

There is a warning message on “utils.ProcessLauncher. setCommand” which does not use any exception
for “java.lang.NullPointerException”. So, there will be an error when this module is run without any
input. And, it really works in practice. So, if we could find a way to run this method without any input,
this would be a denial of service flaw. Another important thing about this function is: This function
executes some commands on the operating system, so this is really important to check this function.
Now, we have two things to investigate them about this function:

Arbitrary code execution by using this function:

Base on notel in section 7.1, if we can run arbitrary commands on the client system by this
module directly we assume it as a security flaw in some situation. So, in this place we have a
security vulnerability which is obvious by:

java -cp %CLASSPATH%;../lib/yaftp.jar com.yaftp.utils.ProcessLauncher "Arbitrary Command"
To prevent this vulnerability this function must be private. This vulnerability will be listed as the
1st vulnerability in section 7.4. Now, we want to check that whether it is exploitable by the
remote attacker or not. So, we follow all the methods which call this function with an input.
“OsEditorPanePanel” (line 173) creates an object from this method, and call “setCommand” at
line 180 with “argString” as an input (See figure E.1 in appendix E). “argString” gets its value at
line 175 or/and 178. “_editorEnvironmentString” and “_browsingEnvironmentString” are set in
“/init/Ftp.properties” file and the default value for them is nothing. And, “myWkFile” is an input
file which comes from “FtpSwingFListPanel. getTextEditor” which is private itself. The important
point is: If the file name (“myWAkFile”) was not having any filter to be validated, an attacker can
execute a command by using a file name such as:

“test.html " | Another_Arbitrary_OS_Command | foo”

or

“test.html " & Another_Arbitrary_0S_Command | foo”

The double quotation in this filename is necessary to execute the command. Although Windows
prevent from double quotation and “|” in the name of files, it is very easy to make a fake FTP
server which send these filenames as an input to the client. Also, this is obvious that Linux does
not have any problem by double quotation.

There are several evidences which show that the file name does not have any filter as an input
and this dangerous function is called from some classes such as “FtpJobSubmissionThread” from
“FtpSwingFListPanel”. So, we have another vulnerability which is caused by the filename itself
which remote server as an attacker can run an arbitrary command on the client.

To have a successful attack, “Ftp.editorClassName” and at least one of
“Ftp.externalEditorinitArgs” or “Ftp.externalBrowserlnitArgs” in FTP properties file must be
selected. To prevent from performing this kind of attack, file input names must be validated
before passing to the other functions, and dangerous and forbidden characters must be deleted
from the filenames. This vulnerability will be listed as the 2" vulnerability in section 7.4 (attack
tree —2.3).

e Denial of service situation:
Actually in this program, Null Pointer Exception is not really important. There is another error
handling function which prevents from crashing in case of errors.
Other warnings of Klocwork are not a security issue. Also, there are some situations for race conditions
which can lead to some security problems in some special cases, but here we could not find any
important effect to show that it is a real vulnerability.
In “error” severity of Klocwork there are some messages on “ftp.FtpClientSession” which show that
there are some inputs without any validation. In fact, all of these inputs are from the servers and they
must have some validation. It is clear in this file that an attacker can send some malicious data from the
server to the client to perform his/her purposes. These malicious can be everything depend on its
functionality. For instance, attacker can send some crafted header packets to the client to stop YaFtp
from working. In practice, by using the “jftpd” FTP server (this is mentioned in section 7 - notel) it is
observable. So it would be the 3™ vulnerability.
Some candidate points, which Klocwork specifies, show that there are some important objects without
any close section. And, this can cause denial of service for the FTP client during the time, but actually
these are only some bugs because there is not any attacker which forces the YaFtp to do that.

7.1.2 Using Findbugs

There are some similar selected points as we had them by using Klocwork. So, only new things will be
written here.

There are several modules which FindBugs say that “This code stores a reference to an externally
mutable object into the internal representation of the object. If instances are accessed by untrusted
code, and unchecked changes to the mutable object would compromise security or other important
properties, you will need to do something different. Storing a copy of the object is better approach in
many situations.”. These modules are:

“ftp.FtpBytesListener.set_datalist” , “ftp.gui.SwingFtpTable.setData”, “ftp.SwingFtpTable.setData”,
“utils.SwingAboutBox.set_productinfos”, “ftp.FtpOsFile.get_detailled”, “yaftp.utils.CommandArgs”,

“utils.DataStructure”, “utils.SwingStateButton”, “com.yaftp.ftp.FtpBytesListener.get_datalist”,
“ftp.FtpOsFile.get_detailled”, “ftp.gui.FtpSwingSelectedFiles.get_selected”,
“ftp.LocalFileConnection.get_column_names”, “ftp.MVSftp.get_Column_Names”,
“ftp.UNIXftp.get_Column_Names”, “utils.EbcdicTable.get_tAscii2Ebcdic”,

“utils.EbcdicTable.get_tEbcdic2Ascii”
However, we could not find any evidence to prove the FindBugs idea in these modules.

7.1.3 Using PMD
There is not any newer vulnerability by using PMD.

7.2 Searching For Dangerous Functions Manually
In this section we will look for some important Java functions manually.

These functions are:
System.exit = which leads to fast closing of the application. (Useful for performing DoS)
We ignore the normal situation to exit by clicking on the exit button. Others are:

“FtpCustomizer.main()” = no call to this method from the main program

“Notepad”-> no call to this method from the main program
getRuntime() 2 which is an important function to have some interaction with the OS.

A vulnerability for “Runtime.getRuntime().exec” in “utils.ProcessLauncher” module has been
detected in the 7.1.1 section.

getClass().getName().equals = which is unsafe method to identify a class

No match files were found.

7.3 Looking For Some Security Scenarios

In this section according to the attack tree we will find the vulnerabilities.

Reference [1] says that “From a design perspective, TELNET arguably has a vulnerability in that it relies
on unencrypted communication.”. So, we can assume the same for this YaFtp client which relies on
unencrypted communication. So this would be the 4™ vulnerability which leads to information disclosure
by sniffing operation (attack tree - 1.1). Mitigation is in section 7.4.

Now, we want to investigate the vulnerability of achieving username and password. YaFtp stores
username and password and also server information in a .trc file by using the trace option without any
encryption. An attacker can achieve the user connection information by accessing to this file. So, it is the
5™ vulnerability of this program (attack tree - 1.2) (Mitigation is in section 7.4.). Furthermore, this
application store the username and password in the memory without any encryption. And, in some rare
situation that attacker has an access to the memory, he or she can dump the memory to find user
connection information. So, there is another vulnerability — the 6"- for this program which stores
confidential information of the user in memory in plaintext (attack tree - 1.3). Mitigation is in section
7.4.

At this point, we cannot speak about the (1.4) of attack tree which needs more study.

Now assume that a fake FTP server wants to attack to the client by using a malicious filename. For

instance this filename can be look like this: “../../../../../users/root/startup/maliciousfile.src”. Without
any input validation on the FTP client, by downloading this file, it will be copied to the startup folder. In
case of YaFtp, there is not any input validation on anything, so this program will be vulnerable against
this attack as well as the 7" vulnerability (attack tree 2.2). Mitigation is in section 7.4.

We test an application for timeout operation but it froze completely. The scenario is this: client sends a
request to connect to the FTP server, FTP server responses to the client and waits for receiving
username and password. Now, client sends username and password for the server, but server does not
response to the client. In this situation, YaFtp program will be frozen. So, we can assume this situation as
a denial of service vulnerability (the gt vulnerability). Mitigation is in section 7.4.

We also check the HTML browser and also the file viewer box of the program in practical and by using
source code. There are not some kinds of attacks such as XSS and also it can load the huge files
correctly. However, these functions need to have more precise investigation to check all the situations.

Now, assume that the program uses the passive (PASV) mode to connect to the FTP server. FTP server
must send an IP address plus the connection port for the client. But, this malicious FTP server sends
another computer IP address and port to the client. If the FTP client works with this new IP, it will send

some packets to special port of this new computer which can lead to some security effects or
information disclosure. Assume that there is an attacker which is trying to send a lot of PASV response
packets to the FTP client port in order to fool the client to connect to his/her FTP server. The solution is
that the FTP client must discard the IP address when using the passive mode. YaFtp uses
“ftp.FtpClientSession.buildPasvSocket” method to manage the PASV connection. It is obvious that this
function always work with the IP address which server sends to it. So, it is vulnerable to this kind of
attack and we mention it as the 9" vulnerability (attack tree - 2.1 and 2.4).

7.4 Threat Summary

No:

1

Threat:
Impact (1-10):
Probability:

Affected Component:

Description:

Result:

Mitigation Strategies:

Local attacker can execute an arbitrary command on the system

10

2

utils.ProcessLauncher

This component is a public executable class which executes the input
argument as an operating system command. More details are in section
7.1.1

Because of note2 in section 7, an attacker can execute arbitrary commands
on the system by using this module.

Convert “public” method to “private” in this important class, and prevent
from direct execution by changing the class structure.

No:

2

Threat:
Impact (1-10):
Probability:

Affected Component:

Description:

Result:

Mitigation Strategies:

Remote attacker can execute an arbitrary command on the system

10

5

utils.ProcessLauncher & filename reader methods

In the situation that client uses “utils.OsEditorPanePanel” instead of
“utils.SwingEditorPanePanel” and an external editor, attacker can send a
malicious filename to execute an arbitrary code on the client system. This
malicious filename uses the “multiple command execution” feature of the
OS to execute arbitrary commands on the system. More details are in
section 7.1.1

An attacker can execute arbitrary commands on the system by sending a
malicious file name.

Use input validation technique to filter bad characters from the filenames.
Using white list is not recommended in the case that we may have some
Unicode filenames.

No: 3
Threat: Server can send malicious data by the header.
Impact (1-10): 5
Probability: 8

Affected Component:

Description:

Result:

Mitigation Strategies:

ftp.FtpClientSession

This module does not check the input data which are inserted from the
server. Specially “getStatus()” method does not have any protection against
the malicious input and may cause some “null point exception” too.
Although it can cause some problem such as denial of service for the client,
the real result is unexpected.

Validate all server header according to the RFC.

10

No:

4

Threat:
Impact (1-10):
Probability:

Affected Component:

Description:

Result:

Mitigation Strategies:

Design vulnerability: Unencrypted communication

Except the local usage is 10

8

Design

According to the reference [1], which assumes a design vulnerability for
TELNET, this FTP client must use some encryption techniques to prevent
information disclosure.

Attacker can find user confidential information such as username and
password.

Using some encryption techniques based on RFCs and standard

cryptography.

No:

5

Threat:
Impact (1-10):
Probability:

Affected Component:

Insecure method to save user connection information in a file
8

4

Trace option

Description: By using the trace option, YaFtp stores the user connection information
(such as username, password, and server address) in a .trc file without any
encryption.

Result: Attacker can steal the confidential information of the user to connect to the
target server.

Mitigation Strategies: It should not store the password in .trc file, and it must use some strong
technique to set some permission on the .trc file.

No: 6

Threat: Insecure method to save user connection information in the memory

Impact (1-10):
Probability:

Affected Component:

Description:

Result:

Mitigation Strategies:

8

1

Login and Swing - login section

If an attacker has access to the memory, he/she can dump the YaFtp
memory section to achieve user connection information (such as username,
password, and server address).

Attacker can steal the confidential information of the user to connect to the
target server.

Although this program needs to store the connection information in
memory in order to reconnect to an FTP server, the way of storing these
data must be safe with at least some standard encryption and
randomization techniques.

11

No: 7

Threat: Directory traversal on the client
Impact (1-10): 10

Probability: 8

Affected Component:

Description:

Result:

Mitigation Strategies:

Directory name and Filename input modules

Since there is not any input validation in this FTP client, a fake FTP server
can send some dangerous filename to the client in order to do the directory
traversal attack.

Attacker can copy an arbitrary file on the client system in order to do some
further attack.

Input validation on the file and directory name to omit the harmful
characters or using white list in non-Unicode situation.

No: 8
Threat: Denial of service
Impact (1-10): 4
Probability: 7

Affected Component:

Description:

Result:

Mitigation Strategies:

Listening modules

The program will be frozen in the situation that server suddenly stop
sending the information to the client.

The program will be frozen and does not response to anything.

Use some timeout method to predict this situation and free the resources
when it does not need them.

No: 9
Threat: Redirect YaFtp to another server
Impact (1-10): 8
Probability: 4

Affected Component:

Description:

Result:

Mitigation Strategies:

ftp.FtpClientSession.buildPasvSocket

The program uses the received IP address (from FTP server) during the
passive (PASV) mode.

Attacker can redirect the FTP packets of the client to another server to do
some further attack or steal the user’s information.

Discard the new IP address in PASV mode and use the default IP address.

12

8 Conclusions

In summary this application is not secure enough and needs to have some security corrections. The 9
vulnerabilities of this application are mentioned in section 7.4. According to this security flaws, the main
problems of the application were because of:

- Lack of input validation

- Lack of the encryption techniques
Which can lead to create some more vulnerabilities in the future.
For input validation, using the “white list” methods is suggested. “Discarding the harmful characters” is
still useful in situations where the application cannot use the white list validation.
Nowadays, for encryption techniques to protect the confidential information, there are some standard
ways which most of the servers support them as well.
Other vulnerabilities are related to the logic of the program which must be reviewed and improved by
the time. Using the software testing black box techniques helps to find the most of these logical
vulnerabilities which lead to denial of service.
Although in this process 9 vulnerabilities were found, there can be more vulnerabilities according to the
attack trees.

13

Appendix

A - Information of YaFtp application:

Name YaFtp (Yet another FTP)
Version 1.0.14

Programmer Jean-Yves

Homepage http://sf.net/projects/YaFtp
License GNU

B - Links of some vulnerabilities in some other client FTP applications:
- In SecurityFocus.com:

URL:

http://search.securityfocus.com/swsearch?query=ftp+client&sbm=bid&submit=Search!&metaname=all
doc&sort=swishlastmodified

1.

10.

11.

12.

Google Chrome FTP Client PASV Port Scan Information Disclosure Vulnerability

URL: http://www.securityfocus.com/bid/33112/info

BulletProof FTP Client Bookmark File Heap Buffer Overflow Vulnerability
(Vulnerabilities)

URL: http://www.securityfocus.com/bid/33007

Multiple Vendor Web Browser FTP Client Cross Site Scripting Vulnerability
(Vulnerabilities)

URL: http://www.securityfocus.com/bid/31855

Ipswitch WS_FTP Client Format String Vulnerability (Vulnerabilities)

URL: http://www.securityfocus.com/bid/30720

WISE-FTP FTP Client 'LIST' Command Directory Traversal Vulnerability (Vulnerabilities)
URL: http://www.securityfocus.com/bid/29844

net2ftp FTP Client Request Handling Unspecified Security Vulnerability (Vulnerabilities)
URL: http://www.securityfocus.com/bid/29664

ALFTP FTP Client 'LIST' Command Directory Traversal Vulnerability (Vulnerabilities)

URL: http://www.securityfocus.com/bid/29585

FileZilla FTP Client Hard-Coded Cipher Key Vulnerability (Vulnerabilities)

URL: http://www.securityfocus.com/bid/14730

PeerFTP_5 Insecure Password Storage Vulnerability (Vulnerabilities)

URL: http://www.securityfocus.com/bid/12670

Junkie FTP Client Server Response Download Filename File Corruption Vulnerability
(Vulnerabilities)

URL: http://www.securityfocus.com/bid/12011

Junkie FTP Client Server Response Download Filename Command Execution
Vulnerability (Vulnerabilities)

URL: http://www.securityfocus.com/bid/11978

IglooFTP File Upload Insecure Temporary File Vulnerability (Vulnerabilities)

URL: http://www.securityfocus.com/bid/11961

14

And etc.

- In cve.mitre.org:

URL: http://www.google.com/custom?hl=en&g=client+ftp&sitesearch=cve.mitre.org

C - Directory Structure:

In executable mode (not source code):

/doc (contains document of the program)

/init (contains settings and important files of the program)

/lib (contains class files and jar file

)

D - Automation Tools Pictures

i ¥ F-O0-Q~ B F]F 5 (C I F PMD 48 FindBu ™
“E£ Klocwork Findings &2 [# Package Explorer % ¥ =0 Klocwork Details &2 @ = O[] swingjava] FtpSessionOs.java] FtpSwingFileTransfertWi 52 =g
Visible 236 of 236 items. Grouped by None. Sorted by Severity, then by Status Review:5V.RANDOM:Use of insecure Random = publie void run() ﬂl
Description | Resource | L‘ Severity ‘ Status ‘ §a number generator Random. More information 1

@ SV.RANDOM: Use of insecure R com/yaftp/ft.. 285 Review (3) Analyze E & com/yaftp/ftp/qui/FtpSwingFileTransfertWi w.initialiseFileTranafert (nbfiles);

@ ID.RCEXPRFIELD: Test expressi com/yaftp/ft.. 734 Review ®) Analyze E Random zandom new Handom{) : B s

& IDRCEXPRFIELD: Test expressi com/yaftp/#t.. 196 Review 8) Analyze E for {int i1 =10 : 11 < mbFiles ; ii++)

& JD.RCEXPR.FIELD: Test expressi com/yaftp/s 190 Review (9) Analyze E ¢ N .

X B R int fileSize = random.nextInt() ;

& CMP.OBJ: Comparing objects a com/yaftp/ft.. 1.. Review @) Analyze E while (fileSize < 30 1

& CMP.0BJ: Comparing objects a com/yaftp/ft... 1.. Review (8] Analyze E FileSize — random.nextInt() :

& CMP.OBJ: Comparing objects a com/yaftp/ft... 1.. Review (9) Analyze E w.newFile[“verylongLilensmewithdirectorgfile®

& MNA.CAP: Method name shou com/yaftp/u.. 61 Style (8) Analyze E Ty 1

@ MNA.CAP: Method name shou com/yaftp/u.. 88 Style (8) Analyze E int transfered = 0 :

& MNA.CAP: Method name shou com/yaftp/ft... 241 Style () Analyze E int transferedSize = fileSize / 20 : B

@ MNA.CAP: Method name shou com/yaftp/ft.. 361 Style (8) Analyze E while | transfered < fileSize)

& MNA.CAP: Method name shou com/yaftp. Style (3) Analyze E I

& MNA.CAP: Method name shou com/yaftp/ft... 302 Style (8) Analyze E Thread.sleep(20) ;

& MNA.CAP: Method name shou com/yaftp/ft.. 268 Style (8) Analyze E _w.fileSlice (transferedSize);

& MMA.CAP: Method name sheu com/yaftp/ft... 392 Style (8) Analyze E transfered += transferedSize !

& MNA.CAP: Method name shou com/yafty 399 Style (8) Analyze E B

@ MMNA.CAP: Method name shou com/yaftp/ft... 355 Style () Analyze E } catch (InterruptedException e)

& MNA.CAP: Method name shou com/yaftp/ft... 458 Style (8) Analyze E 4

@ MNACAP: Method name shou com/yafty . 475 Style (8) Analyze E !

& MNA.CAP: Method name shou com/yaftp/ft... 512 Style () Analyze E _w.compleced() ; =

& MNA.CAP: Method name shou com/yafty 565 Style (8) Analyze E

& MNA.CAP: Method name shou com/yaftp/ft.. 206 Style (8) Analyze E

& MNA.CAP: Method name shou com/yaftp/ft... 385 Style (8) Analyze E -

& MNA.CAP: Method name shou com/yaftp/u.. 60 Style (8) Analyze E < | | v

& MNA.CAP: Method name shou com/yaftp/u.. 63 Style (8) Andbze E | B0 o Coneole o) 7 -0

& MNA.CAP: Method name shou com/yaftp/u.. 66 Style &) Analyze B have sslectsd 109 fils(s) to analyze. Fow procsssing yaft =

& MNA.CAP: Method name shou com/yaftp/u.. 40 Style (8) Analyze E j

& MNA.CAP: Method name shou com/yaftp/u.. 63 Style (8) Analyze E £ Anal

& MNA.CAP: Method name shou com/yaftp/u.. 34 Style (8) Analyze B || T009 231104 PU

& MNA.CAP: Method name shou com/yaftp/ft.. 313 Style (8) Analyze B ||End time: 01l-Mar—2009 23-11:22 PX

@ MNA.CAP: Method name shou com/yaftp/u... 77 Style (8) Analyze B ||Humber of classes analyzed: 260

© MNA G Matnos amestos comyatprt. 33 stiew anae 1212, TSNS) s

|

s

Figure D.1 - Klocwork

15

I3~ IBEREENE | $-0-4- | @ | PIp|H -G -2e-a- 5§ [Resource P PM>
12 Problems 232 & 7 = O] Javabackagejava | #] SwingBoxjava | UJ) SwingHtmlEditorkitj | &) FtpCustomizerjava | 4] Swingjava 58 s =0
467 errors, 3,252 warnings, 262 others (Filter matched 300 of 3981 items) ! =
Description = Resource | Patr =
= @ Errors (100 of 467 items) ery
@ A switch with less than 3 branches is inefficie UNItftpjava yaft nt lookhndfeel = convertStrlookAndfest (strlookkndfeel) ;
2 UIManager.setLookdndFeel(_LOOKANDFEELS [lookAndFeel]) :
@ A switch with less than 3 branches is inefficie WINDOWS#tp.... yaft) , _ = -
if (component != null)
@ Avoid instantiating Boolean objects; referenc Notepad.java yafts SwingUtilities.updateCompenentTrecUI (component) :
@ Avoid instantiating Integer objects. Call Integ FtpClientSessi... yaft, return null -
@ Avoid instantiating Integer objects. Call Integ FtpClientSessi... yaft/ A
@ Avoid instantiating String objects; this is usuz Ftpjave yaft: catch (UnsupportedLookAndFeelException e)
@ Avoid instantiating String objects; this is usuz Ftpjava yafty { retarn new 5tring("Unsupported look and feel exception returned on :"+
@ Avoid instantiating String ohjects; this is usuz Ftpjava yaft: strLookAndFeel
@ Avoid instantiating String objects; this is usuz Ftpjave yaft:) :
@ Avoid instantiating String objects; this is usuz Ftpjava yaft/ 3
@ Avoid instantiating String objects; this is usuz FtpClientSessi... yafty catch (IllegalAccessException f)
@ Avoid instantiating String cbjects; this is usuz FtpSessionOs.j... yaft/ { return new String("IllegalRccessException returned on "+
@ Avoid instantiating String objects; this is usuz FtpSwingFlist... yafts strlookhndFeel
@ Avoid instantiating String objects; this is usuz PackedDecim... yafts)
@ Avoid instantiating String objects; this is usuz PackedDecim... yaft; }
@ Avoid instantiating String objects; this is usue PackedDecim... yaft: cateh [Instantiatlonfxeeption g))
@ Avoid instantiating String cbjects; this is usuz PackedDecim... yafty { return new String('lllegalhccessixception retumed on 7%
@ Avoid reassigning parsmeters such ss ‘curlin MyslobsPretty... ysft strlookhnaFesl
@ Avoid reassigning parameters such as 'depth’ ElementTreeP... yafts N)
@ Avoid reassigning parameters such as inDir' MVSftp.java yaft/ catoh | ClassiorFoundExceprion h)
@ Avoid reassigning parameters such as 'messa MVSftpjava yaft { return new String("ClassNotFound exception returned on :"+
@ Avoid reassigning parameters such as 'messa MVSftpjava yafty strlookhndFeel
@ Avoid throwing raw exception types. EbcdicTableja... yaft;) o:
@ Do not use the short type BYTEFXjava yafty 3
@ Do not use the short type BYTEFX java yaft/ =
@ Do not use the short type BYTEFX java yaft _'_I
@ Do not use the short type BYTEFX java yafty
© Do not use the short type BVTEFXjava yaft, || I Bookmerks || Tasks € Progress |1 Properties [Bug User Annotations 5 v =0
@ Do not use the short type FtpClientSessi.. yaft) . § ﬁl
Do not use the short type FtpClientSessi.. yaft not a bug Bug present since: First version analyzed
@ Do not use the short type FtpClientSessi... yaft/ |
A Methnd names chauld nat cantain undersenn Cammandrn waft L
« | JJ K

£ [Resource | f P>

ey J
]
Figure D.2 - FindBugs
leg~ IPDEBEME | $-0-A- |84 |Poe |8 -H-2e-o-
[% Package Explorer | 22 Violations Outline &2 .~ O|| &5 Violations Overview &3 = B /&) swingBox.java f_@ SwingHtmiEditorkit f@ FtpCustomizer.java fm Swingjava 2 76
x=| cleeoeelB" .)
Error Message | Line " Element - try {
! All methods are static. Con... 20 #/ BeanMembersShouldSerialize @ int lookindFeel = convertStrlookAndFesl(strLookAndFeel) ;
5 The String literal "Courier” a.. 54 sl UnusedPrivateField UIManager.sstLookAndFesl | _LOOKANDFEELS [lookAndFeel]) ;
o Avoid excessively long varia.. 80 wppl ImmutableField if (component '= null)
4 Parameter title is not assig.. 117 B [J] FtpSwingConnectPanel java SwingUtilities.updateComponentTresUI (component) :
1 Avoid excessively long varia.. 118 - [J] FtpSwingCustomizer java , return nall ;
P/ Parameter titlelustification . 18 o SimpkfyBooleanfetms catch (UnsupportedLookAndFeelException &)
| . -l TooManyMethods
! Parameter titlePosition’isn.. 119 B { return new String("Unsupported look and feel exception returned on
1o/ Parameter 'textlayout isno.. 120 ¥ SystemPrintin
LookindFeel
A : 1»/ ShortVariable sex]
Parameter 'thickness'is not... 121 :
:f;“_’: < _f'“ T“;'i”“ = s MethodArgumentCouldBeFit i
ol using If...else stateme. 4 Usel ocaleWithCaseConversic ¥ .
1 Avoid using if...clse stateme... 129 3% MethodNamingConventions catch (IllegalBccessException f)
W Avoid using if..clse stateme... 131 o ConfusingTEm:ry { return new String("IllegalBiccessException returned on :"+
. strLockindFeel
B/ This statement may have so... 134 1/ LocalVariableCouldBeFinal Vo
! This statement may have so.. 153 iy ImmutableField N '
i This statement may have so.. 174 1 TElseStmisMustUseBraces catch (InstantiationException g)
i Amethod should have only .. 185 (o TfstmtsMustUseBraces { return new String("IllegalBccessException returned on :'"+
5l Avoid using if...else stateme... 185 sl SingularField strlockiAndFeel
15/ Amethod should have only .. 187 1 NullAssignment) :
15 Avoid using if...else stateme. 187 s LongVariable 3
A method should have only ... 188 woidPrintStackTrace ca agsNotFoundException
W y AvoidPrintStackTr teh (ClassNotFoundE ion h)
W Local variable lookAndFeel.. 206 #¢ VariableNamingConventions { return new String("ClassNotFound excepticn returned on :"+
Avoid using if statements wi.. 208 ~ ! Unusedimports serlookkndFeel
5 Amethod should have only .. 210 1+ BeanMembersShouldSerialize b
W Amethod should have only .. 213 ! UnusedPrivateField) '
1 Avoid unused constructor p.. 235 b/ OnlyOneReturn
ncommentedErm, oc
1/ Document empty constructor 235 p U tedEmptyMeth
w Avoid unusedﬁn orts such 23 - [1) FipSwingDrivePathCombo java & e mblic Swing(Component cComMpOnent)
P E1- [J] FtpSwingFileTransfertWindow.jar ?} g (Lo i
- [J] FtpSwingFListPaneljava
m- [J] FtpSwingMenuBar.java)
B [J] FtpSwingSelectedFilesjava
Jd__| |

ELE

=8

A=

e
n)

Figure D.3 - PMID

16

E - YaFtp Codes:

165
166
167
168
1638
170
171
172
173
174
175
176
177
178
1738
180
181
1g2
183
184
185
1886

public wvoid load (Object object)
throws UtilsError

i
File myWkFile ;
if { object instancecf File) allready here
myWkFile = (File) cobject ;
else or build an intermediate work
myWkFile = buildWkFile (object } :
ProcessLauncher launcher = new ProcessLauncher () H
String argString = editorEnviromnment3tring + " " + myWkFile ;
if { type == SwingTextEditors.HTML)

argString = browsingEnvironmentString + " " + myWkFile ;

launcher. setCommand (arg5tring)

InputStream stdOut = launcher.getSctdout() :

InputStream stdErr = launcher.getStderr{) -

WL reader = new WL (launcher.getStdout (), launcher.getS5tderr{))
reader.start () :

Figure E.1 — “OsEditorPanePanel” which call “setCommand” method

17

v

References

[1] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security Assessment: ldentifying
and Preventing Software Vulnerabilities. Addison Wesley; 2006.

[2]). Postel, J. Reynolds. RFC959 - FILE TRANSFER PROTOCOL (FTP). ISI; October 1985.

[3] M. Allman, S. Ostermann. RFC2577 - FTP Security Considerations; May 1999.

[4] M. Horowitz, S. Lunt. RFC2228 - FTP Security Extensions; October 1997.

[5] Joseph A. Bank. Java Security; December 1995.

[6] Sun Microsystems, Inc. Secure Coding Guidelines for the Java Programming Language, version 2.0;
2007.

[7] File Transfer Protocol. Wikipedia (http://en.wikipedia.org/wiki/File_Transfer_Protocol).

[8] FTP Sequence Diagram. EventHelix co. (http://www.eventhelix.com/RealtimeMantra/Networking/
FTP.pdf).

[9] Chris Grant. FTP Reviewed; 1998.

[10] List of FTP commands. Wikipedia (http://en.wikipedia.org/wiki/List_of FTP_commands).

[11] Ryan Heise. jftpd - 0.3. (http://www.ryanheise.com/software/jftpd/)

[12] Klocwork - Static source code analysis. (http://www.klocwork.com/)

[13] Find Bugs - Static Java source code analysis. (http://findbugs.sourceforge.net/)

[14] PMD - Static Java source code analysis. (http://pmd.sourceforge.net/)

18

