Attacking and fixing the Microsoft Windows
Kerberos login service

Tommaso Malgherini and Riccardo Focardi

Universita Ca’ Foscari, Venezia

Abstract

We implement and test a recent attack called pass-the-ticket [2, 3]
on various real Kerberos implementations. The attack allows a mali-
cious user to physically login as a different one on a target host, under
the assumption he is able to mount a man-in-the-middle attack be-
tween the attacked host and the Kerberos server. Our results are that
all recent Microsoft Windows operating systems are vulnerable to the
attack while the MIT Kerberos implementation version 1.6.3, tested on
Linux, is not. We have reported through CERT [4] the vulnerability
to Microsoft that will fix it in the next service pack.

NOTE: this paper reports the work developed by Tommaso Malgherini
in his BSc thesis [6] under the supervision of Prof. Riccardo Focardi.

1 Introduction

The Kerberos authentication system was developed at MIT as part of the
ATHENA project [7, 14]. It has become widely used after its adoption from
Microsoft as the default network authentication protocol, from Windows
2000 onward. In the course of time, the protocol has been subjected to
extensive review and analysis leading to the addition of new features and
the corrections of various weaknesses (see for example [1]). Nevertheless,
some issues regarding the protocol implementation for specific application or
types of services still remain open. In particular, in [2, 3] the author presents
a new attack technique, called pass-the-ticket, which combines previous well-
known approaches to obtain complete authentication using fake credentials.

We have implemented the pass-the-ticket attack and tested it on real
implementations of the protocol. Our findings are that all the recent versions
of the Microsoft Windows systems in use, including Windows XP, Windows
Vista Enterprise and Windows 7 Professional, are vulnerable to the attack.
As a consequence, an attacker with physical access to a target machine and
able to mount a man-in-the-middle attack between such a machine and the
Kerberos authentication server, can login as any other principal using an

arbitrary password of his choice. This is particularly disturbing given that
Kerberos is the default network authentication protocol for such systems.
The flaw is due to an excessive simplification of the protocol in the Microsoft
implementation of the Kerberos login service. We have also tested that the
MIT Kerberos implementation version 1.6.3 for Linux is instead immune to
the attack.

The vulnerabilities we have found have been immediately reported to
Microsoft through CERT [4] and have been acknowledged and confirmed.
They will be fixed in the next service pack.

The paper is organized as follows: in section 2 we give a quick review
of the Kerberos protocol; section 3 describes known attacks and counter-
measures, and discusses under which circumstances such attacks can still be
considered a threat; section 4 reports the results of our vulnerability tests
on adopted Kerberos implementations; we also illustrate why the MIT im-
plementation is more robust than the Microsoft one, which suggests how to
fix the latter; in section 5 we draw some concluding remarks.

2 The Kerberos Protocol

Kerberos is an authentication and key distribution protocol which uses a
trusted third party, also called Key Distribution Service or KDC, to commu-
nicate the necessary cryptographic credentials to the parties involved in the
authentication process. The scheme is entirely based on symmetric encryp-
tion (support for asymmetric cryptography was added later) and described
in detail in [9]. The parties involved in the process are the following:

C, Client: the entity to be authenticated for a certain service;

AS, Authentication Service: the trusted third party authenticating the
client to the TGS (below).

TGS, Ticket Granting Service: the trusted third party authenticating
the client to the final service V (below). This phase is based on previ-
ous authentication from the AS.

V, Verifier: the final service, also called the Verifier.

It should be noted that while AS and T'GS are conceptually distinct services,
they are typically both implemented as functions of the KDC.

The protocol is composed of three request/response exchanges illus-
trated in figure 1 and described below. We write Ex(x) to note message
x encrypted with a symmetric cipher (including an integrity check) un-
der key K; Nc represents a nonce chosen by C, T¢ a timestamp from
C clock; Ky is the personal key of the entity U, while k, is a session
key. L indicates a lifetime, the validity period of a specific ticket; a ticket

AS_REQ
C,TGS,N,

AS_REP

ticketygs Exc (KyNg, L, TGS)

TGS_REQ ,
ticketygs, authenticator, ,N¢, L, V

TGS_REP ,
ticket, ,Ey, (kyN¢, L, V)

AP_REQ
ticket, , authenticator,,

AP_REP

[Ex,(T\)] (opt.)

Figure 1: The Kerberos V protocol

is defined as tickety := Ek(kn,C,L), while an authenticator is noted as
authenticatory, := (C, Tc, [k}]). Key ki is a sub-session key not chosen by
the KDC which the parties can optionally agree on; as this component is
irrelevant for the attacks presented, we will always omit it.

The three protocol exchanges work as follows:

AS_REQ/AS_REP: the client C contacts AS, from which she receives a
ticket for the TGS, that will be used in the next phase to request a
ticket for a service V. This ticket has the form Ex,(k1, C, L), where k;
is a fresh session key to be used for subsequent communication between
C and the T'GS. This key is also sent to C encrypted under the client
personal key K¢, which is derived from the user password through a key
derivation function (for details on this and all cryptographic-related
functions of the Kerberos system see [11]). Note that this ticket, like
all tickets emitted, contains a lifetime value L, which limits its usage
to a certain time window (typically 24 hours, for the TGS ticket).
The (random) nonce N¢ is checked by C so to prevent replays of old
responses from the TGS that might fake C into re-accepting an old,
possibly broken, session key;

TGS_REQ/TGS_REP: the client C forwards the received ticket to the
TGS, together with an authenticator of the form E, (C, T¢), containing
a timestamp T¢. The TGS then decrypts the ticket, extracts the
session key and if it can successfully decrypt the authenticator and

the timestamp is inside a certain time windows of acceptability, it
assumes the client to be legitimate (since she knows the session key kj).
The TGS sends, as a reply, a ticket for the specific service requested,
together with a new session key ko encrypted with k;. Even in this
case, nonce N prevents replays of old sessions.

Note that if the client needs access to a certain service and already
possesses a valid TGS ticket, she can skip the first phase and just
send a TGS_REQ, thus avoiding password reinsertion (Single-Sign-
On), needed in the first phase for AS_REP decryption;

AP REQ/AP_REQ: As in the previous step, the ticket received is sent
with a new authenticator (this time encrypted with kp) to the service
for which authentication is needed. If both these elements are verified
as correct, the client is considered authenticated. If mutual authenti-
cation is requested, the service sends his own authenticator using the
extracted key ko.

3 Attacks and countermeasures

Kerberos has been a publicly available protocol since 1989. A lot of weakness
and limitations have been discussed in the course of years and, many of them,
resolved or eliminated (see, e.g. [1]). There are two well-known attacks
which, while not being a threat to the protocol itself, can represent, under
specific circumstances, a real risk: KDC' Spoofing (section 3.1) and Replay
(section 3.2). A more elaborated attack, called pass-the-ticket [2, 3], is
described in section 3.3. We have implemented and tested the pass-the-ticket
attack on real systems, finding that it can lead to a complete authentication
bypass on Windows operating systems (cf. section 4).

3.1 KDC Spoofing

This technique gained widespread knowledge after the release of the proof
of concept code by Dug Song [13]. The attack is based on the possibility
for a malicious user to spoof KDC responses. Since the entire Kerberos
protocol has been designed to stand against an insecure network, this would
not normally be a threat to the protocol. It can be seen, in fact, that while a
KDC response message does not contain any data proving its authenticity to
the client, only the true KDC can emit a ticket which will decrypt correctly
with the service key, thus making the attack useless.

Nonetheless, there are cases under which such an attack can be of practi-
cal use to an intruder: the physical login service, for example, is a particular
type of ‘kerberized’ service which is typically targeted by this attack tech-
nique. Kerberos services are usually daemons running on remote machines,

VAP

K?

AS_REQ —+
C,TGS,N.

attacker,

Ka

AS_REP
ticket" g, Ey, (ky,N¢, L, TGS

Figure 2: KDC Spoofing

requiring the client to prove her identity before accepting commands. Login
service is different as there is no remote machine to send credentials to.

Various approaches has been followed to implement this service through
Kerberos. On Unix/Linux systems, for example, the first versions of the
pam_krb5 module used a shortcut: when the user entered her password, an
AS_REQ request was made to the KDC, and when a AS_REP was received,
PAM tried the decryption of the non-ticket part of the message with the
key derived from user password. If the decryption and the nonce check were
successful, the system assumed the password was correct and permitted the
access. It can be seen that this procedure leads to a security breach, in
which an attacker with physical access to the machine and the ability to
manipulate network traffic inserts an arbitrary password, blocks the KDC
reply, and insert his own AS_REP message encrypted with a key derived
from the previously inserted password. The attack is depicted in figure 2.
Notice that tickety g is a fake TGS ticket forged by the attacker and is just
ignored by the client.

The obvious solution, which is what Windows and later versions of the
PAM module do, is to implement also the next step of the protocol. A
fictitious service for every machine in the network is created on the KDC,
and the service key is imported on the corresponding machine. After the
AS_REQ/AS_REP step, the client machine requests a ticket for the service
represented by itself to the TGS. If a ticket which decrypts correctly with
the service key is received, the authentication is considered completed, since
only the KDC and the client machine have knowledge of the key. Given that
ticketTg has been forged by the attacker, TGS will refuse to provide the
ticket for the service and authentication will consequently fail.

AP_REQ
ticket, , authenticator,,
AP_REP
[E,(TV)]
AP_REQ I
ticket, , authenticator,,
AP_REP ——

[E4,(Ty)]
Figure 3: Replay Attack

3.2 Replay attacks

By observing the protocol scheme of figure 1, it can be seen that the server
decides whether or not to allow access to the client by considering only the
validity of the AP_REQ message. The protocol should thus prevent the
possibility for an attacker to replay a previously sniffed AP_REQ message
and thus impersonate the client on a specific service, as illustrated in figure 3.

This is a very old idea, already publicly discussed in [1] for Kerberos IV,
and many countermeasures were thought to solve the problem, which are
extensively described in the RFCs (see also [3] on this)

Timestamps: As discussed in section 2, the authenticator contains a times-
tamp T emitted during its creation. When received, the service ver-
ifies that the T falls inside a certain time window from its clock,
which is typically 5 minutes. If this is not the case, the authentication
request is refused.

Authenticators cache: In [10] it is explicitly indicated that verifiers should
reject an already received authenticator. This is normally done by
caching previous authenticators for a certain amount of time, which
must be at least equal to the time window for acceptability. This
makes it impossible to reuse any valid authenticator.

IP address field inside ticket: The KDC can optionally insert into tickets a
list of IP addresses for which the ticket is valid (“address-full tickets”).
This poses some difficulties mounting a replay attack as it becomes
necessary to steal in some way the victim’s IP address. However, in

practice, very few services actually check such addresses: according to
[3], none in Microsoft Kerberos, and only KDC services in the MIT
implementation.

The simple replay technique of figure 3 is clearly prevented by the afore-
mentioned countermeasures. However, if the attacker is able to realize a
man-in-the-middle (MITM), variants of such an attack can be successfully
put into practice:

e Once the MITM is active, instead of letting the user authenticate,
the attacker can block the communication, capturing the AP_REQ
request and reusing it for himself before the expiration of the time
window. It should be noted that the use of address-full ticket would
make this attack useless without stealing in some way the victim’s IP.
As mentioned above, however, the check on IP addresses contained in
the ticket is not usually implemented: in [5] this particular attack is
tested on a Windows 2000 SP3 workstation, authenticating on a SMB
server. The attack proves to be successful even in presence of address-
full tickets, thus apparently confirming that Windows 2000 does not
verify the list of allowed IP addressed contained in the ticket.

Notice also that the session key k, exchanged between the client C
and the service V is not leaked. In case kp is used to protect the
confidentiality /integrity of subsequent message exchanges between C
and V, the above attack becomes useless. This, however, depends on
the specific implementation of each service.

e Kerberos heavily depends on time synchronization for checking the
validity of timestamps, but it is not its responsibility to provide such
a synchronization. The system normally employed to do so is Network
Time Protocol (NTP). Even if this protocol provides a secure way to
keep the clients in sync, such a feature is rarely used, and the server
response containing the exact time can be modified by an intruder
in the middle. The resulting attack is not immediate but makes it
possible to capture an AP_REQ and reuse it even after its validity
time has expired. It can be successfully mounted by (i) performing
a MITM on the NTP server/verifier link, (i7) modifying the NTP
response, and (ii7) sending the captured AP_REQ (possibly awaiting
for it to be deleted from the authenticators cache), thus obtaining
access.

As in the previous case, IP verification by using address-full tickets,
if implemented, would easily block the attack in case the attacker
is not able to steal the victim’s IP. The adoption of a secure time
synchronization protocol would also be desirable to prevent the attack.

3.3 Pass-the-ticket Attack

A more sophisticated attack, combining the above ideas, has been recently
discussed [2, 3]. As in previous cases, the attack does not represent a threat
for a correct implementation but we will show (in section 4) that in practice
it can lead to a complete authentication bypass on real operating systems.
This attack is designed to target the already discussed login service, when
the extended login procedure presented at the end of section 3.1 is used.
Recall that this extended procedure also contains the TGS_REQ/TGS_REP
message exchange in order to prevent standard TGS spoofing attacks.

Requirements for this new attack are similar to the ones for KDC Spoof-
ing: the attacker must have physical access to the target machine and also
be able to falsify KDC messages. A MITM between the target and the KDC
is also needed, in practice, since real KDC messages could easily hinder the
attack, would they reach the target before the attacker’s fake responses.
Using a MITM the attacker can easily block unwanted messages.

The attack is composed of two phases: first, the attacker intercepts a
valid login communication on the target machine and captures the ticket
contained in the valid TGS_REP message emitted by the KDC; then, the
spoofing attack is performed and the previously stolen ticket is used to forge
a TGS_REP which will decrypt correctly on the target machine. Let us see
the attack in detail:

Phase 1: Sniffing (figure 4a)!
The legitimate user starts the login procedure on the machine. In the
second part of the authentication, the client machine asks for the ser-
vice ticket and the KDC replies with the expected TGS_REP message.
The attacker eavesdrops the message and saves tickety. Notice that
the login procedure is allowed to be completed.

Phase 2: Spoofing and replay (figure 4b)
The attacker physically accesses the target machine, inserts an already
known principal name and an arbitrary password, from which the ma-
chine derives a key which is considered as the user personal key. The
AS_ REQ/AS_REP exchange proceed as shown for the KDC spoofing
attack. Then, the client uses the received fake TGS ticket ticketg
to generate a TGS_REQ and sends it to the TGS. This is where the
standard KDC spoofing attack fails as the TGS would refuse the fake
ticket. At this point, the attacker (in the middle) blocks the request
and sends a fake TGS_REP with the previously captured tickety. The
client machine decrypts the message encrypted under k) and uses the
key contained in his keytab to decrypt the received ticket for the fic-

From now on we will drop the N& notation in favor of the simpler (although less
precise) N,

attacker

Attacker

ticket"rqs,Ey, (ky,Ny, L, TGS)

ticket";ss, authenticator, . N3, L, V

tickety ,E,, (k) ;N3 L, V)

(b) Phase 2

Figure 4: Pass-the-ticket attack

Client workstation KDC workstation Vulnerable

Windows XP SP2 Windows Server 2008 v
Windows Vista Enterprise SP1 | Windows Server 2008 v
Windows 7 Professional Windows Server 2008 v

Gentoo MIT Kerb. 1.6.3-r6 Debian4.0 MIT Kerb. 1.6.3

Table 1: Pass-the-ticket: summary of experiments

titious service V', and since they both decrypt correctly, the attacker
gets authenticated.

It can be seen that the attack remains feasible for as long as the stolen ticket
remains valid, which is typically 24 hours.

4 Pass-the-ticket at work

We have implemented the attack described in section 3.3 and tested it
against both MIT and Microsoft implementations of Kerberos. Table 1
summarizes our findings. We have discovered that MIT version is immune
to the attack while Microsoft implementation is vulnerable.

Microsoft Windows systems We have tested the following Microsoft
Windows operating systems:

e Windows XP Service Pack 2
e Windows Vista Enterprise Service Pack 1
e Windows 7 Professional

The systems were tested both with the out-of-the-box configurations and
with all updates installed.? As KDC, we have used a Windows Server 2008
machine with default services.

All the given configurations have been found vulnerable to the attack.

MIT Kerberos on Linux systems Tested configuration consisted in a
KDC running Debian 4.0 with MIT Kerberos 1.6.3 and a client workstation
running Gentoo Linux and MIT Kerberos 1.6.3-r6. The configuration was
found not vulnerable to the attack. As described below, the MIT implemen-
tation of the login service uses and extended procedure that prevents the
attack.

*Last update on 01/22/2010.

10

4.1 Preventing the attack: the MIT solution

Since the MIT implementation is released as open-source software [8], we
have inspected it to see how the attack is prevented. This has not been
immediate given the size (~10MB) of the source code.

The important thing to notice is that in Windows systems the attack is
successful since, in the second phase, it is only verified the validity of the
service ticket. This is not enough to prove that the sender actually knows the
key and is, in fact, the TGS. In the MIT Kerberos, instead, all three phases
are carried out. The third one, AP_REQ/AP_REP, is executed ‘internally’,
in a simulated way.

Let us review the messages involved in the second phase of the attack
to see how this extension prevents it. We write A(U) to note the attacker
impersonating U.

C — A(AS) : C,TGS,N;

C «— A(AS) : ticketics, Ek,(Kj, N2, L, TGS)

C — A(TGS) : ticketies, authenticatory,, N3, L, V
C « A(TGS) : tickety, Eg (kb,N3,L,V)

cC —- C tickety, authenticator,,

In the fourth message, the client C decrypts the fake TGS response, extracts
the session key k and uses it to create an authenticator, as in a normal
Kerberos authentication. Then, C “sends” it to herself (in a simulated
way, i.e., no message is actually passing on the network) and, posing as
the verifier, decrypts the ticket and uses the key inside it to verify the
authenticator.

Recall that the ticket is reused from a previous session and it contains
an old session key kp. The authenticator, instead, is constructed by the
client using the key obtained from the TGS, impersonated by the attacker,
who does not know what is inside the ticket. Such session key is, in fact,
a different key k3. In the last phase, the client will then try to decrypt
the authenticator with a key different from the one used to encrypt it, thus
raising an error condition and terminating the login process.

To conclude, this procedure avoids the pass-the-ticket attack and, at the
same time, makes the login service more adherent to the Kerberos specifi-
cation, since it performs all the protocol steps and verifies all received cre-
dentials. The MIT solution, in fact, also offers a clear fix to the Microsoft
Windows implementation. Figure 5 summarizes the MIT implementation of
the login process and how it prevents the pass-the-ticket attack.

5 Conclusions

Kerberos provides network authentication in a very secure and scalable way,
while putting very little burden on the user and being completely cross-

11

Figure 5: The login process in MIT Kerberos

platform. It has critical importance in Microsoft Windows systems since it
is their default network authentication protocol. However, particular care
is needed in its implementation and configuration. In fact, many attacks
exist that, while not being a threat to the protocol itself, can be success-
fully exploited by an attacker if the target network makes use of incorrect
configurations or implementations deviating from the specifications.

To support this point, we have implemented a recent attack technique
targeting physical login on Windows systems, which combines both spoofing
and credentials replay techniques to completely falsify authentication. The
attack exploits an excessive simplification of the protocol when adapting it
to a particular situation that probably Kerberos was not designed to handle:
the login process.

We have tested that all recent Microsoft Windows systems, from Win-
dows XP on, are vulnerable to the attack. A very clever solution is provided
by the MIT Kerberos code which makes the software much more adherent
to the RFC by internally simulating the last message exchange. We have
tested that this prevents the attack on a Linux system running MIT Ker-
beros 1.6.3. Given that the attack is prevented at the protocol level, we
expect that any porting of such MIT Kerberos version should be resistant
to the attack, independently of the underlying operating system.

12

References

1]

BELLOVIN, S. M., AND MERRITT, M. Limitations of the Kerberos
authentication system. In Useniz Proceedings (Dallas, TX, 1991).

BouiLLoN, E. Gaining access through Kerberos. In PacSec (2008).

BouiLLoON, E. Taming the beast: Assess Kerberos-protected networks.
In Black Hat EU (2009).

CERT. Carnegie Mellon University’s Computer Emergency Response
Team. http://www.cert.org/.

KassuiN, K., AND TIKKANEN, A. Replay attack on Kerberos V
and SMB. http://users.tkk.fi/autikkan/kerberos/docs/phasel/
pdf/LATEST _replay_attack.pdf, 2003. Vulnerability report.

MALGHERINI, T. Attacchi sull’autenticazione in reti Kerberos-based.
BSc Thesis, Universita Ca’ Foscari, Venezia. April 2010. (In Italian.).

MIT. ATHENA Project. http://web.mit.edu/acs/athena.html.

MIT. Kerberos: The network authentication protocol. http://web.
mit.edu/Kerberos/.

NEUMAN, C., AND Ts’0, T. Kerberos: An authentication service for
computer networks. Tech. Rep. ISI/RS-94-399, USC/ISI, 1994.

NEUMAN, C., Yu, T., HARTMAN, S., AND RAEBURN, K. RFC 4120:
The Kerberos Network Authentication Service (V5), 2005.

RAEBURN, K. RFC 8961: Encryption and Checksum Specifications for
Kerberos 5, 2005.

SCAPY. http://www.secdev.org/projects/scapy/.
SONG, D. http://www.monkey.org/~dugsong/kdcspoof .tar.gz.

STEINER, J. G., NEUMAN, C., AND SCHILLER, J. I. Kerberos: An

authentication service for open network systems. In Useniz Proceedings
(Dallas, TX, 1988).

Appendix: kdcreplay.py

We have developed a simple proof-of-concept software to test some of the
described techniques, using the scapy [12] library for packets manipulations.
The tool can reproduce both the KDC-spoofing and the pass-the-ticket at-
tack, and works in two phases:

13

1. It sniffs network traffic capturing passing TGS_REP responses, option-
ally storing it in a pcap file;

2. It performs a KDC-spoofing and replies to subsequent TGS_REQ re-
quests by inserting the ticket for the requested service (typically the
only service for which this makes sense will be the login service, with
a principal in the form of host/machinename@realm).

It is also possible to skip the sniffing part and replay with a ticket obtained
from a previous saved pcap file, or skip sniffing and replay completely and
perform a simple KDC-spoofing.

Supported encryption algorithms are Triple Des, RC4 (as implemented
by Microsoft, using NTLM hashes as keys) and AES. The tool requires the
two included libraries Krb5Packets and Krb5Crypto, to respectively manip-
ulate the desired packets with Scapy and bind the necessary cryptographic
functions from the Kerberos API.

python kdcreplay.py -h
"Pass the Ticket" attack
(a mOt Studios production)

Usage:
kdcreplay.py [opts]
Options:
-t <target> set target machine ip
-k <kdc> set kdc ip
-p <pcapfile> skip service ticket sniffing
and load TGS_REP from file
-d <dumpfile> save sniffed TGS_REP to file
-r <realm> set realm name
-3 skip tickets replay (kdc spoofing
attack)
-e <3des|rc4win|aes> set encryption type

(for rc4win binary key has
to be set, default:3des)

-D lots of debug printing

-s skip spoofing and replay
(for debug purposes)

-h read this

14

