
 

File 1 of 1 

 

HITB SECCONF Amsterd4m and ConsenSys Dilig3nce bring you 

 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Smashing Ethereum Smart Contracts for Fun and Real Profit 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 

by Bernhard Mueller 

bernhard.mueller@consensys.net 

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
@@ 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

                   %                    
                 //%%                   
                ///%%%                 
               ////%%%%               
              /////%%%%%               
             //////%%%%%%              
            ///////%%%%%%%             
           ////////%%%%%%%%          
          /////////%%%%%%%%%       
         //////////%%%%%%%%%%        
        ///////////%%%%%%%%%%%       
       ////////////%%%%%%%%%%%%       
      ///////////%%&@@%%%%%%%%%%   
     ////////%%%%%%&@@@@@@%%%%%%%    
    /////%%%%%%%%%%&@@@@@@@@@@%%%%   
   /%%%%%%%%%%%%%%%&@@@@@@@@@@@@@@% 
  /%%%%%%%%%%%%%%%%&@@@@@@@@@@@@@@@@ 
  %%%%%%%%%%%%%%%%%&@@@@@@@@@@@@@@@@@    
      %%%%%%%%%%%%%&@@@@@@@@@@@@@       
  /       %%%%%%%%%&@@@@@@@@@       %  
   ///       %%%%%%&@@@@@@       %%%   
    //////      %%%&@@@      %%%%%%     
      ///////      *      %%%%%%%      
       /////////       %%%%%%%%%        
        ///////////#%%%%%%%%%%%         
          /////////#%%%%%%%%%          
           ////////#%%%%%%%%            
            ///////#%%%%%%%             
              /////#%%%%%               
               ////#%%%%               
                 //#%%                 
                  /#%    
 

 



 

 

 

   

 

2 (C) ConsenSys Diligence 2018 

Introduction 
~~~~~~~~~~~~ 

During my first year in university, I discovered Phrack magazine and the 
1,746 infamous lines of ASCII text titled "Smashing the Stack for Fun and 
Profit" [1]. Up until that point, I’d been on a trajectory to becoming a 
web designer, but Aleph One’s legendary introduction to buffer overflow 
exploits inspired me (like countless others) to specialize in computer 
security instead. What followed was an exciting time of learning and 
discovery. For the next few years, nothing was more magical than seeing 
that shellcode executed, seeing database contents revealed bit-by-bit 
through a blind SQL injection attack, and crashing a whole Wi-Fi network 
with a single spoofed RIP packet. 

Exploring distributed ledgers and the Ethereum "world computer" reminded me 
of those early days. The Ethereum blockchain supports smart contracts, 
quasi-Turing-complete programs that run in a stack-based virtual machine. 
Because we haven’t learned much since 1996, most of these contracts are 
developed in a programming language that allows the introduction of a 
variety of bugs.  

This time around there's one crucial difference though. In the early days, 
bug bounty programs didn't exist, and zero-day vulnerabilities were dumped 
on mailing lists just for the so-called lulz, so unless you had rather 
dubious connections, the only profit to be made was gaining the respect of 
other security researchers. Hack a smart contract however, and you might 
see some *actual* money. 

This paper introduces Mythril [2], a security analysis tool for Ethereum 
smart contracts, and its symbolic execution backend LASER-Ethereum [3]. The 
first part of the paper explains applications of symbolic execution and 
constraint solving in smart contract security analysis and verification. 
The second part showcases the use of symbolic analysis, static analysis, 
and control flow checking to discover real-world issues. 

The work is not groundbreaking by any measure, but hopefully it’ll help to 
make the Ethereum ecosystem a little bit safer. At the very least, I hope 
reading the paper is as much fun as writing it was. If it inspires one or 
two readers to learn more about smart contract security, even better! With 
that in mind, I’ve tried to make the paper as accessible as possible. Most 
examples can be reproduced using Mythril and the supplemental materials 
available on Github [4]. If you have questions, feel free to post an issue 
or ask on our Gitter channel [5]. 

I'd like to thank Mario Alvarez, Heaven Hodges, Tom Lindeman, John Mardlin, 
Gonçalo Sá and Gerhard Wagner for corrections and feedback, and the 
ConsenSys Diligence team for their unrelenting support. 

 

 

  



 

 

 

   

 

3 (C) ConsenSys Diligence 2018 

Table of Contents 
~~~~~~~~~~~~~~~~~ 

Symbolic Analysis of Ethereum Bytecode .................................. 4 
Modeling Transaction Execution .......................................... 4 

World State (σ)...................................................... 7 
Machine State (μ) .................................................... 8 
Execution Environment (I) ............................................ 8 
Control Flow ........................................................ 9 

SMT Solving and Formal Proofs ........................................ 10 
Asserting the Obvious ............................................... 11 
UitwerpselenToken .................................................. 16 
CTF Easy-Mode ...................................................... 27 

Multi-Transactional Concolic Analysis ................................. 30 
Taking Profits ......................................................... 31 
Accidentally Born Killer ............................................. 32 
De-Constructed ....................................................... 35 
DAOsaster ............................................................ 40 
Delegation to Hell ................................................... 44 
Modeling Message Calls .............................................. 46 

Summary and Outlook .................................................... 51 
References ............................................................. 51 
 

 

 

 

 

 

 

 

 

 



 

 

 

   

 

4 (C) ConsenSys Diligence 2018 

Symbolic Analysis of Ethereum Bytecode 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Although our industry hasn’t had much success in eradicating software bugs, 
we have done an excellent job at inventing a colorful portfolio of 
techniques for *detecting* them. A few that come to mind are SAST, DAST, 
IAST and RASP (if you don't know what those acronyms mean, ask a CISSP or 
CEH). Another approach that has become popular in the 2000s is symbolic 
execution. With this approach, program inputs are assumed to be symbols 
that represent arbitrary input values. During the symbolic execution run, 
the interpreter keeps track of the program states it encounters and 
collects constraints on inputs from predicates encountered in branch 
instructions. Every execution path discovered can be expressed as a 
propositional formula. The resulting representation of the program states 
and control flow can be used to prove certain properties of the program, 
determine reachability of error states, and perform various types of 
security analysis. 

While symbolic execution is very powerful in theory, it has some drawbacks 
in real work applications. For one, discovering all feasible execution 
paths in a reasonably complex program is very memory-intensive and time-
consuming. Operating system features (such as file systems, sockets and 
multi-threading) are also difficult to model. The Ethereum Virtual Machine, 
however, is simple compared to a desktop or mobile operating system, and 
this simplicity makes it possible to achieve 100% path coverage with 
typical smart contracts. 

 

Modeling Transaction Execution 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Ethereum is best described as a transaction-based distributed state 
machine: At any point in time, Ethereum nodes agree on a shared world state 
that is modified over time by transactions accepted into the blockchain. 
The world state at any given time is the result of all state modifications 
since the genesis state. Ethereum accounts may contain code ("smart 
contracts") that is executed in the Ethereum Virtual Machine (EVM) whenever 
a transaction is received. 

The Ethereum yellow paper [6] formally specifies the Ethereum state machine 
and virtual machine. Written in ancient Greek symbols, the paper is 
notoriously difficult to understand, but the machines it describes are 
actually fairly simple. This simplicity becomes obvious once one looks at 
an actual implementation (for an easier-to-understand description, I 
recommend reading Micah Dameron's beige paper [7]). 

LASER-Ethereum [3] is a symbolic interpreter for Ethereum bytecode. Given 
one or more smart contract accounts as input, it returns a set of abstract 
program states. A *state* consists of the set of values that the virtual 
machine variables (such as the program counter, virtual machine stack, and 



 

 

 

   

 

5 (C) ConsenSys Diligence 2018 

account balances) take at a particular point during execution. 

 
Figure 1: State transition diagram from the Ethereum White Paper [8] 

    

The yellow paper describes three sets of state variables: 

 

- World State (σ): A mapping of Ethereum addresses to accounts, which 
include account storage and balances. 

- Machine State (μ): The program counter, memory, and stack of the 
virtual machine. 

- Execution Environment (I): Variables relevant to the transaction that 
is currently executing (caller address, transaction value, and so on). 
 

In LASER, the overall state is represented by the GlobalState Python object 
that holds the machine state, environment, and world state (Figure 2).  

 



 

 

 

   

 

6 (C) ConsenSys Diligence 2018 

 
Figure 2: The LASER GlobalState object 

 

Obtaining the space of program states with LASER is as simple as 
initializing a contract account and calling the sym_exec() method: 

--------------------------------------------------------------------------- 
>>> account = svm.Account(address, disassembly, "MyContract") 
>>> accounts = {address: account} 
>>> 
>>> laser = svm.LaserEVM(accounts) 
>>> statespace = laser.sym_exec(address) 
>>> 
>>> statespace.nodes[0].states 
[<laser.ethereum.svm.GlobalState object at 0x10ae1e978>, 
<laser.ethereum.svm.GlobalState object at 0x10ae1ea58>,...] 
--------------------------------------------------------------------------- 
 

The LASER GlobalState object contains three members: world state, machine 
state, and environment (denoted in the yellow paper by σ, μ, and I, 
respectively). Let’s look at the components of the state in more detail. 

 

 

 

 



 

 

 

   

 

7 (C) ConsenSys Diligence 2018 

World State (σ) 
~~~~~~~~~~~~~~~ 

According to the yellow paper [6], the world state comprises of a mapping 
from Ethereum addresses to accounts, each of which has the following four 
fields: 

- nonce: A scalar value equal to the number of transactions sent from 
the account or, given accounts with associated code, the number of 
contract creations made by the account. The nonce is denoted by σ[a]n. 

- balance: A scalar value equal to the number of Wei owned by the mapped 
address. Denoted by σ[a]b.  

- storageRoot: A 256-bit hash of the root node of a Merkle Patricia tree 
that encodes the account’s storage contents (a mapping between 256-bit 
integer values), denoted by σ[a]s. 

- codeHash: The hash of the mapped account’s EVM code. This is the code 
that gets executed if the mapped address receives a message call; it 
is immutable and thus, unlike all other fields, cannot be changed 
after construction. All such code fragments are contained in the state 
database under their corresponding hashes for future retrieval. This 
hash is formally denoted by σ[a]c, and the code may thus be denoted by 
b if KEC(b) = σ[a]c. 

  
In LASER, the world state is represented by a dictionary that maps hex-
encoded addresses to account objects: 

--------------------------------------------------------------------------- 
>>> state.accounts['0x0000000000000000000000000000000000000000'].as_dict() 
{'nonce': 0,  
 'code': <mythril.disassembler.disassembly.Disassembly object at 
0x106413940>,  
  'balance': balance,  
  'storage': {} 
} 

--------------------------------------------------------------------------- 
 

The implementation is faithful to the yellow paper except for the codeHash 
field. Instead of a hash, the account object contains the code itself in 
the form of a Mythril Disassembly object. Such an object can be generated 
from bytecode or source code with a few lines of Python code. 

--------------------------------------------------------------------------- 
from mythril.ether.soliditycontract import SolidityContract 
 
contract = SolidityContract("solidity_examples/underflow.sol", "Under") 
disassembly = contract.get_disassembly() 
--------------------------------------------------------------------------- 
 

 



 

 

 

   

 

8 (C) ConsenSys Diligence 2018 

Machine State (μ) 
~~~~~~~~~~~~~~~~~ 

Quoting the yellow paper [6], "the machine state μ is defined as the tuple 
(g, pc, m, i, s), whose elements are the gas available, the program counter 
pc ∈ P256, the memory contents, the active number of words in memory 
(counting continuously from position 0), and the stack contents." 

In LASER, the machine state is represented by GlobalState.mstate: 
 
--------------------------------------------------------------------------- 
>>> state.mstate.as_dict() 
{'pc': 0,  
 'stack': [],  
 'memory': [],  
 'memsize': 0,  
 'gas': 10000000 
} 
--------------------------------------------------------------------------- 
 

Execution Environment (I) 
~~~~~~~~~~~~~~~~~~~~~~~~ 

The execution environment consists of the following variables [6]: 

- Ia, the address of the account that owns the executing code. 

- Io, the sender address of the transaction that originated the execution. 

- Ip, the price of gas in the transaction that originated the execution. 

- Id, the input byte array for the execution. If the execution agent is a 
transaction, Id is the transaction data. 

- Is, the address of the account that caused the code execution. If the 
execution agent is a transaction, the transaction sender is. 

- Iv, the value in Wei passed to this account as part of the procedure that 
execution belongs to. If the execution agent is a transaction, Iv is the 
transaction value. 

- Ib, the byte array represented by the machine code to be executed. 

- IH, the block header of the present block. 

- Ie, the depth of the present message call or contract-creation (i.e., the 
number of CALLs or CREATEs being executed). 

 

In LASER, the environment is represented by GlobalState.environment: 

--------------------------------------------------------------------------- 
>>> state.environment.as_dict() 
  {'active_account': <laser.ethereum.svm.Account object at 0x1064a4780>, 
   'sender': caller,  
   'calldata': [],  



 

 

 

   

 

9 (C) ConsenSys Diligence 2018 

   'gasprice': gasprice,  
   'callvalue': callvalue,  
   'origin': origin,  
   'calldata_type': <CalldataType.SYMBOLIC: 2>} 
--------------------------------------------------------------------------- 
 

LASER doesn't yet have extensive documentation, but its README.md has a 
basic how-to (you can also read the source code which clocks in at less 
than 1,500 LoC).  

 

Control Flow 
~~~~~~~~~~~~ 

LASER organizes program states via a control flow graph (Figure 3). Each 
node of the graph represents a basic block of code that is executing. Every 
node has a set of path conditions. A list of edges between nodes and the 
constraint on each edge is also provided. The control flow graph (CFG) 
isn’t strictly needed for symbolic analysis, but it enables additional 
useful types of analysis and the rendering of awesome visuals. 

 

Figure 3: Program states mapped along a control flow graph. Nodes represent 
basic blocks of code; Each line in a node represents a program state. Edges 

are annotated with path constraints. 



 

 

 

   

 

10 (C) ConsenSys Diligence 2018 

A key concept in symbolic analysis is the *path formula*, a logical formula 
composed of the constraints on a given path. The path formula of a given 
node is the result of the logical AND of all edges on the path to that 
node. The path formula for reaching the function doThis() in Figure 3 is 

calldatasize < 4 ^ calldata[0:4] = 0x35bf8089d 

 

Note that 0x35bf8089d corresponds to the function signature hash for 
doThis().  

 

******************************** PRO TIP ********************************** 

You can quickly calculate a function hash by using Mythril’s hash utility:  

 

$ myth --hash "doThis()" 
0x35bf898d 
*************************************************************************** 

 

 

SMT Solving and Formal Proofs 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Using LASER, we can represent smart contract execution as a space of states 
and path formulas in propositional logic. Obviously, this in itself is a 
mind-blowing achievement, but how is it useful for security analysis? 

We can produce statements ("theorems") using propositional logic and 
attempt to prove or disprove those statements within the space of abstract 
states discovered. We could, for example, ask whether there is feasible 
path to a particular program. Questions like this can be expressed as 
Boolean satisfiability (SAT) problems, for example: Is it possible to 
satisfy the formula a ∧ (b ∨ c) ∧ ¬ c ∧ ¬ (b ∧ d)? 

To solve these problems, we use automated reasoning tools called SMT 
Solvers. A solver can check the satisfiability of logical formulas over one 
or more *theories*. The EVM computes using 256-bit bit-vectors, so we can 
use the bit-vector theory to reason about those computations. 

Fortunately, being engineers, we don’t need to worry about *how* the solver 
actually computes solutions. LASER uses Z3, a popular theorem prover from 
Microsoft Research. In the following sections, we’ll throw examples of 
increasing complexity at LASER and the Z3 Solver. 

 
 

 

 
 



 

 

 

   

 

11 (C) ConsenSys Diligence 2018 

Asserting the Obvious 
~~~~~~~~~~~~~~~~~~~~~ 

The easiest way to understand the solving process is by example. Let's 
first look at a simple functional correctness check using assertions. 

Solidity provides an assert() function that can be used to assert 
invariants. Invariants are conditions that are expected to always hold 
during run time, regardless of the environment, input variables, and 
initial state. 

The following smart contract contains two assertions.  

--------------------------------------------------------------------------- 
contract Assertions { 
     
    function assertion1(uint256 input) { 
        assert(input * 4 < 1024); 
    } 
     
    function assertion2(uint256 input) { 
        if (input > 256) { 
            throw; 
        } 
         
        assert(input * 4 <= 1024);   
    } 
  
} 
--------------------------------------------------------------------------- 
 

At the end of each function, (input * 4 < 1024) is asserted. The compiler 
translates the assert function call into a conditional jump that leads into 
an invalid opcode (0xfe) if the condition isn’t met. Therefore, if the 
condition (input * 4 < 1024) is violated during a program run, execution 
will terminate with an "invalid opcode" exception and the transaction will 
be rolled back. 

Looking at the source, it seems obvious that the assertion in the function 
assertion2 always holds. But how do we *prove* this? One approach is to run 
the code with all possible input values and environment configurations and 
observe whether the exception is triggered. But there’s a catch: The number 
of possible values that a single 256-bit integer can take is approximately 
equal to the number of hydrogen atoms in the observable universe. That's 
quite a long fuzzing run. A better approach is to logically prove that the 
instruction can never be executed. 

  



 

 

 

   

 

12 (C) ConsenSys Diligence 2018 

The exception is located at PC address 171 (Figure 4). Suppose M is the set 
of all machine states in which the program counter value is 171 (note that 
there could be zero or more states in which this is the case, but here we 
have exactly one): 

 

M = {μ: μpc = 171} 
 

We would like to prove that for all states μ ∈ M there exists no pair of 
initial state and environmental variables (σ, I) that satisfies the path 
formula Pμ(σ, I) (which represents the conditions under which μ can be 
reached). 

 

"μ ∈ M → ¬∃(σ,I) Pμ(σ, I) 

 

Figure 4 shows the control flow graph for the function assertion2. Because 
the graph is too large to fit into this paper, only the portion 
representing the if-statement is shown - the full version is available in 
the supplemental materials [4]. 

As previously discussed, the path formula of a given node is the result of 
the logical AND of all edges along the path to that node. For the node 
containing the exception (ASSERT_FAIL at address 171), the AND operation 
yields the following path formula: 

 

Id[0:4] = 0xe166a663 ^ Iv = 0 ^ UINT256(Id[4:36]) < 0x100 ^ 4 * UINT256(Id 
[4:36]) > 0x400 

 

where Id is a byte array containing the input data and Iv is the call value.  

The leftmost two conditions in this formula represent the function 
signature and call value. We can assume that they are always satisfiable. 
The right half of the formula can be simplified to: 

 

(input < 0x400) ^ ¬(input < 0x400) 

 

As the wise Aristotle noted, a proposition Q and its negation ¬Q (not-Q) 
cannot both be true, and advances in quantum mechanics notwithstanding, 
this is still the consensus. By showing a contradiction in the path 
formula, we have shown that the exception in assertion2() can never be 
executed. 

 



 

 

 

   

 

13 (C) ConsenSys Diligence 2018 

 
Figure 4: CFG of the function assertion2(uint256) 

 

******************************** PRO TIP ********************************** 

The CFGs in this paper were produced via the Mythril command line tool. You 
can create your own CFGs by running 

 

$ myth -g graph.html assertions.sol 
 
 
If you prefer that your graphs look like the ones in this paper, add the 
following secret command line flag: 
 
 
$ myth --phrack -g graph.html assertions.sol 
 
*************************************************************************** 

What about the assertion in the function assertion1? As in the previous 
case, only one path to the exception state at μpc = 189 exists. The logical 
conjunction of all the constraints along the edges gives the following path 
formula: 

 

(Id[0:4] = 0xe166a663) ^ (Iv = 0) ^ (UINT256(Id[4:36]) > 0x400) 

 



 

 

 

   

 

14 (C) ConsenSys Diligence 2018 

This time, it is possible to satisfy the formula by, for example, choosing 
the following values (the dot "." indicates concatenation). 

 

Iv = 0 

Id = 0xe166a6630 . UINT256(0x100) 

 

At this point, we can use a neat feature of the Z3 solver: Not only can it 
tell us whether the formula is satisfiable, it can also produce a solution 
to the formula. The Mythril command line tool can do this automatically; 
simply run the security analysis and add the --verbose-report flag. 

 

--------------------------------------------------------------------------- 
$ myth -x assertions.sol --verbose-report 
 
==== Exception state ==== 
Type: Informational 
Contract: Assertions 
Function name: assertion1(uint256) 
PC address: 189 
 
A reachable exception (opcode 0xfe) has been detected. This exception can 
be caused by type errors, division by zero, out-of-bounds array access, or 
assert violations. Note that assert() should be used only to check 
invariants. Use require() for regular input-checking.  
 

-------------------- 
In file: assertions.sol:4 
 
assert(input * 4 < 1024) 
 
-------------------- 
 
DEBUGGING INFORMATION: 
 
The exception is triggered under the following conditions: 
 
calldata_Assertions_4: 
0000000000000000000000000000000000000000000000000000000000000200 
calldata_Assertions_0: 
e166a66300000000000000000000000000000000000000000000000000000000 
calldatasize_Assertions: 4 
callvalue: 0 
 
--------------------------------------------------------------------------- 



 

 

 

   

 

15 (C) ConsenSys Diligence 2018 

Note the values calldata_Assertions_[number] in Mythril’s output. These are 
the calldata values computed by the solver. Concatenating these values 
yields the transaction data that triggers the exception:  

 
calldata = 
0xe166a6630000000000000000000000000000000000000000000000000000000000000200 
 
Granted, it doesn’t take an Aristotle to come up with this result. But the 
solver can be applied to much more complex tasks, sometimes with surprising 
results. Let’s look at an example that’s a bit more challenging. 

 

 
Figure 5: Control flow graph of the function assertion1() 

 

 

 

 

 



 

 

 

   

 

16 (C) ConsenSys Diligence 2018 

UitwerpselenToken 
~~~~~~~~~~~~~~~~~ 

In 2017, the first Underhanded Solidity Coding Contest [9] was held. The 
objective of the contest was to write harmless-looking Solidity code that 
conceals its purpose. One of many interesting submissions [10] was Doug 
Hoyte’s MerdeToken [11], which was awarded a fourth place prize by the 
judges. 

To demonstrate SMT Solving, I proudly present UitwerpselenToken, the 
spiritual successor to MerdeToken. UitwerpselenToken is a multi-user smart 
contract with functions for depositing and transferring Ether, and a bonus 
code management system. It supports two special accounts, *owner* and 
*manager*. The owner can withdraw any amount of Ether at any time, and the 
manager’s task is managing the list of available bonus codes. Here's the 
full source code: 
 

--------------------------------------------------------------------------- 

pragma solidity ^0.4.13; 
 
// UitwerpselenToken: The multi-user wallet with a twist! 
// Do NOT use this in production! 
 
// UitwerpselenToken is based on MerdeToken by Doug Hoyte: 
// https://github.com/Arachnid/uscc/tree/master/submissions-2017/doughoyte 
 
contract UitwerpselenToken { 
    address public owner; 
    address public manager; 
 
    function UitwerpselenToken(address _manager) { 
        owner = msg.sender; 
        manager = _manager; 
    } 
 
    modifier onlyOwner { 
        require(msg.sender == owner); 
        _; 
    } 
 
    modifier onlyManager { 
        require(msg.sender == manager); 
        _; 
    } 
 
    mapping (address => uint) public balanceOf; 
    uint public deposited; 



 

 

 

   

 

17 (C) ConsenSys Diligence 2018 

 
    function deposit() payable { 
        require(deposited + msg.value > deposited); 
        require(balanceOf[msg.sender] + msg.value > balanceOf[msg.sender]);  
        balanceOf[msg.sender] += msg.value; 
        deposited += msg.value; 
    } 
 
    function balanceOf(address owner) constant returns (uint balance) { 
        return balanceOf[owner]; 
    } 
 
    function transfer(address to, uint value) { 
        require(balanceOf[msg.sender] >= value); 
        require(balanceOf[to] + value > balanceOf[to]); 
        balanceOf[msg.sender] -= value; 
        balanceOf[to] += value; 
    } 
 
    function withdraw(uint amount) onlyOwner { 
        require(amount <= deposited); 
        deposited -= amount; 
        msg.sender.transfer(amount); 
    } 
 
    uint[] public bonusCodes; 
 
    function pushBonusCode(uint code) onlyManager { 
        bonusCodes.push(code); 
    } 
 
    function popBonusCode() onlyManager { 
        require(bonusCodes.length >= 0); 
        bonusCodes.length--; 
    } 
 
    function modifyBonusCode(uint index, uint update) onlyManager { 
        require(index < bonusCodes.length); 
        bonusCodes[index] = update; 
    } 
} 
--------------------------------------------------------------------------- 

The code looks straightforward, and access privileges are clearly divided 
between the manager and owner roles. There is no obvious way for anyone 
besides the owner to withdraw Ether. Also, the owner address is set in the 



 

 

 

   

 

18 (C) ConsenSys Diligence 2018 

constructor and there's no function that can change it. Let’s formally 
verify this to be on the safe side. 

The first and most important step of formal verification is defining 
functional specifications, i.e., a list of provable statements about the 
code’s behavior. A formal statement about a given behavioral aspect of the 
code is called a "safety property". In the earlier assertion-based example, 
the safety properties were explicitly stated in the form of assert() calls. 
This time, we'll list general assumptions about the code and then translate 
them into verifiable formal statements. 

Several assertions can be made about UitwerpselenToken. In this example, 
we'll have a closer look at two safety properties that describe the 
expected behavior with respect to Ether withdrawals and the contract owner: 

 

1. Only the contract owner is authorized to withdraw Ether. 
2. The owner address cannot be changed from its initial value (set in the 

constructor). 

 

Let's now formalize this in the context of EVM bytecode execution. First, 
we need to determine how the state variable owner is represented on the 
bytecode level. In the EVM, storage is implemented as a key-value-store 
with 32-byte keys (aka "positions" or "slots") and 32-byte values. 
Statically sized variables are laid out contiguously in storage, starting 
from position 0. Because "address public owner" is the first state variable 
defined in UitwerpselenToken, it is represented by the value at storage 
position 0. 

In yellow paper parlance, this storage position would be denoted by 
σt[a]s[o]. We can now write the above safety properties as follows: 

 

1. External calls with non-zero values are reachable if and only if 
σt[a]s[o] = Is. 

2. There exists no state transition σt -> σt+1 such that σt[a]s[o] != 
σt+1[a]s[o]. 

 

For the sake of simplicity, we’ll take it for granted that the code can be 
proven correct with respect to property 1. We’ll take a closer look at 
property 2, immutability of the owner state variable. 

An important observation is that, according to the EVM specification, 
SSTORE is the only instruction capable of modifying account storage. We can 
therefore efficiently detect possible violations by looking for states in 
which Ib[Ipc] = SSTORE, such that either mstate.stack[0] = 0 or 
mstate.stack[0] contains a symbolic variable x and the path formula P(x,I) 
is satisfiable given x = 0.  

The following Python program implements the search using Mythril and Z3. 



 

 

 

   

 

19 (C) ConsenSys Diligence 2018 

--------------------------------------------------------------------------- 
#!/usr/bin/env python 
 
from laser.ethereum import svm 
from mythril.ether.soliditycontract import SolidityContract 
from mythril.analysis import solver 
from mythril.exceptions import UnsatError 
from z3 import * 
 
address = "0x0000000000000000000000000000000000000000" 
 
contract = SolidityContract("uitwerpselentoken.sol") 
 
account = svm.Account(address, contract.disassembly) 
accounts = {address: account} 
 
laser = svm.LaserEVM(accounts) 
laser.sym_exec(address) 
 
for k in laser.nodes: 
 
    node = laser.nodes[k] 
 
    for state in node.states: 
 
        if (state.get_current_instruction()['opcode'] == 'SSTORE'): 
 
            proposition = node.constraints 
            proposition.append(state.mstate.stack[-1] == 0) 
 
            try: 
                model = solver.get_model(proposition) 
 
                print("Violation found!") 
 
                for d in model.decls(): 
                    print("%s = 0x%x\n" % (d.name(), model[d].as_long())) 
 
                codeinfo = 
contract.get_source_info(state.get_current_instruction()['address']) 
 
                print("%s\n%s\n" % (codeinfo.lineno, codeinfo.code)) 
 
            except UnsatError: 
                pass 
 
print("Analysis completed.") 
--------------------------------------------------------------------------- 
 



 

 

 

   

 

20 (C) ConsenSys Diligence 2018 

Running the program produces the following output (I omitted some of the 
output because it filled multiple pages and some of the source mappings 
were off): 

 
--------------------------------------------------------------------------- 
$ python doorspoelen.py 
 
VIOLATION FOUND: 
 
In line 45: 
balanceOf[msg.sender] -= value 
(...) 
keccac_1461501637330902918203684832716283019655932542975_& 
1461501637330902918203684832716283019655932542975_& 
caller = 0x0 
 
VIOLATION FOUND: 
 
In line 46: 
balanceOf[to] += value 
 
(...) 
keccac_1461501637330902918203684832716283019655932542975_& 
1461501637330902918203684832716283019655932542975_& 
caller = 0x0 
callvalue = 0x0 
 
 
VIOLATION FOUND: 
 
In line 68: 
bonusCodes[index] = update 
 
storage_4 = 
0x75ca53043ea007e5c65182cbb028f60d717c0000000000000000000000000000 
storage_1 = 0x0 
caller = 0x0 
calldata_unknown_0 = 
0xafdb35d700000000000000000000000000000000000000000000000000000000 
calldatasize_unknown = 0x4 
calldata_unknown_4 = 
0x75ca53043ea007e5c65182cbb028f60d7179ff4b55739a3949b401801c942e65 
callvalue = 0x0 
 
(...) 
 
VIOLATION FOUND: 
 
In line 58: 



 

 

 

   

 

21 (C) ConsenSys Diligence 2018 

bonusCodes.push(code) 
 
storage_1 = 0x0 
caller = 0x0 
calldata_unknown_0 = 
0xd456118a00000000000000000000000000000000000000000000000000000000 
calldatasize_unknown = 0x4 
storage_4 = 
0x75ca53043ea007e5c65182cbb028f60d7179ff4b55739a3949b401801c942e65 
callvalue = 0x0 
 
--------------------------------------------------------------------------- 
 

Plot twist: The analysis outputs multiple violations! Perhaps the owner 
variable isn’t immutable after all? Let’s have a closer look at the 
results. Strangely, one group of findings points to the code lines that 
access the mapping balanceOf: 
 
In line 32: 

balanceOf[msg.sender] += msg.value 

In line 43: 

balanceOf[msg.sender] -= value 

In line 44: 

balanceOf[to] += value 

 

The solver output hints at the possibility of writing to storage position 0 
by supplying an address k so that keccak256(k . p) = 0. Unfortunately, the 
odds of finding this magic address are 1/2256. Those are pretty bad odds. 
You’d be about as likely to succeed at finding one specific atom out of all 
the atoms in the universe (and even if you were lucky, there might not be a 
solution at all because k is an uint256 with the leftmost 12 bits always 
zeroed out). We can safely disregard this as a false positive. 

 

Another warning produced by our analysis tool: 

--------------------------------------------------------------------------- 
VIOLATION FOUND: 
 
In line 58: 
bonusCodes.push(code) 
 
storage_4 = 
0x75ca53043ea007e5c65182cbb028f60d7179ff4b55739a3949b401801c942e65 
--------------------------------------------------------------------------- 

 



 

 

 

   

 

22 (C) ConsenSys Diligence 2018 

Under certain conditions, pushing an element onto the array bonusCodes 
results in that element’s being written to storage position 0. 

The explanation is related to the method used to compute the storage 
position of the dynamic array’s elements. Each array is assigned a storage 
slot at some position p. The storage slot itself contains the length of the 
array, and the storage address corresponding to an array element at some 
index is calculated as keccak256(p) + index (read [12] for a detailed 
explanation). 

Once the array reaches a length x such that keccak256(p) + x = MAX_INT and 
the next element is pushed, the calculation overflows and the new element 
is stored at storage position 0. 

Being the fourth variable declared in the program, the length of the 
bonusCodes array is stored at storage position 4, and elements are 
addressed as keccak256(4) + offset. Note that the solver provides the value 
for the "critical" length: storage_4 = 0x75(...). We can calculate this 
value ourselves: 

x = 2 ** 256 - keccak256(4) 

 

If the theory is correct, the result of this calculation should match the 
solver output. 

--------------------------------------------------------------------------- 
>>> from ethereum.utils import sha3 
>>> hash = sha3((4).to_bytes(32, byteorder='big')) 
>>> num = int.from_bytes(hash, byteorder='big') 
>>> hex(2**256-num) 
'0x75ca53043ea007e5c65182cbb028f60d7179ff4b55739a3949b401801c942e65' 
--------------------------------------------------------------------------- 
 

Great! Unfortunately, while this all sounds very nice in theory, nobody 
will ever exploit it in reality unless they somehow manage to push 
trillions of elements onto the array. Therefore, let's move on to the next 
result. 

The solver shows a possible violation of the safety property at line 68 in 
the code: 

 

--------------------------------------------------------------------------- 
VIOLATION FOUND: 
 
In line 68: 
bonusCodes[index] = update 
 
storage_4 = 
0x75ca53043ea007e5c65182cbb028f60d717c0000000000000000000000000000 
storage_1 = 0x0 



 

 

 

   

 

23 (C) ConsenSys Diligence 2018 

caller = 0x0 
calldata_unknown_0 = 
0xafdb35d700000000000000000000000000000000000000000000000000000000 
calldatasize_unknown = 0x4 
calldata_unknown_4 = 
0x75ca53043ea007e5c65182cbb028f60d7179ff4b55739a3949b401801c942e65 
callvalue = 0x0 
--------------------------------------------------------------------------- 
 

Once again, the dynamically sized array bonusCodes is involved, but this 
time the array element is addressed directly via the "index" function 
argument. For the same reasons discussed above, this causes a write to 
storage position 0 if index = 2 ** 256 - keccak256(4). Exploitation seems 
more realistic here since we can pass arbitrary uint256 values. 
Unfortunately, there is still a catch: Passing an index greater than the 
length of the array causes an exception. We therefore need a way to set the 
array length to a value greater than 2 ** 256 - keccak256(4). 

 

Exploitation 
~~~~~~~~~~~~ 

If you haven’t yet noticed anything weird in the function popBonusCode(), 
take another look: 
--------------------------------------------------------------------------- 
 
    function popBonusCode() onlyManager { 
        require(bonusCodes.length >= 0); 
        bonusCodes.length--; 
    } 
 
--------------------------------------------------------------------------- 
 
In the sanity check, there’s an off-by-one error that allows for 
underflowing the bonusCodes.length variable, causing it to assume the 
maximum unsigned integer value (2256 – 1). Addressing array indices without 
restrictions is now possible. 
 
******************************** PRO TIP ********************************** 

Mythril comes with a module for detecting integer underflows (I’ve removed 
*over*flow detection for the time being because it caused too many false 
positives). You can use the -m argument to select specific security 
analysis modules: 
 
 
$ myth -x uitwerpselentoken.sol -m integer s 
==== Integer Underflow ==== 
Type: Warning 
Contract: UitwerpselenToken 



 

 

 

   

 

24 (C) ConsenSys Diligence 2018 

Function name: popBonusCode() 
PC address: 1806 
A possible integer underflow exists in the function popBonusCode(). 
The SUB instruction at address 1806 may result in a value < 0. 
-------------------- 
In file: uitwerpselentoken.sol:63 
 
bonusCodes.length-- 
 
*************************************************************************** 

 
The following is the exploit sequence for setting a new owner: 

 

1. Underflow bonusCodes.length by calling popBonusCode(). 
2. Call modifyBonuscode(2 ** 256 - keccak256(2), new_owner_address). 

 

We can test this out with a Truffle script:  

 
--------------------------------------------------------------------------- 
module.exports = function(callback) { 
 
    var UitwerpselenToken = arti-facts.require("./UitwerpselenToken.sol"); 
var manager = web3.eth.accounts[1]; 
    var token; 
 
    UitwerpselenToken.deployed().then(function(instance) { 
        token = instance;   
        token.popBonusCode({from: manager}); 
    }).then(function() { 
      return 
token.modifyBonusCode("5327807935070916631628042320284932251919018659107185
1114874353210178472783461", 
"0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef", {from: manager}); 
    }).then(function() { 
        return token.owner.call(); 
    }).then(function(new_owner) { 
        console.log(new_owner); 
    }); 
} 
--------------------------------------------------------------------------- 
 

 

 



 

 

 

   

 

25 (C) ConsenSys Diligence 2018 

 

Executing the Truffle script produces the following output:  

--------------------------------------------------------------------------- 
$ truffle exec test.js  
Using network 'development'. 
 
Owner before modifyBonusCode: 0x627306090abab3a6e1400e9345bc60c78a8bef57 
Owner after modifyBonusCode: 0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef 
--------------------------------------------------------------------------- 
 

It worked :) 

This vulnerability may seem unlikely to occur in practice, but it's not 
impossible. For example, explicitly decreasing array length is a pattern 
that Solidity developers use. 

The main takeaway however is that formal analysis can detect bytecode-level 
issues that may not be obvious to an auditor inspecting the source code. 
Carefully defined safety properties and verification procedures should be a 
part of every auditor's toolbox. 

  



 

 

 

   

 

26 (C) ConsenSys Diligence 2018 

******************************** PRO TIP ********************************** 

Whenever you discover a possible security issue (even if barely exploitable 
in practice), your first concern should be branding. Branding helps create 
awareness about the issue and earns you well-deserved attention. The 
branding exercise usually includes a name, a logo, and a website. I am 
therefore branding the above attack "push-into-zero," PUSHZERO for short, 
and proposing the following logo:  
 

                                                %%%%                                                                   

                            %%%%%%          %%%                                                                        

                          %%              %%%   %%%                                                 %%%%%               

                      %%%              %%%%      %%%                                               %%%%%                

                   %%%               %%%%%       %%%%                                             %%%%%                 

                %%%%               %%%%%         %%%%                                           %%%%%                   

               %%%                %%%%%         %%%%%                                          %%%%%                    

             %%%%          %    %%%%%% %%%%    %%%%%                                          %%%%%                     

            %%%%           %   %%%%%  %%%     %%%%                                           %%%%%                      

            %%%%           %  %%%%%    %%%%%%%                               %%             %%%%%    %%                 

           %%%%           %  %%%%%               %%%%%%      %%%%%       %%%    %%%       %%%%%  %%   %%%%              

            %%%%         %  %%%%%               %%%%%       %%%%%      %%%%     %%%%     %%%%% %     %%%%%              

             %%%%     %%   %%%%                %%%%%       %%%%%       %%%%%   %%%%     %%%%%%      %%%%%       %       

               %%%%%%    %%%%%                %%%%%       %%%%        % %%%%%          %%%%%%      %%%%%       %        

                        %%%%                 %%%%       %%%%%     %%%%   %%%%%        %%%%%      %%%%%%      %          

                       %%%                 %%%%%       %%%%%    %%%%%%     %%%%     %%%%%       %%%%%      %            

                     %%%                %% %%%%      % %%%%     %%%        %%%%   %%%%%%       %%%%%     %              

   %%%%%%%%%%%    %%               %%%%    %%%%   %%   %%%    %  %%       %%%% %  %%%%%        %%%%    %                

      %%%%%%        %%%%%%%%%%%%%%           %%%        %%%%        %%%%%%%%                     %%%                    

                                                                                                                        

                                                                                                                        

   @                                     @@@@@@@@   @@@@@@@   @@@@@@   @@@@@@   TM                                   

   @@@@                                     @@@@  @@@    @@@  @@@@   @@@@  @@@@                                         

   @@@@@@@@                                @@@@   @@@@@@@@@@  @@@    @@@    @@@                                         

   @@@@@@@@@@@@                           @@@      @@@@  @@   @@@    @@@   @@@@                                         

   @@@@@@@@@@@@@@@@                      @@@@@@@@    @@@@@@   @@@      @@@@@@                          @@@@@@@@@@@@@@@  

   @@@@@@@@@@@@@@@@@@@@@                                                                       @@@@@@@@@@@@@@@@@@@@@@@  

   @@@@@@@@@@@@@@@@@@@@@@@@@@@@                                                      @@@@@@@@              @@@@@@@@@@@  

   @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                                   @@@@@@                                        

         @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                                                   

                @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                                                              

                              @@@@@                                                                                     

*************************************************************************** 

 

 



 

 

 

   

 

27 (C) ConsenSys Diligence 2018 

CTF Easy-Mode 
~~~~~~~~~~~~~~ 

The traditional use case for symbolic execution is binary cracking. For our 
final example, we’ll use LASER to solve a CTF challenge. This isn't really 
practically applicable (how often does one need to crack smart contract 
DRM?) but it's a great way to understand the capabilities of symbolic 
execution and the Z3 Solver. 

The following Ethereum CTF challenge was developed by Korantin Auguste for 
the Toulouse Hacking Convention, and it is printed with permission of the 
author. The source code is available on GitHub [13]. 

 

--------------------------------------------------------------------------- 
Someone sent me the bytecode of a smart contract that lives in 
the Ethereum blockchain. She told me, the smart contract is very 
simple: it contains a win() method, that anybody can call. This 
method takes a string as a parameter. If the string is the flag, 
it will call "selfdestruct(msg.sender)" to kill itself and send 

all its money to the sender. Can you find the flag? 

Here is the bytecode of the contract (as deployed on the 
blockchain): 

 

606060405260043610610041576000357c0100000000000000000000000000000
000000000000000000000000000900463ffffffff16806350f753bd146100465
75b600080fd5b341561005157600080fd5b610073600480803568fffffffffff
fffffff1916906020019091905050610075565b005b600080602a91506000905
05b60178160ff1610156100cf576008810260ff168260ff16690100000000000
00000000268ffffffffffffffffff19169060020a02831892506003600783020
191508080600101915050610081565b7f737461636b206d616368696e6573206
172652066756e2e0000000000000000008368ffffffffffffffffff191614156
1010c5781806001019250505b7f0631194a95069d7e012c19795d0c5c4ccd4af
1984e45570000000000000000008368ffffffffffffffffff191614156101595
73373ffffffffffffffffffffffffffffffffffffffff16ff5b7f3f6c6972687
4796d20726f202c65746e65796f207972540000000000000000008368fffffff
fffffffffff191614156101965781806001019250505b5050505600a165627a7
a72305820afb3eeebc91132522b5075e270bcba664967c8ee60857ec0172ba60

eb4b264870029 

 

Here is the prototype of the win function: 

function win(bytes23 flag) 

 

I know you are good at doing Cyber™ smart contracts over the blockchain in 
ze machine-learning cloud. Now is your time. 

--------------------------------------------------------------------------- 



 

 

 

   

 

28 (C) ConsenSys Diligence 2018 

 
We start the analysis by creating a call graph and disassembling with 
Mythril. 
 
--------------------------------------------------------------------------- 
$ myth --max-depth 64 -g ./ctf.html "6060604052[...]8260f" 
$ myth -dc "6060604052[...]8260f" 
(...) 
269 PUSH32 
0x0631194a95069d7e012c19795d0c5c4ccd4af1984e4557000000000000000000 
302 DUP4 
303 PUSH9 0xffffffffffffffffff 
313 NOT 
314 AND 
315 EQ 
316 ISZERO 
317 PUSH2 0x0159 
320 JUMPI 
321 CALLER 
322 PUSH20 0xffffffffffffffffffffffffffffffffffffffff 
343 AND 
344 SUICIDE 
(...) 
--------------------------------------------------------------------------- 
 
In the assembly snippet, we find the SUICIDE instruction we wish to execute 
at PC address 344. At address 320 there's a conditional jump (JUMPI) that 
depends on the comparison of the input data with a hardcoded string. In the 
control flow graph (Figure 6), we can see an XOR decoder loop represented 
by two repeating basic blocks. These blocks are executed for a total of 23 
times (note that loops are always unrolled in the state space, so a 
separate node is created for each iteration). 
 
******************************** PRO TIP ********************************** 

For a more convenient way of reverse engineering smart contracts, look into 
these GUI-based smart contract disassemblers created by TrailOfBits: 
 

- Ethersplay [14] is a graphical EVM disassembler capable of method 
recovery, dynamic jump computation, source code matching, and binary 
diffing. mEthersplay takes EVM bytecode as input and produces a binary 
file that can be analyzed in Binary Ninja. 

 
- IDA-EVM [15] is a graphical EVM disassembler for IDA Pro that is 

capable of function recovery, dynamic jump computation, library 
signatures application, and binary diffing via BinDiff. 
 

Another very useful reverse engineering tool is Porisity [16], a decompiler 
for EVM bytecode that was first introduced at DEFCon 25 [17]. 

*************************************************************************** 



 

 

 

   

 

29 (C) ConsenSys Diligence 2018 

 

 
Figure 6: XOR decoder loop (the two blocks are repeated 23 times). 

 

Thanks to symbolic execution, we don't really need to worry about what 
exactly the decoder does or what the hardcoded string contains. All we need 
to do is search for a state in which the SUICIDE instruction is executed 
and ask Z3 for a solution to the path formula of that state. We don't even 
have to write any extra code because Mythril happens to search for 
unprotected SUICIDE instructions by default. Adding the --verbose-reports 
flag causes Mythril to report the solution. 

 

--------------------------------------------------------------------------- 
$ myth -m suicide --max-depth 64 --verbose-report -xc "606060(…)0029" 
 
==== Unchecked SUICIDE ==== 
Type: Warning 
Contract: MAIN 
Function name: _function_0x50f753bd 
PC address: 344 
The function _function_0x50f753bd executes the SUICIDE instruction. The 
remaining Ether is sent to the caller's address. 



 

 

 

   

 

30 (C) ConsenSys Diligence 2018 

 
It seems that this function can be called without restrictions. 
-------------------- 
 
DEBUGGING INFORMATION: 
 
SOLVER OUTPUT: 
calldata_MAIN_4: 
0x5448437b776f775f737563685f45564d5f736b696c6c7d000000000000000000 
calldata_MAIN_0: 
0x50f753bd00000000000000000000000000000000000000000000000000000000 
calldatasize_MAIN: 0x4 
callvalue: 0x0 
--------------------------------------------------------------------------- 
 

In the "debugging information" section, calldata_MAIN_4 shows the input 
needed to reach the SUICIDE instruction at PC address 344: These are the 
ASCII bytes of the flag we're looking for. 

--------------------------------------------------------------------------- 
>>> >>> 
bytes.fromhex("5448437b776f775f737563685f45564d5f736b696c6c7d").decode("UTF
8") 

'THC{wow_such_EVM_skill}' 

--------------------------------------------------------------------------- 
 

This was so easy that it almost feels like cheating! On the other hand, 
there aren't any rules in binary cracking, so let's not beat ourselves up 
too much about it. 

 

 

Multi-Transactional Concolic Analysis 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Up until now, we have analyzed abstract representations of single contract 
invocations. However, in some cases this is not sufficient for deciding 
whether a vulnerability is exploitable. For example, exploitability often 
depends on the concrete account state at the time of the attack (e.g., 
whether a particular variable has been initialized) and might require 
successive invocations of the contract (e.g., first underflow an integer 
variable, then address an array element). Nikolic  ́et al. refer to this 
class of issues as *trace vulnerabilities* [18]. 

*Concolic* execution incorporates both *conc*rete and symb*olic* variables. 
Mythril's analysis does use concrete values when they're set explicitly 
during execution, but all state variables are initially symbolic. A 
possible improvement would be to initialize the world state with concrete 



 

 

 

   

 

31 (C) ConsenSys Diligence 2018 

values either by running the constructor (for source code input) or by 
reading the referenced state variables from the blockchain. 

Starting from the initial state, we can then symbolically execute the 
bytecode and save the set of possible final states (i.e., changed world 
states after normal termination). The final states are input for the next 
round of symbolic execution. The result is a tree of global states (Figure 
7). 

 

 
Figure 7: Tree of world states in a multi-transactional concolic execution 

 
The lack of a multi-transactional model and concrete initial states in 
Mythril's analysis means that while the individual reasoning steps it 
performs are sound, a higher number of false positives is to be expected, 
and manual investigation is needed to verify the results. Manticore [19] 
and MAIAN [18] both support security analysis that considers multiple 
transaction. 

 

 

 

Taking Profits 
~~~~~~~~~~~~~~ 

A lot has changed since 1996: VHS cassettes have been replaced by Netflix, 
Pluto is no longer classified as a planet, and mobile phones have become so 
fragile that they can't even survive a 0.9 meter drop [20]. Unfortunately 
however, some important technologies, such as lightsabers and secure 
programming languages, have failed to materialize. 

Even Solidity, the most popular language in the Ethereum world, is not as 
solid as the name seems to indicate. As Matt Kindy put it [21]: 



 

 

 

   

 

32 (C) ConsenSys Diligence 2018 

"By trying to make smart contract writing as superficially accessible as 
possible, we've unwittingly assigned the critical task of designing once-
deployable, unfamiliar patterned financial software to full stack devs who 
are used to building things that have completely incomparable degrees of 
adverse effects from failure." 

Writing safe smart contracts requires knowledge about the subtleties of 
Solidity language constructs as well as a contextual understanding of how 
code executes on the blockchain. In the following section, we'll look into 
the causes of real-world vulnerabilities which, in some cases, were 
exploited for considerable profit (or caused significant losses).  

 

 

Accidentally Born Killer 
~~~~~~~~~~~~~~~~~~~~~~~~ 

Profit: -$350,000,000 USD 

  

                                               OOOOOOOO     
    O             OO    O       OO             O             
    OO           OO  O   O    O  OO           OO             
     O           OO   O   O   O  OO           O             
     O          OO           O    OO          O              
     OO         OO          O     OO         OO              
      O         OO        OO      OO         O               
      OO         OO     OO       OO         OO               
        O        OO              OO         O                
        OOOOOOOO  OO            OO  OOOOOOOO                 

 

 

On 6 November 2017, a new issue was created on the Parity GitHub repository 
[22]: 

 

--- anyone can kill your contract - #6995 --- 

devops199 opened this issue on Nov 6, 2017 

 

I accidentally killed it. 

 

Although the issue was dismissed at first, the killed contract turned out 
to be Parity's official multi-signature wallet library; all wallets 
depending on the library had become unusable. Even worse, users soon 
realized that all funds in the affected wallets were permanently frozen (to 
witness the gradual transition from disbelief to the realization that all 
funds were lost forever, read the discussion on GitHub [22]). 



 

 

 

   

 

33 (C) ConsenSys Diligence 2018 

Even though the circumstances of the "hack" were almost comical, the 
consequences were anything but. Estimates of the amount destroyed range 
from $150 to $300 million USD [23], including the ICO proceedings of the 
Polkadot project [24]. Understandably, some of the affected fund-holders 
have since been pushing for a funds recovery process, creating ongoing 
controversy [25]. 

What happened? The transaction history documenting the murder can be viewed 
on Etherscan [26]. With the first transaction, devops199 called the 
initWallet() function to initialize the owners array: 

 

--------------------------------------------------------------------------- 
Function: initWallet(address[] _owners, uint256 _required, uint256 
_daylimit) 
MethodID: 0xe46dcfeb 
[0]:0000000000000000000000000000000000000000000000000000000000000060 
[1]:0000000000000000000000000000000000000000000000000000000000000000 
[2]:0000000000000000000000000000000000000000000000000000000000000000 
[3]:0000000000000000000000000000000000000000000000000000000000000001 
[4]:000000000000000000000000ae7168deb525862f4fee37d987a971b385b96952 
--------------------------------------------------------------------------- 
 

Subsequently, devops199 (accidentally) sent another transaction, which 
executed the kill() function: 

 
--------------------------------------------------------------------------- 
Function: kill(address _to) 
MethodID: 0xcbf0b0c0 
[0]:000000000000000000000000ae7168deb525862f4fee37d987a971b385b96952 
--------------------------------------------------------------------------- 
 

You might rightly be wondering why this worked so easily. Surely there were 
checks in place to prevent random senders from calling the initWallet() 
function? As you can see in the source code, access to this function is 
indeed restricted with the only_uninitialized modifier: 

 

--------------------------------------------------------------------------- 

  // throw unless the contract is not yet initialized. 
  modifier only_uninitialized { if (m_numOwners > 0) throw; _; } 
 
  // constructor - just pass on the owner array to the multiowned and 
  // the limit to daylimit 
  function initWallet(address[] _owners, uint _required, uint _daylimit) 
only_uninitialized { 
    initDaylimit(_daylimit); 



 

 

 

   

 

34 (C) ConsenSys Diligence 2018 

    initMultiowned(_owners, _required); 
  } 
 
This modifier protected the contract from being initialized more than once. 
The only problem was that WalletLibrary had never been initialized! After 
all, the WalletLibrary contract account wasn't supposed to be used as a 
wallet; it was intended solely as a code repository for other contracts, 
which would re-use its code via the delegatecall() function. 

I'll revisit delegatecall() and its implications a bit later, but for now 
let's focus on the key problems in the devops199 incident.  

Why did this happen? The root cause is Parity's developers' having 
implemented their library in a sloppy way. Solidity offers a library 
construct [27], a special type of contract that is assumed to be stateless. 
Parity didn't use it. Instead, they deployed a slightly modified version of 
a regular wallet that had its own state variables. This caused multiple 
problems, including the fact that the library instance itself could be 
"turned into a wallet" (a second vulnerability is detailed later in this 
paper). 

 

Detection Strategy 
~~~~~~~~~~~~~~~~~~~ 

Mythril currently has a simplistic module for detecting unprotected and 
weakly protected SUICIDE instructions. The basic concept of the module is 
to check the constraints on states in which the SUICIDE instruction is 
executed. If there is an unconstrained path, an alert is created. If there 
are one or more constraints on storage positions, Mythril checks the state 
space for potential writes to those storage positions. If such writes 
exist, an alert is generated. 

The test successfully generates an alert when run with the Parity 
WalletLibrary: 

--------------------------------------------------------------------------- 
$ myth -xo markdown WalletLibrary.sol:WalletLibrary 
 
 
Unchecked SUICIDE 
==== Unchecked SUICIDE ==== 
Type: Warning 
Contract: WalletLibrary 
Function name: kill(address) 
PC address: 6074 
The function kill(address) executes the SUICIDE instruction. The Ether is 
sent to an address provided as a function argument. 
 
There is a check on storage index 21. This storage index can be written to 
by calling the function 'initMultiowned(address[],uint256)'. 
-------------------- 



 

 

 

   

 

35 (C) ConsenSys Diligence 2018 

In file: WalletLibrary.sol:226 
 
suicide(_to) 
Note that the analysis doesn't take into account the concrete state of the 
contract, i.e., whether the account has been initialized. This is 
impossible to determine given only the source code because initialization 
happens only after the contract has been deployed to the blockchain. To 
eliminate false positives, the concrete value of m_numOwners should be 
taken into account when analyzing a deployed contract instance. 

 

 

De-Constructed 
~~~~~~~~~~~~~~ 

*** Profit: A few bucks *** 

 

In March 2016, user Polly Stripe colorfully announced a new Ponzi smart 
contract on the BitcoinTalk forums [28]. 

 

??I?IIIIIIIIIIII$$$$$$$$$$$IIIII7IIIIIIIIIIIIIIIIIIII777777I 
IIIIIIIIIIIIIIII$$$$$$$$$.........IIIIIIIIIIIIIIIIIIIIIIIIII 
IIIIIIIIIIIIIIII$$$$$$,   .. .      ,IIIIIIIIIIIIIIIIIIIIIII 
IIIIIIIIIIIIIIII$$$$$... ..... ... . .IIIIIIIIIIIIIIIIIIIIII 
IIIIIIIIIIIIIIII$$$$..               ..IIIIIIIIIIIIIIIIIIIII 
IIIIIIIIIIIIIIII$$$. $$$....$7I....III..IIIIIIIIIIIIIIIIIIII 
IIIIIIIIIIIIIIIIII7 .$$$. ..$7I.  .III .$$$$$$I7IIIIIIIIIIII 
IIIIIIIIIIIIIIIIII+..II$=$$+$7IIII.I7$..?$$$$$$$$$IIIIIIIIII 
IIIIIIIIIIIIIIIIIII..III~I7+$7III$.$$$..$$$$$$$$$$$$$IIIIIII 
IIIIIIIIIIIIIIIIIII.....~II=...$$$ .....$$$$$$$$$$$$$$$$7III 
$$$777IIIIIIIIIIIIII....~II?...77$.....$$$$$$$$$$$$$$$ZZZ$Z$ 
$$Z777777IIIIIIIIIII7.................Z$$$$$$$$$$$$ZZZZZZ$$$ 
$$Z777777777IIIIIIIIZZ.. ......... ..$7$$$$$$$$ZZZZZZZZZZ$$$ 
$$$7777777777777IZZZZZZZ?.........+7777777$$ZZZZZZZZZZZZZ$$$ 
$$$7777777777777ZZZZZZZZZZZZZZ7777777777777ZZZZZZZZZZZZZZ$$$ 
$$Z7777777777777ZZZZZZZZZZZZZZ7777777777777ZZZZZZZZZZZZZZ$$$ 

 

Hello! My name is Rubixi! 

I'm a new & verified pyramid smart contract running on the Ethereum 
blockchain. 

When you send me 1 ether, I will multiply the amount and send it back to 
your address when the balance is sufficient. 

 

The intriguing premise: By paying at least 1 Ether into a literal pyramid 
scheme, users would gain a chance to multiply their money, assuming enough 
additional users subsequently joined the lower end of the pyramid. 
Naturally, investors flocked to take advantage of this amazing opportunity. 



 

 

 

   

 

36 (C) ConsenSys Diligence 2018 

From every transaction, the contract would collect a small fee of up to ten 
percent, which could be withdrawn by its creator. This was only fair, given 
the considerable effort that had gone into writing the code. Unfortunately 
for Polly Stripe, it turned out that *anyone* could take ownership of the 
contract and withdraw the fees.  

Here are the relevant parts of the Rubixi source code [29]: 

--------------------------------------------------------------------------- 
contract Rubixi { 
 
        //Declare variables for storage critical to contract 
 
        uint private balance = 0; 
        uint private collectedFees = 0; 
        uint private feePercent = 10; 
        uint private pyramidMultiplier = 300; 
        uint private payoutOrder = 0; 
 
        address private creator; 
 
        //Sets creator 
        function DynamicPyramid() { 
                creator = msg.sender; 
        } 
 
        modifier onlyowner { 
                if (msg.sender == creator) _ 
        } 
 
    /*** code omitted for brevity ***/ 
 
        //Fee functions for creator 
        function collectAllFees() onlyowner { 
                if (collectedFees == 0) throw; 
 
                creator.send(collectedFees); 
 
 
        function collectFeesInEther(uint _amt) onlyowner { 
                _amt *= 1 ether; 
                if (_amt > collectedFees) collectAllFees(); 
 
                if (collectedFees == 0) throw; 
 
                creator.send(_amt); 
                collectedFees -= _amt; 
        } 
 
        function collectPercentOfFees(uint _pcent) onlyowner { 



 

 

 

   

 

37 (C) ConsenSys Diligence 2018 

                if (collectedFees == 0 || _pcent > 100) throw; 
 
                uint feesToCollect = collectedFees / 100 * _pcent; 
                creator.send(feesToCollect); 
                collectedFees -= feesToCollect; 
        } 
 
    /*** code omitted for brevity ***/ 
} 
--------------------------------------------------------------------------- 
 

In Solidity, one can define a constructor function that is executed once 
when the contract is created [30]. This is useful for initializing state 
variables during contract creation. The constructor code is not included in 
the run time code deployed on the blockchain. For a function to be 
recognized as the constructor, the function name must be identical to the 
contract name. 

Polly Stripe had created Rubixi by copying and pasting code from another 
contract, DynamicPyramid, but she had failed to rename the constructor 
function accordingly. Therefore, instead of being run at contract creation 
time, the initialization code had ended up in the run time bytecode. This 
allowed random users to crown themselves owner (you can still "take over" 
the contract today). 

 

Detection Strategy 
~~~~~~~~~~~~~~~~~~~ 

Mythril's detection module in ether_send.py works similarly to the SUICIDE 
detection module. The idea is to check any function that sends Ether to a 
user-supplied address. The following is the algorithm: 

For every state in which Ipc = CALL: 

1. Determine whether the call value is greater than zero. 
2. Check the target stack address. 
3. For every storage constraint on the node containing the CALL, search 

for SSTORE instructions that may allow writing to the storage slot. 
4. Attempt to satisfy the state's path formula. 
5. Report a potential issue if the address is user-supplied, the path 

formula can be satisfied, and either there are no storage constraints 
or there are potential paths to writing the respective storage 
locations. 

 

Running the analysis on the Rubixi source code generates the following 
result: 

--------------------------------------------------------------------------- 
 
$ myth -x rubixi.sol  



 

 

 

   

 

38 (C) ConsenSys Diligence 2018 

 
==== Ether send ==== 
Type: Warning 
Contract: Rubixi 
Function name: collectAllFees() 
PC address: 1940 
In the function 'collectAllFees()' a non-zero amount of Ether is sent to an 
address taken from storage slot 5There is a check on storage index 5. This 
storage slot can be written to by calling the function 'DynamicPyramid()'. 
 
There is a check on storage index 9. This storage slot can be written to by 
calling the function DynamicPyramid(). 
There is a check on storage index 10. This storage slot can be written to 
by calling the function fallback(). 
-------------------- 
In file: rubixi.sol:75 
 
creator.send(collectedFees) 
 
-------------------- 
 
==== Ether send ==== 
Type: Warning 
Contract: Rubixi 
Function name: collectPercentOf dFees(uint256) 
PC address: 1599 
In the function 'collectPercentOfFees(uint256)' a non-zero amount of Ether 
is sent to an address taken from storage slot. There is a check on storage 
index 5. This storage slot can be written to by calling the function 
'DynamicPyramid()'. 
 
There is a check on storage index 6. This storage slot can be written to by 
calling the function 'DynamicPyramid()'. 
There is a check on storage index 7. This storage slot can be written to by 
calling the function 'fallback'. 
-------------------- 
In file: rubixi.sol:93 
 
creator.send(feesToCollect) 
 
--------------------------------------------------------------------------- 
 

It's a pretty simple check, but it's sufficient for detecting trivial flaws 
and discovering interesting contracts on-chain (although it isn't false-
positive-proof). 

 

  



 

 

 

   

 

39 (C) ConsenSys Diligence 2018 

******************************* FUN FACT ********************************** 

Browsing Etherscan is a fun pastime. There are still 4.00326 Ether left in 
the Rubixi contract, and the transaction history [31] shows many failed 
attempts to pull them out. 

Is there still profit available? The source code shows that it is possible 
to withdraw amounts less than or equal to the value in the collectedFees 
state variable. This is a private variable, but in Ethereum there are no 
*truly* private variables. Knowing that the variable is in storage position 
one, we can use Mythril to extract the contents. 

  

$ myth -ia 0xe82719202e5965Cf5D9B6673B7503a3b92DE20be --storage 1 
1: 0x0000000000000000000000000000000000000000000000000000000000000000 

 

The value of collectedFees is zero, so withdrawing the remaining Ether is 
impossible. The remaining four Ether will be paid out to players once the 
game resumes and the total balance reaches approximately 45 Ether (this 
will never happen, so the funds are stuck forever). 

*************************************************************************** 

************************* NMAP FOR THE BLOCKCHAIN ************************* 

What fun is detecting vulnerabilities if you can't detect them in real 
smart contracts deployed on the blockchain? Mythril can retrieve contract 
bytecode from the Ethereum network. The easiest way to do this is using the 
built-in INFURA support (this works out-of-the-box without setting up your 
own node). To analyze the original Rubixi smart contract instance on the 
mainnet, run: 
 
 
$ myth -xia 0xe82719202e5965Cf5D9B6673B7503a3b92DE20be 
 

There are built-in IPC and RPC presets for various setups. You can also 
build a local contract database (or query the leveldb of a local go-
ethereum installation) to search for interesting functions and opcode 
patterns. Setting up a local node is recommended to use this feature, as 
downloading large amounts of contract data from INFURA would be very slow. 
See the Mythril README [2] for more details.  

*************************************************************************** 

 

 

 

 

 



 

 

 

   

 

40 (C) ConsenSys Diligence 2018 

DAOsaster 
~~~~~~~~~ 

*** Profit: It's complicated *** 

 

On 30 April 2016, the DAO was launched on Ethereum Block 1428757. It was an 
exciting concept: a decentralized autonomous organization governed by a 
smart contract on the Ethereum blockchain and managed according to the 
votes of its investors. The DAO token sale was a resounding success, 
raising fourteen percent of the Ether in circulation. At the time, the 
funds raised were equivalent to $34 million USD [32]. It was the most 
successful crowdfunding event in history. 

The actual operation, however, was less successful, unless you consider 
being hacked and drained of all funds a success. In June 2016, an attacker 
withdrew 3.6 million Ether from the DAO's smart contracts, the world's 
first large smart contract hack. Eventually, parts of the Ethereum 
community decided to hard-fork the Ethereum blockchain to recover the lost 
funds. However, not everyone was happy with this decision, and the original 
chain lived on as Ethereum Classic [33] [34]. 

The exploited vulnerability was a re-entrancy bug (called "recursive send 
bug" at the time) in the splitDAO() function. The relevant parts of the 
source code are shown below. 

 

--------------------------------------------------------------------------- 
function splitDAO( 
    uint _proposalID, 
    address _newCurator 
) noEther onlyTokenholders returns (bool _success) { 
 
    /*** Some checks & create new DAO (elaborate computations removed) ***/ 
 
    // Move ether and assign new Tokens 
    uint fundsToBeMoved = 
        (balances[msg.sender] * p.splitData[0].splitBalance) / 
        p.splitData[0].totalSupply; 
    if 
(p.splitData[0].newDAO.createTokenProxy.value(fundsToBeMoved)(msg.sender) 
== false) 
    throw; 
 
    /*** More elaborate computations removed ***/ 
     
    // Burn DAO Tokens 
    Transfer(msg.sender, 0, balances[msg.sender]); 
    withdrawRewardFor(msg.sender); // be nice, and get his rewards 



 

 

 

   

 

41 (C) ConsenSys Diligence 2018 

    totalSupply -= balances[msg.sender]; 
    balances[msg.sender] = 0; 
    paidOut[msg.sender] = 0; 
    return true; 
} 
--------------------------------------------------------------------------- 
 

In summary, the splitDAO() function creates a "child DAO" contract and 
transfers tokens to the new DAO. The number of transferred tokens is 
calculated according to the user's balance. Near the end of the function, a 
reward is sent to the caller through withdrawRewardFor(), which in turn 
calls the payOut() function. 

 
--------------------------------------------------------------------------- 
function payOut(address _recipient, uint _amount) returns (bool) { 
    if (msg.sender != owner || msg.value > 0 || (payOwnerOnly && _recipient 
!= owner)) 
        throw; 
    if (_recipient.call.value(_amount)()) { 
        PayOut(_recipient, _amount); 
        return true; 
    } else { 
        return false; 
    } 
} 
--------------------------------------------------------------------------- 
 

Note the use of the low-level call statement in payOut(): 

--------------------------------------------------------------------------- 
_recipient.call.value(_amount)()) 

--------------------------------------------------------------------------- 
 

The first issue here is that _recipient is a user-supplied address and 
could point to a malicious smart contract. Because there's no call data 
sent with the message call, the code in the target contract's fallback 
function will be executed.  

The DAO attacker set up a malicious contract with a fallback function that 
called back into splitDAO(), starting a recursive loop. Note that the state 
variables, including the caller's balance, are updated only *after* the re-
entrant call. This means that even though tokens are withdrawn at every 
iteration of the loop, the attacker's balance is never set to zero. 

The actual hack was a bit more involved: The attacker exploited multiple 
flaws to amplify the attack's effectiveness. Phil Daian has examined the 
attack in detail in his two-part write-up [35] [36]. 



 

 

 

   

 

42 (C) ConsenSys Diligence 2018 

Detection Strategy 
~~~~~~~~~~~~~~~~~~~ 

The code of the original DAO [37] is pretty convoluted, so I'll be working 
with a simple example. The following code is from level 10 of Zeppelin's 
Ethernaut challenges [38]. 

--------------------------------------------------------------------------- 
pragma solidity ^0.4.18; 
 
/* 
This is level 10 of the Zeppelin Ethernaut challenge. 
The original code is available at: 
https://ethernaut.zeppelin.solutions/level/0xf70706db003e94cfe4b5e27ffd891d
5c81b39488 
*/ 
 
contract Reentrance { 
 
  mapping(address => uint) public balances; 
 
  function donate(address _to) public payable { 
    balances[_to] += msg.value; 
  } 
 
  function balanceOf(address _who) public constant returns (uint balance) { 
    return balances[_who]; 
  } 
 
  function withdraw(uint _amount) public { 
    if(balances[msg.sender] >= _amount) { 
      if(msg.sender.call.value(_amount)()) { 
        _amount; 
      } 
      balances[msg.sender] -= _amount; 
    } 
  } 
 
  function() payable {} 
} 
--------------------------------------------------------------------------- 
 

The following is Mythril's strategy for detecting potential re-entrancy 
bugs: 
 
 



 

 

 

   

 

43 (C) ConsenSys Diligence 2018 

1. Detect all message calls to user-supplied addresses that also forward 
gas. Note that Solidity's send() and transfer() functions set call gas 
to only 2,300; this setting prevents re-entrancy attacks. 

2. If an external call to an untrusted address is detected, analyze the 
control flow graph for possible state changes that occur after the 
call returns. Generate a warning if a state change is detected.  
 

 
Running Mythril on the example contract produces the following output:  
 
--------------------------------------------------------------------------- 

$ myth -mexternal_calls -x reentrance.sol  
==== Message call to external contract ==== 
Type: Warning 
Contract: Reentrance 
Function name: withdraw(uint256) 
PC address: 552 
This contract executes a message call to the address of the transaction 
sender. Generally, it is not recommended to call user-supplied adresses 
using Solidity's call() construct. Note that attackers might leverage 
reentrancy attacks to exploit race conditions or manipulate this contract's 
state. 
-------------------- 
In file: reentrance.sol:23 
 
msg.sender.call.value(_amount)() 
 
-------------------- 
 
==== State change after external call ==== 
Type: Warning 
Contract: Reentrance 
Function name: withdraw(uint256) 
PC address: 632 
The contract account state is changed after an external call. Consider that 
the called contract could re-enter the function before this state change 
takes place. This can lead to business logic vulnerabilities. 
-------------------- 
In file: reentrance.sol:26 
 
balances[msg.sender] -= _amount 
--------------------------------------------------------------------------- 

 
Running Mythril with the address of the DAO does detect eight instances of 
state changes after external calls. However, Mythril has trouble resolving 
the function names (I haven't had the time to investigate the results in 
detail). 
 
--------------------------------------------------------------------------- 



 

 

 

   

 

44 (C) ConsenSys Diligence 2018 

$ myth --max-depth 128 -mexternal_calls -xila 
0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413 
==== Message call to external contract ==== 
Type: Informational 
Contract: 0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413 
Function name: fallback 
PC address: 2761 
This contract executes a message call to another contract. Make sure that 
the called contract is trusted and does not execute user-supplied code. 
-------------------- 
 
==== State change after external call ==== 
Type: Warning 
Contract: 0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413 
Function name: fallback 
PC address: 75 
The contract account state is changed after an external call. Consider that 
the called contract could re-enter the function before this state change 
takes place. This can lead to business logic vulnerabilities. 
-------------------- 
 
==== State change after external call ==== 
Type: Warning 
Contract: 0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413 
Function name: fallback 
PC address: 2798 
The contract account state is changed after an external call. Consider that 
the called contract could re-enter the function before this state change 
takes place. This can lead to business logic vulnerabilities. 
-------------------- 
 
(...) 
--------------------------------------------------------------------------- 

 

 

Delegation to Hell 
~~~~~~~~~~~~~~~~~~ 

*** Profit: 153,037 ETH *** 

 

One fateful evening in November 2017, an individual known only by the 
codename "Mitch Brenner" went on seemingly normal Tinder date [39]. The 
evening started well but soon turned into a creep fest. Like most of us 
would, Mitch decided to return home and spend the rest of the night 
browsing transactions on Etherscan. Randomly skimming through the code of 
Parity's multisig wallet, he noticed something weird. In his own words: 



 

 

 

   

 

45 (C) ConsenSys Diligence 2018 

"I remember finding it funny how Gav/Nicolas wrote that assembly piece 
there to call an internal method (initWallet) in the wallet library. 
Solidity is a shit language, so I wasn't all that surprised. But, I mean, 
really?" 

Mitch whipped up a test setup in his private net and soon confirmed that 
"whomever has money in such wallet is possibly ducked." Naturally, the next 
question that came to his mind was how to exploit the flaw to steal as much 
Ether as humanly possible. By searching a memory-cached copy of the 
blockchain for instances of WalletLibrary and its dependents, he found a 
nice list of wallets and balances. Ultimately, he managed to empty three 
large wallets for a total of 153,037 ETH (see Mitch's original Medium post 
for the complete story [39]). 

Let's look at the details of the attack. Remember the accidental suicide 
exploit? The function exploited by Mitch was the same function that later 
led to WalletLibrary's untimely demise. However, in the version Mitch 
attacked, the initWallet() function didn't yet have the only_uninitialized 
modifier [40]. 
 
--------------------------------------------------------------------------- 
// constructor - just pass on the owner array to the multiowned and 
// the limit to daylimit 
function initWallet(address[] _owners, uint _required, uint _daylimit) { 
  initMultiowned(_owners, _required); 
  initDaylimit(_daylimit);  

--------------------------------------------------------------------------- 
 
Mitch did not target Walletlibrary directly. Instead, he made use of the 
fact that the initWallet() function was exposed in wallets that re-used the 
library's code through a delegatecall proxy. In the delegatecall proxy 
pattern, a contract forwards the received call data in its fallback 
function.  
 
--------------------------------------------------------------------------- 
// gets called when no other function matches 
function() payable { 
  // just being sent some cash? 
  if (msg.value > 0) 
    Deposit(msg.sender, msg.value); 
  else if (msg.data.length > 0) 
    _walletLibrary.delegatecall(msg.data); 
} 
--------------------------------------------------------------------------- 
 

In principle, the root cause of the flaw was weakly protected 
functionality, as in the Rubixi and accidental suicide exploits. In this 



 

 

 

   

 

46 (C) ConsenSys Diligence 2018 

case, however, the flaw involved interaction between multiple contracts. We 
therefore need to include those interactions in our analysis. 

 

Modeling Message Calls 
~~~~~~~~~~~~~~~~~~~~~~ 

Call semantics are one of the most dazzling aspects of the EVM. 

The first important thing is that *all* interactions between contract 
accounts are implemented as message calls: Sending Ether with the send(), 
transfer(), and call().value() Solidity functions compiles to a CALL 
opcode, just like explicitly calling a function in another contract does. 
Conversely, internal function calls do *not* compile into CALL instructions 
but use the JMP instruction instead. 

In the context of the EVM, the word "call" thus refers to a message to and 
from a contract, not necessarily to a function call. 

Depending on the context, there are many ways that message calls can be 
invoked. The methods differ by the following details: 

 

- the opcode used (CALL, CALLCODE, DELEGATECALL, STATICCALL, etc.) 
- whether call data is passed along 
- the call value (amount of Ether transferred) 
- the amount of gas sent with the call 

   

Message calls always return a Boolean value: "True" if execution of the 
call terminated normally and "False" if execution terminated with an 
exception. For some Solidity constructs, the compiler inserts code to check 
the return value and propagate exceptions to the calling contract, but in 
low-level calls, execution continues even if the call fails. 

It's fair to say that a developer from a JavaScript background probably 
won't expect this kind of complexity from something as mundane as a 
function call. Indeed, misunderstandings of message call semantics are a 
main source of vulnerabilities. For more information on using calls 
securely, I recommend reading the External Calls section of ConsenSys' 
Smart Contract Best Practices [41]. 

LASER can simulate different types of message calls with symbolic or 
concrete call data. To understand the difference between a regular call and 
a delegatecall, let's have a look at how these two call variants are 
represented in the state space. 

Explicit external function calls translate into CALL instructions. Here is 
an example: 

 

 

 



 

 

 

   

 

47 (C) ConsenSys Diligence 2018 

--------------------------------------------------------------------------- 
contract Callee { 
    function theFunction() payable { 
    } 
} 
 
contract Caller { 
 
    address public callee_address; 
 
    function Caller(address addr) { 
        callee_address = addr; 
    } 
 
    function whatever() public { 
        Callee(callee_address).theFunction(); 
    } 
} 
--------------------------------------------------------------------------- 
 

 

Figure 8: Control flow graph for a regular inter-contract message call 

 

Note the CALL instruction executed at address 325, after which execution 
resumes at the beginning of the callee contract's bytecode (Figure 8). 
Because the call data contains the concrete function signature hash for 
theFunction(), the state space in the called contract is restricted to 
states of that function. After the callee terminates, execution resumes 
with the instruction after the CALL.  

With the regular CALL instruction, the execution context switches to the 
callee account, and any state modifications (e.g., storage) affect the 
callee. 

Let's now compare this with the abstract representation of a delegatecall 
proxy as it is found in the Parity WalletLibrary. The following contract 
implements a basic delegatecall proxy (its control flow graph is shown in 
Figure 9). 

 

 



 

 

 

   

 

48 (C) ConsenSys Diligence 2018 

--------------------------------------------------------------------------- 
contract Delegate { 
 
  function func() payable { 
  } 
} 
 
contract Delegation { 
 
  address delegate; 
 
  function Delegation(address _delegateAddress) { 
    delegate = Delegate(_delegateAddress); 
  } 
 
  function() payable { 
    delegate.delegatecall(msg.data); 
  } 
} 
--------------------------------------------------------------------------- 
 
In this case, the call value is symbolic, so execution of the delegate can 
take arbitrary paths. This results in a more complicated state space. Note 
that Mythril currently "summarizes" function returns from the delegate so 
that each return draws an edge to the same node in the caller (the 
rightmost node in Figure 9). I originally implemented it that way to 
enhance performance, but it causes inaccuracies, so I'll need to revise it 
eventually. 

 

******************************** PRO TIP ********************************** 

Mythril has a built-in dynamic loader that will automatically load 
dependencies from the blockchain when a CALL or DELEGATECALL opcode is 
encountered. The dynamic loader is activated with the -l flag, for example 

 

$ myth --ganache -lxa 0x471c92f915ae766c4964eedc300e5b8ff41e443c 

*************************************************************************** 

 

In a delegatecall, msg.sender and msg.value retain their original values 
and the code at the target address is executed in the context of the 
*calling* contract's account. This means that storage operations in the 
delegate's code access the account storage of the calling account. 

There is no semantic link between state variables in the caller. If the 
delegate accesses a state variable's storage position 0, the delegate will 
access whichever state variable happens to be mapped to the same position 
in the caller account. 



 

 

 

   

 

49 (C) ConsenSys Diligence 2018 

 

 

Figure 9: Control flow graph for a delegatecall proxy 

 

Let's revisit the Parity wallet scenario. How did the Parity guys make sure 
that WalletLibrary's code had access to the Wallet's state variables? The 
solution was to include the same state variables (in the same order) in the 
source code of both the Wallet and the WalletLibrary: 

--------------------------------------------------------------------------- 

  // FIELDS 
  address constant _walletLibrary = 
0xcafecafecafecafecafecafecafecafecafecafe; 
 
  // the number of owners that must confirm the same operation before it is 
run. 
  uint public m_required; 
  // pointer used to find a free slot in m_owners 
  uint public m_numOwners; 
 
  uint public m_dailyLimit; 
  uint public m_spentToday; 
  uint public m_lastDay; 
 
  // list of owners 
  uint[256] m_owners; 



 

 

 

   

 

50 (C) ConsenSys Diligence 2018 

That way, the variable m_owners map to the dynamically sized array at 
storage position 7 in both contracts. If this seems like a rather hackish 
thing to do, that's because it is. It would have been better to implement a 
stateless library contract, as described in the Solidity documentation 
[27]. 

 

Detection Strategy 
~~~~~~~~~~~~~~~~~~~ 

Once we have added the capability to execute message calls, the same 
"unprotected Ether send" algorithm that detects the Rubixi issue should 
work for this Parity issue. When Mythril encounters the delegatecall proxy, 
it retrieves WalletLibrary from the blockchain and creates a state space 
for both contracts. 

Here is the analysis' result for the Parity wallet instance deployed on 
Ganache: 

 

--------------------------------------------------------------------------- 

myth --ganache -xla 0x8adc0ea8e50ca7fe84ba0a39b74442ff9a2d4afd 
 
 
==== CALLDATA forwarded with delegatecall() ==== 
Type: Informational 
Contract: 0x8adc0ea8e50ca7fe84ba0a39b74442ff9a2d4afd 
Function name: fallback 
PC address: 367 
 
This contract forwards its calldata via delegatecall in its fallback 
function. This means that any function in the called contract can be 
executed. Note that the callee contract will have access to the storage of 
the calling contract. 
-------------------- 
==== Ether send ==== 
Type: Warning 
Contract: 0x8adc0ea8e50ca7fe84ba0a39b74442ff9a2d4afd 
Function name: execute(address,uint256,bytes) 
PC address: 4165 
 
In the function 'execute(address,uint256,bytes)' a non-zero amount of Ether 
is sent to an address taken from function arguments. 
 
There is a check on storage index 26. This storage slot can be written to 
by calling the function 'initMultiowned(address[],uint256)'. There is a 
check on storage index 29. This storage slot can be written to by calling 
the function 'initMultiowned(address[],uint256)'. 
 
 



 

 

 

   

 

51 (C) ConsenSys Diligence 2018 

Summary and Outlook 
~~~~~~~~~~~~~~~~~~~~ 

If you've been in software security for a while, you know that it's a 
hopeless field: Twenty-two years after the original "Smashing the Stack," 
we still haven't seen a piece of bug-free software. Where there's 
complexity and margin for human error, errors will be made. 

When it comes to Ethereum smart contracts, I believe that we *do* have a 
shot at getting things right. Hoping that formally verifiable languages 
will replace Solidity anytime soon might be overly optimistic, but even 
smart contracts written in Solidity can be designed to be simple and 
verifiable. It is possible to create a world of secure smart contracts that 
users can trust.  

Verified libraries and code patterns (such as those developed by 
OpenZeppelin [42]) are a great step in this direction. Security best 
practices [41] need to be translated into tools that support developers 
from the earliest stages of development onwards. We must also establish 
certification infrastructure: Every contract deployed on the mainnet should 
be required to show proof of secure SDLC and audit. 

Security research is interesting and fun, but it's not very beneficial if 
the results don't trickle down into the real world. To make an impact, we 
need to create tools that are useful to developers and end users. 
Therefore, my next focus will be making Mythril more accessible via IDE 
plugins that work out of the box, continuous integration tools, 
comprehensive reporting, and a lower false positive rate. For ideas, 
feedback, or questions, create an issue in the Mythril GitHub repo [2] or 
join the Mythril Gitter chat [5]. 

 

 

 

References 
~~~~~~~~~~~ 

 

[1]  Aleph One, "Smashing the Stack for Fun and Profit (Phrack #49)," 1996. 
[Online]. Available: http://phrack.org/issues/49/14.html 

[2]  ConsenSys, "Mythril," [Online]. Available: 
https://github.com/ConsenSys/mythril 

[3]  B. Mueller, "LASER-Ethereum," [Online]. Available: 
https://github.com/b-mueller/laser-ethereum 

[4]  B. Mueller, "Smashing Smart Contracts Supplemental Materials," 
[Online]. Available: https://github.com/b-mueller/smashing-smart-
contracts 



 

 

 

   

 

52 (C) ConsenSys Diligence 2018 

[5]  "Mythril Gitter," [Online]. Available: 
https://gitter.im/ConsenSys/mythril 

[6]  G. Wood, "Ethereum Yellow Paper, EIP-150 Revision," [Online]. 
Available: http://gavwood.com/paper.pdf 

[7]  M. Dameron, "Ethereum Beige Paper," [Online]. Available: 
https://github.com/chronaeon/beigepaper 

[8]  V. Buterin, "Ethereum White Paper," [Online]. Available: 
https://github.com/ethereum/wiki/wiki/White-Paper 

[9]  "Underhanded Solidity Coding Contest," [Online]. Available: 
http://u.solidity.cc 

[10
]  

"Submissions to the USCC 2017 on Github," [Online]. Available: 
https://github.com/Arachnid/uscc/tree/master/submissions-2017/ 

[11
]  

D. Hoyte, "MerdeToken," [Online]. Available: 
https://github.com/Arachnid/uscc/tree/master/submissions-2017/doughoyte 

[12
]  

H. Yeh, "Diving Into The Ethereum VM Part 3 — The Hidden Costs of 
Arrays," [Online]. Available: https://medium.com/@hayeah/diving-into-
the-ethereum-vm-the-hidden-costs-of-arrays-28e119f04a9b 

[13
]  

K. Auguste, "THC CTF 2018 - Reverse of an ethereum smart contract on 
Github," [Online]. Available: 
https://github.com/ToulouseHackingConvention/reverse-palkeo-ethereum 

[14
]  

TrailOfBits, "Ethersplay," [Online]. Available: 
https://github.com/trailofbits/ethersplay 

[15
]  

TrailOfBits, "IDA-EVM," [Online]. Available: 
https://github.com/trailofbits/ida-evm 

[16
]  

Comae Technologies, "Porosity: Decompiler and Security Analysis tool 
for Blockchain-based Ethereum Smart-Contracts," [Online]. Available: 
https://github.com/comaeio/porosity 

[17
]  

M. Suiche, "Porosity: A Decompiler For Blockchain-Based Smart Contracts 
Bytecode," 7 July 2017. [Online]. Available: 
https://www.comae.io/reports/dc25-msuiche-Porosity-Decompiling-
Ethereum-Smart-Contracts-wp.pdf 

[18
]  

I. Nikolic ,́ A. Kolluri, I. Sergey, P. Saxena and A. Hobor, "Finding 
The Greedy, Prodigal, and Suicidal Contracts at Scale," 14 March 2018. 
[Online]. Available: https://arxiv.org/pdf/1802.06038.pdf 

[19
]  

TrailofBits, "Manticore Symbolic Analysis Tool," [Online]. Available: 
https://github.com/trailofbits/manticore 

[20
]  

V. Orellana, "The iPhone X cracked on the first drop," [Online]. 
Available: https://www.cnet.com/news/apple-iphone-x-drop-test/ 



 

 

 

   

 

53 (C) ConsenSys Diligence 2018 

[21
]  

M. Kindy, "For god’s sake, can’t we fix Solidity?," [Online]. 
Available: https://medium.com/topl-blog/for-gods-sake-cant-we-fix-
solidity-9bc7184e2683 

[22
]  

devops199, "Anyone can kill your contract," 6 November 2017. [Online]. 
Available: https://github.com/paritytech/parity/issues/6995 

[23
]  

"ICO Funds Among Millions Frozen In Parity Wallets," Coindesk, 7 
November 2017. [Online]. Available: https://www.coindesk.com/ico-funds-
among-millions-frozen-parity-wallets/ 

[24
]  

"Web3 Multi-Sig Wallet Update on Medium," [Online]. Available: 
https://medium.com/web3foundation/web-3-multi-sig-wallet-update-
245d30df0fb3 

[25
]  

D. Phifer, "EIP 867 Ethereum Recovery Proposals (ERPs)," 2 February 
2018. [Online]. Available: https://github.com/ethereum/EIPs/pull/867 

[26
]  

"Parity WalletLibrary on Etherscan," [Online]. Available: 
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4 

[27
]  

"Solidity Documentation: Libraries," [Online]. Available: 
http://solidity.readthedocs.io/en/v0.4.21/contracts.html#libraries 

[28
]  

"Rubixi on the Bitcointalk Forums," [Online]. Available: 
https://bitcointalk.org/index.php?topic=1400536.0  

[29
]  

"Rubixi smart contract on Etherscan," [Online]. Available: 
https://etherscan.io/address/0xe82719202e5965Cf5D9B6673B7503a3b92DE20be 

[30
]  

"Solidity Documentation: Creating Contracts," [Online]. Available: 
http://solidity.readthedocs.io/en/develop/contracts.html#creating-
contracts 

[31
]  

"Rubixi Transaction History on Etherscan," [Online]. Available: 
https://etherscan.io/address/0xe82719202e5965Cf5D9B6673B7503a3b92DE20be
#transactions 

[32
]  

"Wikipedia Article: The DAO," [Online]. Available: 
https://en.wikipedia.org/wiki/The_DAO_(organization) 

[33
]  

D. Siegel, "Understanding the DAO Hack," 25 June 2016. [Online]. 
Available: https://www.coindesk.com/understanding-dao-hack-journalists/ 

[34
]  

A. Madeira, "The DAO, The Hack, The Soft Fork and The Hard Fork," 20 
March 2018. [Online]. Available: 
https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-
fork-and-the-hard-fork/ 

[35
]  

P. Daian, "Analysis of the DAO exploit," 18 June 2016. [Online]. 
Available: http://hackingdistributed.com/2016/06/18/analysis-of-the-
dao-exploit/ 



 

 

 

   

 

54 (C) ConsenSys Diligence 2018 

[36
]  

P. Daian, "Chasing the DAO Attacker’s Wake," 19 June 2016. [Online]. 
Available: https://pdaian.com/blog/chasing-the-dao-attackers-wake/ 

[37
]  

"TheDAO (Etherscan)," [Online]. Available: 
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413 

[38
]  

Z. Solutions, "The Ethernaut Level 10," [Online]. Available: 
https://ethernaut.zeppelin.solutions/level/0xf70706db003e94cfe4b5e27ffd
891d5c81b39488 

[39
]  

M. Brenner, "How I Snatched 153,037 ETH After A Bad Tinder Date on 
Medium," 13 September 2017. [Online]. Available: 
https://medium.com/@rtaylor30/how-i-snatched-your-153-037-eth-after-a-
bad-tinder-date-d1d84422a50b 

[40
]  

"Parity Walletlibrary on Etherscan," [Online]. Available: 
https://etherscan.io/address/0x4f2875f631f4fc66b8e051defba0c9f9106d7d5a
#code 

[41
]  

ConsenSys, "Smart Contract Best Practices," [Online]. Available: 
https://consensys.github.io/smart-contract-best-
practices/recommendations/#external-calls 

[42
]  

OpenZeppelin, "Zeppelin Solidity," [Online]. Available: 
https://github.com/OpenZeppelin/zeppelin-solidity 

 

 


