Napster Crew Buffer Over Flow Explanation

CPEW\WS]@
\\//\\..A// ~

|~

Buffer Overflow Explanation
Written by Dr-Freak
June 16, 2012

For this Article readers should have a simple understanding of C programming
language the way stack is organize and little assembly knowledge is going to helpful for
the reader to take maximum benefit from this article. In this article | am going to talk
about stack based over flow, there is difference between stack based and heap based over

flow.

Before we go further in this article let me explain some simple words terminology which |
am going to use in this article.

Napster Crew Buffer Over Flow Explanation

ASM: Abbreviation for assembly Language, which is a second generation programming
language.

Register: This is used by your processer to hold information and control execution.

EIP: This is the instruction pointer which is a register (32 bit), it points to your next
command which is going to be execute after executing the previous cycle of commands.
Simply this register tells the CPU which instruction is going to be executing after each
execution of command. It holds the address of next instruction.

EBP: EBP is the base pointer, it points to the top of the stack, and when a function is called
it is pushed, and popped on return.

OllyDbg: It is a debugger which helps you to study the flow of execution of your program.
There are many debugger you can use any you want (Immunity debugger, IDA etc). In
this article I am going to use OllyDbg.

Bloodshed Dev-C++: A C/C++ Compiler.

little endian: It is how memory addresses are stored on most systems, little bytes first.

SHORT ABOUT BUFFER OVERFLOWS

Buffer overflows are a common vulnerability on all platforms, but are by far the most
commonly exploited bug on the Linux/Unix Operating systems. Buffer over flow occurs
when you try to insert data into consecutive memory addresses more than its capacity of
storage.

Commonly buffer overflows are exploited to change the flow in a programs execution, so
that it points to a different memory address or overwrites crucial memory segments. If you

Napster Crew Buffer Over Flow Explanation

know how memory is organized, you would know that on all x86 Linux platforms,
memory is organized in 4byte (32 bit) segments, consisting of a hex memory address, and
will need to be converted to little endian byte ordering. Stack is consist of consecutive
memory addresses which follows last in first out terminology (LIFO) ,which means the
data comes first in stack will go out from stack in last. The stack and EIP is the most
important part of the buffer over flow vulnerabilities which you have to take care off in

exploiting.

Here is a simple diagram showing how stack looks like

In a stack, all operations take place at the
"top" of the stack. The "push” operaton

adds an item to the top of the stack.

The "pop" operation removes the item on
the top of the stack and returns it.

12 B3
25 25 25
123 123 123
5 5 3
17 17 17

Original stack. After pop(). After push(83).

Napster Crew Buffer Over Flow Explanation

h A
A A
v

A J
A J

Direction

A J

00000008%0
(VINA) Vel
ssalppe ubiH

HIHHAX0

>l
ol
”l

Shared text
libraries _start:

arge, argv,

Stack
envp

kA 4
r 3

bss Heap

F 3

Elp Figure 4 (Memory diagram)

The diagram above illustrates a typical program's memory layout when it has been loaded

B et i o e B R et

[}
-
|
q
|

v
A J
A J

A J
A J
A J

Direction

00000008X0
(VINA) HBIS
ssalppe ybiH

HIHAX0

<

-
-
*

Shared text and argv.

libraries | _start:
heap < Stack envp

Figure 5.2 (memory map of Figure 5.1)

EIP

As you see in stack there is a buffer after which it has a Frame pointer and after
that it has the return address this is called EIP and in buffer over flow we are
considering to change this pointer value so that we can change the flow of
execution of the program.

Now after you have an idea about buffer, stack and EIP here is our vulnerable C program.
Vulnerable C Code

Vuln.exe

#include <stdio.h>

Napster Crew Buffer Over Flow Explanation

int vulnFunction(char *str){
char buffer[10]; //our buffer
strcpy(buffer,str); //the vulnerable command

return O;

}

int main(int argc, char *argv[])

{
char code[]="AAAAA";
printf("You are in main fucntion now\n");
vulnFunction(code); //call the vulnerable function
checking(); //this should never happen
printf("Quitting vuln.exe\n");
getch();
return 0;

}

int checking(){

printf(""******* You have done it! *******\n");

printf("******* Thjs is checking() executing *******\n");

}

This is a simple C program which has one array that contains some string and later in the

program this string is pass to vulnerable function which is vulnFunction(char *str).

The vulnFunction has an buffer of 10 bytes.1 char is equal tol byte and in program we
have char buffer[10] ,so size is equal to 10 bytes.Moreover the vuln function copies the
content of variable code into buffer without checking the size of variable code,and this is
the vulnerability.

strcpy(buffer,str); //the vulnerable command

Napster Crew Buffer Over Flow Explanation

In this article we will going keep changing the value of array code

(cha code[]="AAAa”;) and testing the program.

So first let us check the program by simply taking the value of array code to 3 A’s

char code[]="AAA”;

Change the value of array code to 3 A’s and Compile the program using DevC++ by
simply going to Execute tab and clicking Compile and run. After doing this you will see

it works alright.

[[ONE® 8 s+ BEE H

1o 0= o a3 \Works Fine with 3 A's

=l

Classes | Debug | g 1

int vulnFunction (char *str){
char buffer[10]:
strcpy (buffer, str);
retorn 0;
L]
int main(int argc, char *argv[]) 3 A 5
int pass=0;

char code[]="RAA";
printi("You are in main fucntion now\n");

vulnFunction (code) ;

checking ()

printf("Quitting vuln.exs\n");
o) e

.pi\er] @ Resnurcesl EI]]] Compile Logl J Debug] @, Find Results]

Now we will confirm the vulnerability of this program by changing the value of char

code to about 30 A’s.

Char code[][="AAAAAAAAAAAAAAAAAAAAAAAAAAAAA,

As you know our buffer is capable of to fill maximum of 10 characters and if we fill it
with 30 A’s then it will cause our program to crash as when 30 A’s will pass to

6

Napster Crew Buffer Over Flow Explanation

vulnFunction ,this function will try to fill the buffer with it and our program will crash
because our buffer has the capacity to fill with 10 characters and due to this value of EIP
will be change. Let us check now.

Change the value of char code to 30 A’s in the original program.

Char code[][="AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT,

What you get an error segmentation fault.

iV || § @ || lanew wijinsen Sgiooge |muow |

jl j | 7 Chbofvuln.exe :—g

Dehugl vulncl Youw are in main fuention now

#include «stdio.h>

vuln.exe has stopped working

int vulnFunction{char *str){ A Problam Faused the program to stop working.corractlr)
Windows will close the program and notify you if a selution is

lable,

char buffer[10]: //our buffer avarabiE

strepy (buffer, str): //the vulnerable command

return 0:

'

int main(int arge, char *argv([])

{
char code[]="ARARALLARLLNARALAARLALARLALALL" .
printf ("You are in main fucntion nowhn"):

vulnFunction(code); //call the vulnerable function 30,5

checking{}; //this should never happen

Error Due to change of EIP When procide 30 A’s

printf ("Quitting vuln.exe\n"):
getch{();

-
i T

Resources I d]l] Compile Lngl w Debugl @ Find Hesultsl

This happens because when the buffer is filling with more size than it is capable of, now
remember that in stack after it has frame pointer and after that it has EIP pointer. So 30
A’s first fill the stack then they fill the frame pointer and then finally the EIP value,which
has the return address so when return address is overwrite by us the program crash.

Napster Crew Buffer Over Flow Explanation

o L
& (Sgn Affter bufer is full the remaining rest hytes will fill F,which is DC%
QO
& Directibpmapointgr and rest remining will fil EJP and this what we, s &
S want to do % o
h 4 A
o ||| =
Shared text FIR rgc,
libraries | _start: hand argy,
eap < Stk envp
T Figure 5.2 (memory map of Figure 5.1)

EIP

Now it’s time to open OllyDbg and debug the program.
Open OllyDbg and open the vuln.exe in it.

Open OllyDbg

File tabs > Open and select your vuln.exe

Debug tab—>run

Then click play button

You will get this

% OllyDbg - vuln.exe - [CPU - main thread] S - - Ll a0 0 = =

[E] File View Debug Plugins Options Window Help

Blex] »[n] s+ sul o o LfE(MT]wE{c[7&[B[R[-[s] &=

ange to ASCI
of A's

FOUND [BBE00EEZ)
PE.GE,LE)

» |Regisrers (FPUI
E o
3 EIP ch
§° Chbofiwuln.exe [ESNEEN| A lue
fou are in main fucntion now 7 /’vd
41414141
E t al FF]
SEEEEEEREE?
Play Butt : bjjziaag
ay/butron i
EF
1 ERROR_FILE_MOT_}
246 IMO.ME.E,BE.NS,
=218
FST BE83 Cond @ @ @ & Err
FCW 837F Prec NEAR,64 HMask
Address |Hen dump ASCIT =
B FF FE FE FF| 00 00
(] RETUI
ASCIL
18 B0 B8 B8 £
1 E B8 88| 8a 68
Q8 B0 98 89| 08 08
08 8o 8a aa
98 8o 88 aa
g0 o o8 ooloa oo -

ETURN to wuln.BE4a1204 f
RARARAARAARRAARRAARA™

£rom uu Ln. BE4a1

©.7SPE9E0A From MEUCTT.T

Access violation when executing [41414147] - use Shift+F7/FB/F9 to pass exception to pragram

i Paused

Napster Crew Buffer Over Flow Explanation

THE EIP has value 41414141 which is ASCII value of A and not any physical address.

What is happening due to over flow of buffer our EIP is overwritten by what we provide
via char code. The value of EIP is overwritten by ASCII value of A which is 42, and this
can be seen in OllyDbg showing EIP content to 41414141 (ASCII A = 41).

Now when we use 30 A’s the program will never execute after vulnFunction is call and
check function will never be execute as program crash in vulnFucntion. As we
successfully change the content of EIP with ASCII value of A, we can also do that
change the EIP with some original address where our shell code is save. But here now we
will change the EIP with the check function address so that our program run fine

regardless of buffer is overflow.

But before we find the address of our check function, we must have to know after how
many bytes our EIP is change, so that we will provide some junk data + original address
via char code. To do that set the value char code to some random long characters doesn’t
write any character consecutive.

I will set value something this
ASDFGHJKLZXCVBNMQWERTYUIOPJUGFDERTYHUIJLKNBCXFH

Change in original code value of char code

Char
code[]="ASDFGHIJKLZXCVBNMQWERTYUIOPJUGFDERTYHUIJLKNBCXFH";
Compile the program with DecC++ and open the vuln.exe in OllyDbg with same

procedure define aboveWhat You will get something like this

Napster Crew Buffer Over Flow Explanation

% OllyDbg - vuln.exe - [CPU - main thread] = =

iew Debug Plugins Options Window

[E] File Viev Nindow Help
B x|] w4 L|E|NZ|T\W\H|c|/||«:\B|R|.,.|s\ =2

5 Chbofvuln.exe o |

Wou are in main fucntion now

g2 ESPUDZDI
8880 Err B0 080 @80 (6T
1 Bl gl

a 3
o NEAR, &4 [Mash

Address
[ZE0EE

1 "EUERTYUIOPJUGFDERTYHULILKNECHFH™

EEEEERREE

55 i B 69 oo ba ba CAPS LOCK: OFF

Aocess violation when executing [45444647] - use Shift+F7/F8/F3 to pass exception to program i | \ Pausad

Now our EIP is 45444647 now we have to convert this to character readable forum

So first convert this to Little Indian by simply 2 digit together and than putting last couple
first and so on.

EIP 45444647 - 45 44 46 47

Little Indian > 47 46 44 45> 47464445

Now convert it to hex to character

You will get GFDE

So EIP>45444647-> GFDE

Now search GFDE in that string which we provide via char code.
code[]="ASDFGHIJKLZXCVBNMQWERTYUIOPJUGFDERTYHUIJLKNBCXFH";
Look closely ASDFGHIKLZXCVBNMQWERTYUIOPJUGFDERTYHUIJLKNBCXF
All the data befor GFDE is of 28 byte so where we know now after how many bytes we
can overwrite EIP. To conferm this you can change GFDE to CCCC in that string we

provided.

10

Napster Crew Buffer Over Flow Explanation

code[]="ASDFGHIJKLZXCVBNMQWERTYUIOPJUCCCCRTYHUIJLKNBCXFH?”;
Now again change char
code[]="ASDFGHIJKLZXCVBNMQWERTYUIOPJUCCCCRTYHUIJLKNBCXFH?”;
In original code and compile it via DevC++ and check the value of EIP via OllyDhbg.

Here what we got
Bk OllyDba - vuln.exe - [CPU - main thread] . - - - s a0 =la]| = |

File View Debug Plugins Options Window Help

Help
S{x[v[u] v+ B0 4] +f wlemiT{w[n(c|7]x[B[R[[5] =H?]

EDY GadE465E
. == EBii BEnA4EH5
- ES1 B843929 A nain fucntion

FFE]
OOGARLFFF 1
i FFFFEFF)
EIP is Asc " of 5 ERROR_FILE_NOT_FOUND (88EGAG2)
(MO B, E, EE, M5, PE, GEL LE}
Cs

idress [Hes dum ASCTT

DOACEO0G| FF FF FE FF| 06 o)
BO4RZ00S| A D BA 66| 66 B
BB46Z016| 7 40 BA 68| 66 B
D94p201z| 8 60 00 08| 0O 29
Bo4g2020) 70 19 40 98| 0 5
Bo42625| 00 B8 08 90 68 20
Bo4ezasn| o 0g Ba 9o FF Fi
8462035 0 A8 G0 80 FF FF FF FJ
B4AZ04G| A6 65 5O 06 60 o
BO4AZ045| B3 65 BA OF| 63 B
BO4BE0EE| B3 B0 DA 06| 66 B
BB4AE0ES| G G0 DA 06| OR)
Bodaznce| 0 60 00 08 o8) oo

Aecess violation when executing [43434343] - use Shift+F7/F8/F3 to pass exception to prograr
= T = T

e FEE TS

EIP ©43434343

Which is equal to CCCC which we change in our string so this is confirmed now where
we have to provide the address for EIP in the string.

Now we will find the address of check function In our program so that we will provide
that address of check function to EIP and the our program will run correctly

You can easily find the address of check function via OllyDbg.

Here is the address of check function

11

Napster Crew Buffer Over Flow Explanation

3 OllyDbg - vulnexe - [CPU - main thread, module vuln] Y - Al i =

[€] File View Debug Plugins Options Window Help

=K JJ e A o e = A e B A e

TIOU DWORD FIR 551 (EEF~Z2C1, EAR

21 Te3sde0n | hoy EAX,DUORD PTR DS: (4038100
08 10U DWORD PTR SS:(EBP-281,

R1 14394000 | MOU ERX,DWORD PTR DS: (483014)
8945 DC QU DWORD PTR §5: (EBP-241, EAX
Al 18384808 | 1MOU EAR,DWORD FTR DS: (4838181
8945 Ed 10U CUORD PTR SS: (EEP-28], EAR
Al 10364608 MGH ERX, | DIAJDHD FTR DS [?E%éc)

BFB6ES 2038481 MOUZX EQK,BVTE G0

2], Al
76424 2130401 1IQU DUORD FTR S5:CESP1, vy Ln. 00408021 ASCII "You are in main fucntion noud”
ES 91850880 | CALL <JMP.&m: sw:r B i MH printf
8045 C8 LER EFX,DUORD PTR SS: [EBP-381
898424 10U DUORD PTR 553 [ESP1, ERK
E@ SEFFFFFE | CALL vu ln. 68461
ES 18000080 | CALL wuln, deﬁ?
geizd sFs0del 10U DUORD PR S51 [ESPJ yln.0040305F | ASCIT "Guitcing wuin.cued”
808 | CALL <JHP. &ns: F> printf
CALL %ng Ensvert. getens C_getch

Check function addres

83EC 88 S

(78424 _S43048(FIQU DIWORD PTR S5:CESPI, uu Ln. 63403054, ASCIT ™mwawwes Vou have done itt wewsswsd”
ES 57850808 | CALL {JHP.8nsucrt. DTuvtF> ppppp £

S7esz4 Co84e 0D DYORD FTR S5t ESP), . 004ae87C ASCIT "wwuwwws This is checking() executing wwsskssg”
Eg 48050008 CﬂLL SJHP, st é> erintf

c3 RETN

36 P

50

36 P

36

e P

99 L

33 Pl Eep

B3 96314809 | 10U ECX,vuln. 00463199
89€ES HOU EBP, ESP

~EB 14 JHP SHORT wu Ln. 040139
8086 BBAEBAGB| | ST DS: (ES1]
8BS B4 HOU ED, DUORD PTR DS: [ECke4)

geal 1oy ERk,DWORD FTR DS: (ECX]

23c1 88 AOD ECX,2

8182 BEAB4666 RED OIIGRD PTR DS: (EDH+4808001, ERX
81F9 98314808 | CHP ECX,\u 108483190

72 ER 08 SHORT vuLn. 8401350

RETN

S0
c3
56

ASCIT |

From OllyDbg the check function address is=> 0040133A

Now we will use this address and make flow of our program once again

Before we use this memory address we have to convert it into little Indian

So this becomes 3A134000->\x3A\x13\x40\00

Now pass this address to vulnFunction via value of char code after 28 bytes of junk data
as we already figure out that we can overwrite EIP after 28 bytes

So
code[]="ASDFGHIJKLZXCVBNMQWERTYUIOPJUCCCCRTYHUIJLKNBCXFH?”;
Change CCCC to Address we taken out ,this becomes
code[]="ASDFGHIJKLZXCVBNMQWERTYUIOPJU\x3A\x13\x40\00”;

Now change this value of char code in the original code compile it and see the result your

program will run fine.

12

Napster Crew Buffer Over Flow Explanation

| dih Compile Lo | & Debug | [G Find Results
41 Lines in file

So now you can see how we change the flow of program and execute what we want.

You can try it more by making any function and don’t call it in main program and as
things stated above pass that function address to vulnFunction overwrite the EIP and
execute the program as you want.

This is the basic idea of Buffer over flow, now days people make exploits on buffer over
flow and run their own shell codes via buffer over flow. This can simply be done by
storing your shell code somewhere middle in buffer and then as you know EBP pointer
has the memory address of the top of the stack so using it you can get the stack top
position address and your shell code is already store in buffer so you can change the
value of EIP to the value of EBP. One more thing there is an instruction called NOP.NOP
does nothing just jump to next instruction without doing anything so if you have 28 bytes
buffer you can first fill it with 8 NOP(\x90) and then your shell code.

Here is picture for little more understanding

13

Napster Crew Buffer Over Flow Explanation

shellcode address to shellcode

] o

Shared text]
libraries | _start: haen: —_ ~ argv,
i < i Stack | VP

We want to jump here

Video Explatation
http://www.youtube.com/watch?v=2-y W7NTsJc

For more information
Dr-freak2011@hotmail.com
Greets MrCreepy . Virus Hima . Red Virus . SeeKer . MKhan . Napster

Crew . Dr.Angel Hex786 . The Lions Heart . Oxf-Security . Hoax .
Electroblaster . N477 . Darkx

14

