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ABSTRACT

Modern smartphones are equipped with a plethora of sensors that
enable a wide range of interactions, but some of these sensors can
be employed as a side channel to surreptitiously learn about user in-
put. In this paper, we show that the accelerometer sensor can also
be employed as a high-bandwidth side channel; particularly, we
demonstrate how to use the accelerometer sensor to learn user tap-
and gesture-based input as required to unlock smartphones using
a PIN/password or Android’s graphical password pattern. Using
data collected from a diverse group of 24 users in controlled (while
sitting) and uncontrolled (while walking) settings, we develop sam-
ple rate independent features for accelerometer readings based on
signal processing and polynomial fitting techniques. In controlled
settings, our prediction model can on average classify the PIN en-
tered 43% of the time and pattern 73% of the time within 5 attempts
when selecting from a test set of 50 PINs and 50 patterns. In uncon-
trolled settings, while users are walking, our model can still classify
20% of the PINs and 40% of the patterns within 5 attempts. We ad-
ditionally explore the possibility of constructing an accelerometer-
reading-to-input dictionary and find that such dictionaries would be
greatly challenged by movement-noise and cross-user training.

Categories and Subject Descriptors
L.5 [Pattern Recognition]: Applications

General Terms

Security, Design, Experimentation, Measurement, Performance

Keywords
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1. INTRODUCTION

Smartphone motion sensors measure the movement and orienta-
tion of the phone in space, and sensors have been used in a wide
variety of tasks, notably in gaming applications. Applications are
generally granted access to these sensors without much concern and
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without notifying the user; however, certain sensors may be able to
measure much more than just the user’s intention within a single
application.

It has recently been shown that the gyroscopic motion sensor,
which measures the smartphone’s orientation (e.g., pitch or roll), is
capable of inferring where on a touchscreen a user taps/touches [6,
34]. Such inferences constitute a side channel, potentially convey-
ing secure input intended for a foreground application to a back-
ground application that has access to the sensor. This new class
of smartphone side channels are a direct result of the new com-
puter interaction layer promoted by smartphones. As compared to
traditional computer platforms, smartphones are tactile, hand-held
devices, and users provide input by physically touching and ges-
turing on the touchscreen. These actions implicitly shift and adjust
the device in measurable (and machine predictable) ways.

In this paper, we continue this line of investigation into sensor-
based side channels by focusing on the smartphone’s accelerometer
sensor’s capability in this domain. The key question we investigate
is: Considering a background application with access to the ac-
celerometer, what can the background application learn about user
input to the foreground application via the accelerometer readings?
We show that the accelerometer is sensitive to user input and can
function as a side channel, and in applicable comparisons, we found
that accelerometer based techniques perform nearly as well, or bet-
ter, than gyroscopic based techniques.

We focus on inferring two common smartphone secure input
types using the accelerometer sensor: four-digit PINs (tap/touching)
and the Android password pattern (gesturing/swiping). We col-
lected accelerometer readings from 24 users, 12 entering PINs and
12 entering patterns. Using standard machine learning techniques,
we show that accelerometer measurements reliably identify the PIN
or pattern that was entered. In our experiments, when selecting
from a uniform test set of 50 possible PINs or patterns, our models
can predict the PIN entered 43% and pattern 73% of the time within
5 guesses. Further, when we introduce movement noise caused
by users walking while providing input, our models can still pre-
dict PINs 20% of the time and patterns 40% of the time within 5
guesses. We also employ a Hidden Markov Model (HMM) to pre-
dict variable-length sequences of digits pressed in a PIN or swipes
in a password pattern. On this considerably harder sequence predic-
tion problem (where the random chance of being correct is roughly
0.01%), we can predict PINs 40% of the time and patterns 26% of
the time within 20 guesses

To summarize, this paper makes the following contributions:

e We perform a large user study of sensor-based side channels
(24 users and over 9,600 samples); the first study to con-
sider both controlled (users sitting) and uncontrolled settings
(users walking).



e We develop novel machine learning features for accelerom-
eter readings that are sample-rate independent and based on
signal processing and polynomial fitting techniques.

e We demonstrate that the accelerometer sensor is a highly
capable side channel against security-sensitive input, such
as PINs and password patterns, and general input based on
touch/tapping or gesture/swiping. In comparisons to previ-
ous results, where applicable, accelerometer data performs
nearly as well, or better, than gyroscopic data.

e We observe that there is reasonable consistency across users
and devices; however, movement noise and user variance
may be too great to construct an accelerometer-reading to
input dictionary mapping.

Finally, based on these results, and previous sensor-based side
channel results [6, 7, 22, 24, 34], it is clear that the security model
for smartphones with respect to on-board sensors should be recon-
sidered. In this paper, we also propose context-based [23, 9, 4]
sensor access revocation policy for smartphones, such that applica-
tions with access to sensors either block (or fail) when attempting
to read from such sensors while sensitive input is being provided.

2. RELATED WORK

Gyroscopic Smartphone Side Channels. Cai ef al. first proposed
using on-board smartphone sensors as a side channel to learn users’
input [6]. Their system, fouchlogger, describes a side channel that
employs the gyroscopic orientation sensor to determine broadly
where a user touches on a large keypad. Their results were very
encouraging, and in controlled settings, were able to infer which
of the 10 regions a user touched with 70% accuracy. Similarly, in
taplogger, Xu et al. refined the techniques for inferring user input
from gyroscopic data [34]', and were able to predict PIN-like in-
put based on a telephone key pad. Xu et al.’s models detected all
the digits of the PIN within three inference steps; that is, upon the
successive, non-overlapping predictions for each digit, all digits of
the PIN were covered. However, Xu et al. does not detail a process
for choosing a permutation of the predicted labels. For example,
after three predictions, there are three possible values for each digit
in a four-digit PIN, thus requiring, in the worst case, 81 possible
guesses to predict the input. Surprisingly, Xu et al. does not apply
standard sequence prediction techniques, such as Hidden Markov
Models (HMM), to link each individual prediction together.

In work parallel to our own, Milluzo er al. developed
TapPrints [22] which uses a combination of gyroscopic and ac-
celerometer data to infer tap events and location of tap events on
tablet and smartphone keyboards. Additionally, in parallel, Cai et
al. developed further techniques using both the accelerometer and
gyroscope to infer numeric and soft-keyboard input on tablets and
smartphones [7].

Our work differs from these previous and parallel techniques
in that we investigate using only the accelerometer sensor to in-
fer user input. Additionally, we demonstrate that input based on
swipe gesturing as well as input based taps/touches are suscepti-
ble to sensor-based side channels. We also explore the use of new
sample-rate independent features, and finally, we investigate the
effects of motion-noise, such as a user walking, which can have a
considerable effect on the accuracy of motion-based inference tech-
niques.

Accelerometer Smartphone Side Channels. ACCessory [24]
by Owusu et al. is closer to our work. In ACCessory, the authors

! Xu et al. do investigate accelerometer data in taplogger for pur-
poses other than inferring the location of tap events on the screen.

demonstrate that the accelerometer can be used as a basic side chan-
nel to infer short sequences of touches on a soft keyboard, and that
standard machine learning techniques can be employed to infer in-
put like passwords. Similarly, we show that the accelerometer can
be used to infer secure input, and we also demonstrate that input
can be classified with a sequence predictor.

Our work differs from Owusu et al. in that we also demonstrate
that swiping can be inferred from accelerometer data in addition
to touch input. We additionally show that certain touch input, like
PIN entry, can be classified at a much higher rate and with fewer
guesses than suggested by Owusu et al.. ACCessory was able to
classify input strings of length 6 with 60% accuracy, but needed
212 guesses to achieve that result. In a similar experiment with PIN
entry, we showed that the PIN entered can be classified with 40%
accuracy within 20 guesses on average (see Figure 15).

In interesting related work, Marquardt et al. showed that smart-
phone accelerometers can infer more than input occurring on the
phone. They developed (sp)iphone that collected accelerometer
readings while the smartphone is placed next to a keyboard [20].
The vibrations of a user typing on the keyboard is recorded by
the phone and generally interpreted to predict what was typed on
the keyboard. This technique is similar to acoustic keyboard side-
channels that use audio recordings to surreptitiously learn user in-
put [1, 35], as well as keystroke timing techniques [31].

Smartphone Side Channels. Side channels against secure smart-
phone input have been previously demonstrated for the Android
password pattern input. In earlier work, we described smudge at-
tacks that are based on observing the oily residues remaining on
touchscreens after a pattern is entered [2]. The side channel de-
scribed here has a similar goal, but is based on internal sensors
rather than external observations. An additional observation made
in [2] is that the Android password pattern is more susceptible to
the side-channel than other secure input types, such as PINs or
text-based passwords. Our conclusion is that inferring password
patterns using the accelerometer is generally more effective than
inferring PINs, but in specific situations such as sequence predic-
tion, PINs can be slightly easier to infer.

Other sensors and recording devices have been proposed as side
channels on smartphones. Shlegel et al. proposed Soundcomber [30]
and demonstrated that a malicious app that has access to the micro-
phone can learn the difference between general chatter and tone
dialing, effectively learning the numbers a user calls. Similarly, Xu
et al. considered information that can be leaked if a malicious app
has access to the smartphone’s camera [33], and Cai ef al. inves-
tigate sniffing sensors including the microphone, camera, and GPS
receiver [8].

3. BACKGROUND

PINs. Both Apple iOS and Android based smartphones support
PINs as a screen lock mechanism. PINs are the primary iOS screen
lock interface, but Android provides two other options: a graphical
password pattern (see below) or a pass-phrase consisting of both
numbers and letters. A PIN consists of a sequence of four digits, 0-
9, and digits may repeat. Thus, there are a total of 10,000 possible
PINs, and iOS will lock down the phone after 10 failed attempts,
while Android allows for 20 failed attempts. In addition to securing
the device, PINs are also used in banking applications, particularly
Google Wallet [13] requires a user to enter a PIN to confirm trans-
actions.

Password Pattern. The Android password pattern is a graphical
password scheme that requires users to enter a sequence of swipes
that connect contact points in a three-by-three grid. The user must
maintain contact with the screen while entering a pattern, and a



Figure 1: Android Password Figure 2: Accelerometer Axis
Pattern Instructions of Measurement (Source [10])

user’s pattern must minimally contact four points (see Figure 1).
Android allows for 20 failed pattern entry attempts before lock-
ing the device permanently. Despite its seeming complexity, only
389,112 possible patterns exist [2], and likely, many of those pat-
terns are completely unusable for general daily use: in our experi-
ence (see Section 5), using a randomly chosen pattern as a security
credential will be too difficult to enter reliably. The number of
actual human-usable patterns remains an interesting question; we
hypothesize that it is at least an order of magnitude less than the
total of available patterns.

Accelerometer Sensor. The accelerometer sensor measures linear
movements in three dimensions, side-to-side, forward-and-back,
and up-and-down (labeled z, y, and z respectively in Figure 2).
Upon each reading, a data element is provided that contains the ac-
celeration reading in all three linear directions, and the units are
in m/s® with the force of gravity considered. Note that the ac-
celerometer sensor measures different movement than the gyro-
scopic sensor, which senses the orientation of the phone, i.e., the
pitch and roll angles. Although certain movements can be mea-
sured in both, e.g., tilting the phone forward and back, others are
only measured by one sensor or the other, e.g., holding the phone
face up and moving it left would only be measured by the ac-
celerometer sensor.

Accelerometers have been previously studied in the computer
science community, and researchers have shown that accelerometer
readings can provide a rich source of information about the actions
of individuals [3, 18, 21, 28, 29]. Using accelerometers as a user in-
terface (UI) enhancement has also been proposed [18, 19, 27]. The
accelerometer sensor is used in many applications, for example in
the Bump application [32], an application to quickly exchange con-
tact information by “bumping” smartphones together. More light
weight applications also make use of the accelerometer, for exam-
ple applications that simulate a “light saber” use the accelerometer
to determine when to play a sound effect [14].

4. ATTACK SCENARIO

We consider an attacker who wishes to learn the secure input of
smartphone users via an accelerometer side channel. An attacker
may gain access to accelerometer data in a wide variety of ways
— e.g., the attacker finds a phone where an application has written
accelerometer data to the device storage. We consider a more active
attacker who distributes a malicious smartphone application that
can run in the background, has access to the accelerometer, and can
communicate over the network. As an example of the kinds of input
an attacker may be able to learn, we focus on the information that
is leaked by two common input types, entering a PIN or Android
password pattern that is used to lock the smartphone.

To this end, the malicious application is aware when the phone
initially wakes and, thus, the smartphone will prompt a user for a
PIN or password pattern while the malicious application is running

in the background. The application then activates the accelerometer
sensor, recording measurements for a short time period. We found
that it takes 2.4 seconds to enter a pattern and 1.3 seconds to enter
a PIN, on average, so the accelerometer does not need to be active
for very long. The accelerometer measurements are eventually sent
over the network to be analyzed offline.

The attacker’s goal at this point is to develop a method for com-
paring the captured accelerometer data to a corpus of labeled ac-
celerometer data’. That is, the attacker has at his/her disposal ac-
celerometer data that he/she knows was collected when a particu-
lar PIN or pattern is entered. The problem of identifying the PIN
or pattern entered reduces to a classic machine learning problem:
Given previously labeled input, what is the label of the unknown
input? In this scenario, the label is the PIN or pattern of the victim.

We consider two scenarios in our experiments for the attacker’s
capabilities to make this comparison to the corpus at his/her dis-
posal. In the first scenario, we assume that the attacker has a large
corpus, and samples of the PIN or pattern he/she is trying to learn
can be found in the corpus. In the second scenario, we assume that
the attacker does not have samples in the corpus, or not enough to
generate a strong model. Instead the attacker has a limited set of la-
beled samples of individual swipes or touch events, such as a swipe
from left to right on the screen or the touch of a particular digit.

In our experiments, we model these two scenarios by first con-
sidering a sample set of 50 patterns and 50 PINs. Here the goal
of the experiment is to measure how accurately a pattern and PIN
can be identified based on previously seen input. In the second sce-
nario, where the attacker does not have sufficient labeled data, the
goal of the experiment is to measure the accuracy of a sequence
predictor that tries to identify a pattern by making a sequence of
smaller predictions (e.g., a single swipe or digit press). We present
more details of our machine learning setup in Section 6.

Of course, an important question is: What can an attacker do
with the information learned? Clearly, if the attacker has learned a
user’s password pattern, it is only useful if the attacker gains phys-
ical access to the victim’s phone at some later point because the
Android password pattern is not a widely used security mechanism.
Granted, this is a reasonable attack scenario. However, learning a
user’s smartphone unlock PIN may be applicable in other settings
if the user reuses his/her PIN, such as an ATM PIN or in an online
banking application [5].

More broadly, we focus on PINs and Android password patterns
because they represent a larger set of user input on touchscreens
that is composed of point touching and gesturing. Demonstrating
an accelerometer side channel against these input types is an exam-
ple of a broader family of sensitive touchscreen inputs that may be
susceptible to this side channel.

S. DATA COLLECTION

We built two applications to model the attacker’s perspective
and determine if a background application with access to the ac-
celerometer can infer input to the foreground one. The first appli-
cation prompts users to enter a PIN, and records accelerometer data
in the background; similarly, the other application prompts the user
to enter a pattern while recording accelerometer data in the back-
ground. A visual of the applications can be found in Figure 3.

We recruited 24 users to participate in the core study: 12 users
entered password patterns, and 12 users entered PINs. The users
in our experiment were surprisingly diverse. Two users were left

The attacker could build such a corpus by distributing an appli-
cation that requires users to enter patterns for other purposes, such
as [11, 15, 26].



Model Name Chipset Pattern/PIN | Sample Rate
Nexus One Snapdragon S1 5/5 ~ 25 Hz
G2 Snapdragon S2 6/6 ~ 62 Hz
Nexus S Hummingbird 1/0 ~ 50 Hz
Droid Incredible | Snapdragon S1 0/1 ~ 50 Hz

Table 1: Android smartphones used in experiments, their chipsets,
number times used in either pattern or PIN experiments, and their
observed accelerometer sample rate.

handed, and less than 50% of the users owned a smartphone. All
users, however, have used a smartphone at some point. Only two
users locked their phone, and they did so using a PIN and not a
password pattern.

We used a total of four phones in our experiment, two were pro-
vided by us: Nexus One and G2. If the user owned an Android
phone, we installed the application directly on his/her phone for the
experiment. This occurred twice, and experiments were also con-
ducted on a Nexus S and Droid Incredible. All the phones in our ex-
periments indicate through the standard API that the accelerometer
can sample at 76 Hz. In practice, we observed this to almost never
be the case, and even phones with the same chipset sampled at dif-
ferent rates. This is likely due to slight differences in the Android
OS installed. Details about the phones used in the experiments can
be found in Table 1.

Experiment Overview. The experiment for both PINs and pat-
terns consisted of two rounds. In the first, the users were asked to
sit at a table and enter in 50 PINs/patterns in random order using
their dominant hand a total of 5 times. Following, we asked users
to walk in a circle (around our lab) while entering in the same set
of 50 PINs/patterns using their dominant hand. We provided very
little oversight during the experiment: After providing instructions,
we periodically checked in on users’ status, but did not provide
further instruction.

For each user, we collected 5 samples of each PIN/pattern in
a controlled setting (i.e., sitting) and 1 sample in an uncontrolled
setting (i.e., walking). We considered the sitting data set as train-
ing data, and the walking data set as the testing data, only testing
against it once all the models were tuned using the sitting data. All
the results presented, unless otherwise noted, are an average across
multiple runs of a 5-fold cross validation using the training set,
while the user was sitting.

It is important to note that the patterns and PINs used in the
experiment are not the users’ real patterns or PINs, and that real-
world users will likely be very well practiced at entering in their
own PINs or patterns. This familiarity could affect the way (e.g.,
the way the phone moves in space) a user enters a pattern or PIN.
We do not model this in our experiments (indeed, performing such
an experiment on users’ actual secure input could be seen as un-
ethical). However, our test users, by the end of data collection,
have entered each PIN and pattern a number of times, and many
even commented about their familiarity with the patterns/PINs in
the test set upon completion.

PIN Data. PINs were selected at random. A total of 50 PINs were
used in the experiment, and all twelve users entered the same set
of PINs a total of 5 times. We only considered accelerometer data
when the user entered the PIN correctly, and users are re-prompted
until the PIN was entered correctly. In addition to recording ac-
celerometer readings, we also log the timing of the touch events to
ensure that the accelerometer data matches the timing of PIN entry.
We considered all accelerometer readings that occurred within 50
ms of entering the first digit and 50 ms after entering the last digit.

Pattern Data. Pattern data is collected in a similar way to PIN
data — twelve users enter a set of 50 patterns a total of 5 times and

P A DB, w0 s ] 6 A
TREYFAAERtry

Figure 3: PIN and Pattern Entry Applications

touch information is logged when a user gestures across a contact
point. We initially selected a set of 50 patterns at random. However,
we quickly discovered that the vast majority of the patterns selected
were surprisingly hard to enter. The patterns were convoluted and
overly complicated, and in a initial test of the application, our test
users reported that it took many iterations (5+) to enter the pattern
correctly. As a result, we wished to use a set of reasonable and
representative password patterns that our test users could reliably
enter on their first attempt. We developed two simple criteria to
select patterns at random that meet this requirement.

The first criterion limits the number of cross-overs, that is, it
limits the number of swipe segments that cross (or double back)
over previous swipe segments (e.g., the pattern in Figure 3 contains
a single cross-over). The motivation for this criterion is that users
would likely move in consistent directions. We anticipate that users
would generally select the next contact point in region near the cur-
rent contact point. The second criterion restricts contact points that
are untouched, requiring that untouched contact points be gener-
ally near other untouched contact points. Similar to the cross-over
criteria, this restriction again assumes that users will likely connect
points in nearby regions.

We do not argue that real world users apply these criteria while
selecting their patterns, but in our experience, these criteria do pro-
duce patterns that our test users found reasonable to enter. Studying
user selection criteria for password patterns is beyond the scope of
this paper, and we are unaware of any such study.

6. ANALYSIS AND ML TECHNIQUES

In this section, we present our analysis of the collected accelerom-
eter data as well as present our machine learning techniques for
classifying data. The accelerometer measurements for both PINs
and patterns consist of a sequence of readings in each accelerom-
eter dimension (x,y,z). In addition to the accelerometer measure-
ments, we also record the timing of touch events. A touch event
for a PIN is when the user presses a digit, and a touch event for
a pattern is when a user swipes across a contact point. The touch
events are used to properly align the accelerometer data.

A malicious application distributed by an attacker will not have
direct access to touch events from other applications—if it did, then
there would be no need to employ side channels. A malicious ap-
plication must also determine when secure input begins and how to
segment the accelerometer readings. Automatically detecting touch
events from raw accelerometer data is beyond the scope of this
study; however, other machine learning techniques (or information
from other side channels) could be employed to solve this problem.
Additionally, techniques suggested in [34] could be applied here,
but in our investigation, we found that it may be ineffective with
low sample rates and gentler tap events, as what seems to occur for
single hand input. Further, the techniques in [34] would be inef-
fective for gesture input, as required to determine touch events for
patterns.



Feature Length | Description

STATS 6 Root mean square, mean, standard devia-
tion, variance, max and min

3D-Poly-Deg 4 Parameters of a degree-3 polynomial fit

3D-Poly-STATS 6 STATS for a degree-3 polynomial fit recon-

struction

iFFT-Poly 35 The inverse Discrete Fourier Transform
(DFT) of a DFT of the 3-D polynomial fit
curve using 35 samples.

iFFT-Acc 35 The inverse DFT of the DFT of the ac-

celerometer readings using 35 samples.

Table 2: Features Set: Each feature is extracted in each linear di-
rection in the accelerometer reading.
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Figure 4: Visual example of normalization: In the top plot, the raw
accelerometer data is presented with the appropriate mean, linear,
and quadratic fits, and following plots show the affect on the raw
accelerometer data when normalized to those fits, respectively.

6.1 Feature Extraction

In this section, we describe the feature set used as input to the
machine learning classifiers. For notation, consider a stream of ac-
celerometer readings A = {au, ..., an} of size n. Each data value
a; € A contains four sub-values (or elements): ay, the accelera-
tion in the x direction; a?, the acceleration in the y direction; a3,
the acceleration in the z direction; and, a’f, the time stamp of this
reading. Additionally, allow A to refer to the projection of the d*"
element of the readings in A, thatis, A* = {a{,...,a%}.

As is, the accelerometer data is varied, affected by subtle tilts and
shifts. For example, often the z dimension is close to 9.8 m/ s2,
i.e., the force of gravity. The first step in feature extraction is to
normalize the readings in each dimension such that they fluctuate
about 0. We use three normalized forms of A for feature extraction:

1. Mean Normalization: For each linear direction d, compute
the mean m? = mean(A?), and return: A,, = {ad — m?}.

2. Linear Normalization: Perform a linear fit and compute the
fit curves L? = {1¢,...,1%} for each accelerometer direc-
tion d, and return: A; = {a? — 1¢}.

3. Quadratic Normalization: Perform a quadratic fit and com-
pute the fit curves Q¢ = {q¢, ..., 2} for each accelerome-
ter direction d, and return: A, = {a — ¢I}.

A visual example of the normalization is provided in Figure 4. Fol-
lowing the normalization, we have three representations of A, A,,,
Ay, and A4. Now, for each normalized accelerometer data stream,
we extract the features in Table 2.

The first set of features extracted is standard statistics of the ac-
celerometer stream (STATS), such as the root mean square, mean,
standard deviation, variance, max and min. Each of these stats are
computed for each normalization in each dimension, e.g., for A,,
we compute STATS (A7), STATS(AY,), STATS(AZ,) and the re-
sulting 18 features are appended to the feature vector.

The next two features are computed by first fitting a 3-degree
polynomial to the accelerometer readings in each dimension. The

PIN 2087 PIN 2358
Acceleromter Data (iFFT) (x-data) Acceleromter Data (iFFT) (x-data)

A o S A
( SRS = S e

7N o] —
<93 ~1.0f
-15

25 30 5 5 10

5 10 15 20 15 20 25 30 5
3-d Polynomial Fit 3-d Polynomial Fit

20 25 30 5 5 10 15 20 25 30 5

Figure 5: An example of polynomial fit features for PIN 2087
(left) and PIN 2358 (right). The top plot shows iFFT-ACC of the
accelerometer data (just acceleration in the x dimension), and the
bottom plot shows the 3-d polynomial fit iFFT-Poly).

parameters of the fitted polynomial in each dimension are the next
features added (3D-Poly-Deg); that is, ds3, d2, d1,do from f(t) =
dst® 4+ dot? 4+ dit + do where t refers to the timestamp of the
readings. Following, we compute the curve values at each time
stamp in A* and add the STATS of that curve as a set of features
(3D-Poly-STATS).

The next two features, iFFT-Poly and iFFT-Acc, are sample-
normalized forms of the polynomial curve and accelerometer stream.
The goal is to use the consistency in the shape of the curves of both
the polynomial fit and the accelerometer readings as features, but
there is a large variance in the number of samples n across readings,
even when a user enters the same PIN or pattern multiple times. We
wish to instead use the curves as features in a sample-normalized
way such that regardless of n, we can represent the stream in m
values.

To solve this problem we use 1-dimensional Discrete Fourier
Transforms (DFTs) with a resolution of m = 35 samples. More
precisely, we compute

real(Fp, ' (Fm (AD)).

This computation first encodes the signal using m complex fre-
quency basis functions, then reconstructs the original signal from
its compressed form. This preserves the general shape and values
of the curve, but it normalizes the time domain to m samples and
discards noisy high frequency components of the signal. We ex-
perimented with varied values of m and found that a small value
of m did not preserve enough information, while a large value of
m preserves too much variance because if m > n, the input is
zero padded. We found that m = 35 to be a good compromise
between these extremes, and it performed effectively for both PINs
and patterns.

To further demonstrate this technique, in Figure 5 we visualize
the iFFT-Acc and iFFT-Poly for accelerometer reading collected
while a user entered in two different PINs (note, this is accelerom-
eter readings in just the = dimension). Even though the same PIN
was entered by the same user on the same smartphone, n varied
between 59 and 112; however, you can see that regardless of the
variance in n, there is a shared shape to the curves. This is what we
wish to capture in our feature set.

In total, for each accelerometer reading, we use 774 features.
That is, for each dimension (z, ¥, and z) and for each normaliza-
tion, we extract 86 features, totaling 774 = 3 x 3 x 86. In exper-
iments, we found that all the features improve prediction results,
and that these features were effective for both PINs and patterns, as
well as single tap/touch and swipe/gesture events.

6.2 Machine Learning Classification

Two classification procedures are used in experimentation to
match the attack scenario described in Section 4. Recall that we



wish to model two scenarios: (1) The attacker has a large corpus of
labeled accelerometer data at his/her disposal and attempts to match
unknown input to some label in the corpus; and (2), the unknown
input is not in the corpus (or not well represented).

Logistic regression. To model the first scenario, where the at-
tacker is matching unknown input to labels in a corpus, we train a
multi-class logistic regression model on the feature vector labeled
with the PIN or password pattern (we use the LIBLINEAR imple-
mentation [12]). For each possible label, the logistic regression
finds a discriminating line in feature space to best separate exam-
ples of the label from examples of all other labels. Thus, the regres-
sion learns a weighted sum of the features described in Section 6.1
for each label.

Given accelerometer data from entering a PIN or pattern not used
in training, the resulting logistic regression model will output a pre-
dicted label (i.e., a PIN or pattern), or a set of labels ordered by the
likelihood of being the true label. If the label matches the input, we
consider this a successful prediction. We consider multiple guesses
from the model as the ranking of the output label that matches the
input label.

There are some limitations to this experiment because we only
learn models for the known PINs and patterns in the training set;
that is, the 50 pattern or 50 PINs used in the experiment as op-
posed to all 389,112 possible patterns and 10,000 possible PINs.
However, picking from random chance of the possible 50 patterns
would result in a 2% prediction accuracy. The model greatly ex-
ceeds random guessing by a factor of 20 or more for patterns and 9
or more for PINs.

Hidden Markov Models. To model the second scenario, where
the attacker’s corpus may not have sufficient samples of the un-
known input, we build a classifier that can predict previously un-
seen sequences of patterns and PINs. To achieve this, we obtain the
probability of each label from the output of the logistic regression
classifiers, and use these as observation probabilities in a Hidden
Markov Model (HMM). The HMM finds the most likely sequence
of input patterns or PINs (maximum a posteriori) by jointly con-
sidering the probabilities of individual swipe or digit entry classi-
fications along with the likely transitions between swipes or digit
entries.

For example, for a four-digit PIN, the HMM jointly infers the
most likely set of four digits given the individual beliefs in what
digit was pressed at what time, and what digits are likely to follow
other digits—certain combinations of digit transitions are impos-
sible, and others are more likely than others. The same inference
process can be used for patterns based on which swipes (connecting
two contact points) are likely to follow previous swipes.

Formally, let £; be a possible label for position 7 in a sequence,
and o; its corresponding observed feature vector. Then, we obtain
p(€;]o;) from the logistic regression model for all £;—the probabil-
ity that the label is ¢; given the data o;. The transitions p(€;+1, ¢;)
are estimated via maximum likelihood from our training data; sim-
ply empirical averages of each transition in the training data. For a
sequence of length k, the HMM determines the most probable joint
assignment

k k—1
(6. 6) = argmax [ [ p(tslo:) [] p(tis bis)-
(0108) 17 el
Note that the joint space of possible labels (¢1, . .., £)) is combina-

torial (exponential in k). Fortunately, efficient dynamic program-
ming techniques exist to solve this exactly in O(k?) time.

In our experiments, we explore label spaces of different granu-
larities. In an HMM over unigrams, each position in the sequence
corresponds to a single swipe or digit. In an HMM over bigrams
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Figure 6: Prediction accuracy over multiple guesses for predicting
patterns (left) and PINs (right). The shaded trend lines are individ-
ual users.

labels consist of a pair of swipes or consecutive digits. We quickly
found that the unigrams performed poorly, and in the results below,
we only use bigram HMMs. This is a proof of concept, and a larger
model could incorporate even larger scope (larger grams), includ-
ing refined transition matrices that account for human pattern/PIN
selection factors.

7. EVALUATION RESULTS

In this section, we present the results of our experiments for in-
ferring PINs and patterns using accelerometer reading. We begin
by modeling the first attacker scenario, where the attacker has ac-
cess to a large corpus of labeled data. We additionally address
trends in expanding the corpus from 50 PINs/patterns, and how
such prediction models would fare. Next, we investigate a gen-
eral prediction model based on Hidden Markov Models which ad-
dresses the second attacker scenario. All the results presented in
this section, unless otherwise noted, are the average across five ran-
domized runs of a five-fold cross validation.

7.1 PIN/Pattern Inference

To begin, we are interested in how distinguishable PIN/pattern
inputs are based on accelerometer readings using the features de-
scribed in Section 6. The data used in this experiment consists of
the 50 PINs and 50 patterns collected from the 24 users while they
were sitting. The experiment proceeds by performing a five-fold
cross validation. Each of the five runs from a given user is ran-
domly divided into five folds, and a model is constructed from the
features extracted from four of the folds, and tested on the fifth.
This process is repeated until all folds have been in the testing and
training positions.

The results from this experiment are presented in Figure 6. The
y-axis is prediction accuracy, and the x-axis is a of plot is the num-
ber of prediction or guesses attempted; that is, the logistic regres-
sion model output allows for a probabilistic ranking of the predicted
labels based on how likely it is the true label. For example, two
guesses refers to using the two top ranked predicted labels. If the
true label is one of those two labels, we consider it accurately pre-
dicted with two guesses. The dark trend line refers to the average
across all 12 users for PINs and 12 users for patterns. The error
bars on this curve mark the 1st and 3rd quartiles. The grayscale
lines are individual users, and the dotted line represents the pre-
diction probability for random guessing®. We use this style in all
graphs presented in this section unless otherwise noted.

Inspecting Figure 6, it is clear that accelerometer readings do
leak sufficient information to differentiate between input of the
same type. In all cases, across all users, our model can infer the pre-
cise PIN or pattern when selecting from the set of 50 PIN/patterns

>Note that the trend line for random guessing with multiple at-
tempts is not linear because of conditional probabilities.
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Figure 7: Trendline for how the number of examples affect predici-
ton for patterns (left) and PINs (right)). Note that we include an
additional three users who provided 12 examples, and the original
24 users only provided 5 examples of each PIN/pattern.

at a rate substantially higher than random guessing. Upon the first
prediction, for patterns, the model on average predicts with 40% ac-
curacy, 20 times greater than random guessing of 2%; however, PIN
inference only averages 18% across all users, just 9 times greater
than random guessing. But, upon successive predictions, the mod-
els perform better: On the fifth prediction, the model can predict
the pattern with 73% accuracy and PINs 43% of the time, a dif-
ference of ~50% and ~30% over random guessing, respectively.
Considering prediction accuracy rates after multiple guesses is im-
portant because an attacker would likely have multiple attempts at
guessing secure input, such as the 20 attempts provided by Android
for unlocking the phone and the 10 attempts provided by iOS.

Example Trends. In the experiment above, each cross-validation
uses just four examples for training while testing on the fifth. An
interesting question is: How would these models perform if more
examples were available? That is, we are interested in the example
learning curve. To investigate this we recruited three additional
users to enter in the same set of 50 patterns and 50 PINs a total of
12 times, each in the controlled, sitting endowment. while sitting
using the same instructions as before. We then include those results
with the original 24 users to see if there should be an increase in
prediction accuracy with more training data.

To measure the effect of additional examples, we incrementally
increase the number of examples (and folds) performed. Beginning
with two examples for each PIN/pattern, we perform a two-fold
cross validation. Following, we use three examples and perform a
three-fold cross validation, and so on, until there are no more ex-
amples to include. The results of this experiment are presented in
Figure 7: The x-axis is the number of examples used, and the y-
axis is the prediction accuracy. For both patterns and PINs, there
is a clear increase in inference accuracy as the number of exam-
ples increase. At the extreme, with 12 examples, patterns are in-
ferred with an accuracy near 60% on the first prediction, and PINs
are near 40%. Both PINs and patterns see diminishing returns on
accuracy after 8-10 examples; the logarithmic growth of the learn-
ing curves is consistent with computational learning theory [16].
Overall, patterns, again, are more easily predicted via accelerome-
ter data given the features we developed, plateauing at a prediction
rate 50% greater than that of PINs.

Label Trends. Another important question is: How would these
models perform as the number of available labels increases? That
is, we are interested in the performance of a similar model that
must predict from a set of 10,000 labels, rather than just 50, as
would be the case if an attacker were targeting users generally. This
scenario can be estimated by performing a sequence of five-fold
cross validations, where in each step an additional label is included
in training and testing. For example, in the first step, the model
must select between two labels, and in the last step, it must select
from 50, as before.

— Average — Average
-- Random -- Random
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(y=x"-0.219*1.015)

. Log Fit [R~2: 0.99]
(y=x"-0.390%1.008)
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s

Figure 8: Trendline for the number of samples being selected
from: patterns (left) and PINs (right)). Note that the accuracy rates
closely match an inverse exponential.
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Figure 9: Prediction accuracy over multiple guesses for predicting
patterns (left) and PINs (right) for different devices.
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Figure 10: Prediction accuracy over multiple guesses for predict-
ing patterns (left) and PINs (right) when training and testing on
different devices.

The results of this experiment are presented in Figure 8: The x-
axis is the number of included labels, the y-axis is the prediction
accuracy, and the dotted line is the probability of random guess-
ing. As the number of labels in the model increases, the average
trend matches very closely (R? > .99) to an inverse exponen-
tial (in dashed-red), and using this trend line, we can extrapolate
the performance of such a model (with 5 examples per label) pre-
dicting across any number of labels. For example, selecting from
10,000 PINs, we should expect an inference accuracy of about 2%
on the first prediction, which is 277x greater or 8 orders of magni-
tude greater than random guessing. For patterns, if the model is se-
lecting from 10,000 patterns, it should predict with an accuracy of
13% on the first prediction, and, if it was selected from all 389,112
possible patterns, it should predict with an accuracy of 6% on the
first prediction, 23,567x greater or 14.5 orders of magnitude greater
than random guessing. These are likely optimistic projections for
our feature set, but these results do suggest that predicting input
from a large label space using accelerometer readings is tractable,
if an attacker were able to collect sufficient examples.

User and Device Effects. As noted in Table 1 and in Section 5, the
data set contains rather large variance across devices and users. An
important question is: How does training on accelerometer read-
ings from one device or user and testing on another device or user
affect an attacker’s inference capabilities? Such results speak to
the attacker’s ability to construct a large and diverse corpus to use
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Figure 11: Prediction accuracy over multiple guesses for predict-
ing patterns (/eft) and PINs (right) for training on 11 users and test-
ing on one.

in training on users/devices previously unseen.

To begin, we investigate prediction performance for training and
testing on the same device for the same user. These results are
presented in Figure 9. As we might expect, devices with higher
accelerometer sample rates (refer to Table 1) tend to perform better;
however, the decrease in performance for lower sample rates is not
as extreme as was seen in [24]. For patterns, there is a small drop
in inference performance between the Nexus S and the Nexus One,
although the Nexus S effective sample rate is double that of the
Nexus One. PINs seem more affected by sample rate issues, there is
at least a 50% drop in performance between the highest sample rate
device and the lowest sample rate one. Yet, all devices perform well
above random guessing, suggesting that the features are reasonably
resilient to sample rate fluctuations, as addressed by the sample-
normalized features (see Section 6).

However, in order to show that the attacker can construct a com-
prehensive dictionary, we must show that training and testing on
different devices and different users is also effective. In Figures 10
and 11, we present the results of experiments to test such a capabil-
ity. First, in Figure 10 we present two trend lines: one where train-
ing and testing occurred on the same device and one where training
and testing occur on different devices. As expected, training and
testing on different devices performed worse than using the same
device. This decline was fairly significant for patterns; however,
the decline was relatively small for PINs by comparison.

In Figure 11, we present the results of experiments where we
constructed a model trained on all but one user in the data set, and
tested on the remaining. This experiment most closely resembles
the scenario of an attacker with a large corpus trained on varied
users and devices. Interestingly, although patterns are inferred at a
reasonable rate on average, there is great variance. Inspecting the
gray-scale lines for individual users, some users perform fractions
better than random guessing, while others perform as well or better
than testing and training on the same user (the dash-dotted trend
line). PINSs, surprisingly, perform much more consistently when
training and testing across multiple users and devices, and even
perform as well (and sometimes better) than testing and training on
a single user/device. This suggest that dictionaries of accelerometer
data can be collected, but there seems to be wide variance for some
input types that may affect accuracy.

Movement Noise.  Finally, all the results presented previously
considered data collected in a controlled movement setting, i.e.,
while the user was seated at a table. It is important to know how
these models perform if they were predicted from noisy data, e.g.,
collected while the user was walking. Although it is likely that
an attacker would obtain stable accelerometer data, he/she would
also obtain data while the user is in motion. The effects of noisy
samples must also be considered if the attacker were to construct a
representative corpus.

In Figure 12, we present the results of an experiment that in-
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Figure 12: Prediction accuracy over multiple guesses for predict-
ing patterns (left) and PINs (right) while the user is walking. The
shaded trend lines are individual users.
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Figure 13: Prediction accuracy for uni- and bigrams for patterns
(left) and PINs (right) with 5 guesses. Note that there are 9 and
10 possible unigrams and 72 and 100 possible bigrams for patterns
and PINs, respectively.

vestigates the affect of movement noise. First, we built a model
using the data for a single user while they were sitting, and then
we tested that model on data collected while the user was walking.
Also presented in Figure 12 is the trend line for the performance
of the cross-validation while the user is just sitting. Clearly, there
is a significant decrease in the inference performance as a result of
movement noise. However, what is unclear from this experiment
is how a model would perform if it had a large collection of move-
ment noised examples to train on. Unfortunately, we do not have
sufficient samples to investigate such a proposition, but it is likely
that performance would improve, but would not surpass controlled
and movement-stable collection scenarios.

7.2 PIN/Pattern Sequence Inference

The results above model the first attack scenario, where the at-
tacker has a large corpus of labeled data available, and the attacker
can apply logistic regression to differentiate input. In this subsec-
tion, we consider the second attack scenario, where such a corpus
is unavailable, and instead the attacker must infer the larger input
by performing a sequence of smaller inferences. For example, we
consider an attacker who has a set of labeled data that refers not
to the exact PIN/pattern but to examples of single touches of digits
or individual swipes. The goal is to link those predictions together
using a idden Markov Model (HMM) to infer the whole input.

Single Touch/Gesture Inference. The first step in this process
requires showing that the features described previously also differ-
entiate single touch or swipe input. To study this, we segmented
the accelerometer data for PINs and patterns based on the recorded
touch logs such that features can be extracted based on a single
event. As noted previously, the process an attacker may use to seg-
ment the data in this manner using just accelerometer data is be-
yond the scope of this work; however, such segmentation is likely
possible, such as described in [34].

We performed experiments for inferring both unigrams and bi-
grams. A unigram consists of a swipe across a contact point in a
pattern, or touching a single digit for a PIN. A bigram consists of a
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Figure 14: Prediction results for PIN pad as factor greater than
random guessing, included (in smaller text) results from taplog-
ger [34].

swipe connecting two contact points in a pattern, or two sequential
digit presses in a PIN. Thus, there are 9 and 10 possible unigram
values for patterns and PINs, respectively, and 72 and 100 possible
bigram values for patterns and PINs, respectively. To test the infer-
ence capabilities of an attacker, we use the collected accelerometer
data and divide it into uni- and bigrams appropriately using the
touch information and perform a five-fold cross validation for each
user. The average across all users is presented in Figure 13.

Clearly, both uni- and bigram prediction proceeds at a rate well
above random chance, with bigrams performing better overall as
a factor above random chance. This bodes well for sequence pre-
diction using bigrams. However, when we conducted experiments
where we test and train on different users, or when we introduce
movement noise, the models fail, either performing a small fraction
greater than random chance, or worse. As we will discuss below,
when using such models in an HMM, they were unable to infer the
input, even after 1000 guess attempts.

Comparison to Taplogger. In the case of unigram inference for
PINs, we can compare the results of raplogger [34] to our own since
Xu et al. used a numeric number pad, much like PINs. Recall that
taplogger uses gyroscopic data to infer where on a touchscreen a
tap event occurred, while we use accelerometer data. Figure 14
presents the comparisons for four guesses (described as coverage
in [34]). Although, taplogger performs well, our technique is com-
parable to taplogger’s results, either performing nearly as well, or
slightly better, in all instances.

Hidden Markov Model Inference. With models for individual
touches or swipes, it is now possible to construct a hidden Markov
model (HMM) that selects the most likely (maximum a posteriori)
set of touch or gesture input. For the experiment, we use a transi-
tion matrix trained from a set of 50 PINs and 50 patterns, and use
bigram models. We found that prediction results for unigrams were
Very poor.

The results of the experiment are presented in Figure 15. On the
x-axis is the number of guesses (or paths in the HMM attempted)
and the y-axis is the prediction result. The most likely path is
straightforward to obtain. To generate additional reasonable alter-
nate high scoring paths from the HMM, we order the set of labels
at each position by their max-marginal probabilities* and employ
non-max suppression to get a diverse set of guesses. The details of
the technique can be found in [25].

At 20 guesses, the results for both PINs and patterns are very
good. Patterns can be inferred with an accuracy of 26%, and PINs
with an accuracy of 40%. Note this is a cross-validation for a sin-

‘A max-marginal m(¢;) for label ¢; at position 7 in a se-
quence is obtained by maximizing over the label possibil-
ities in the other positions in the sequence: m(¢;) =
max;x; p(€1, ..., Lklo1,...,0r). This can be done for all labels
and all positions as efficiently as computing the single most likely
assignment [17].
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Figure 15: Prediction accuracy for bigram HMM over multiple
guesses for patterns (left) and PINs (right), and the 20 guess thresh-
old is indicated with a dashed line. The shaded trend lines are indi-
vidual users. Note that PINs outperform pattern prediction, likely
due to the limited number of transitions and shorter sequences.

gle user on a single device. We ran similar experiments where we
cross train on all users and test on a single user: The results were
greatly depressed, and the actual PIN or pattern is rarely predicted.
Similarly, we applied these techniques to data from when the users
were walking, and, again, we found that the HMM infers input very
poorly, predicting with an accuracy far below 1%.

These results suggest that the capabilities of attackers are mixed
when limited labeled data is available. In one sense, if the attacker
has sufficient training on a single user in a controlled setting, the at-
tacker would likely do very well. However, adverse situations such
as movement noise or limited training greatly affects the models,
and may even render them completely ineffective.

8. SENSORS AND DEVICE SECURITY

Given these results and previous sensor-based side channel re-
sults [6, 7, 22, 24, 34], clearly any effective security mechanisms
for touchscreen devices with movement sensors must deny untrusted
applications access, at a minimum, to the accelerometer when sen-
sitive touchscreen input is being provided to other applications. At
the same time, it may be equally undesirable to restrict access to
the accelerometer (and other sensors) when sensitive input opera-
tions are not being performed. Many legitimate applications are
designed to run in the background at all times (e.g., pedometer ap-
plications), and preventing such applications from gaining access
to the accelerometer at any time, or requiring the user to manually
shut them down before performing any sensitive operation, would
greatly reduce their appeal.

One approach might be to carefully vet applications that use sen-
sors for malicious behavior before allowing them to be installed
or before making them available in application markets. Unfor-
tunately, this approach is logistically impractical at scale. An al-
ternative approach, as exemplified by Google in the Android App
Market, is to label applications that access sensors (or other ser-
vices) using a permission model; however, this is also insufficient
because users may either ignore such labels or do not understand
their implications.

Another approach may be to restrict the sampling rate of the sen-
sors, as suggested in [24]. However, in our experiments, even with
a relatively low sample rate of 20 Hz, prediction accuracy was sur-
prisingly high and on par with devices with sample rates at 50 Hz or
more. Such a technique would likely require a reduction in sample
rate below the functional level required by legitimate applications.

We propose an alternative strategy: Applications installed by the
user that require access to movement sensors, however frivolous
they may seem, should be able to use them and use them at the
highest sample rate allowed. But, the sensors should be disabled (or
untrusted applications denied access to them) whenever a trusted
input function — such as password entry — is being performed.

Unfortunately, the security models implemented by current hand-



held platforms do not allow temporal access control over sensors;
however, context-based security rules proposed in [23] and [9] could
be adopted in this way. Currently, applications declare what access
they need once (typically when they are first installed by the user
or first run), and, from that point onward, have essentially unre-
stricted, permanent access to everything they asked for at any time
they wish.

Although current mobile platforms do not support temporary re-
vocation of sensor access, it could be implemented in a straightfor-
ward way, e.g., via a system call available to trusted input functions
to obtain and revoke exclusive access to sensors. One approach
would be for this system call to cause any untrusted application
that requests access to a sensitive sensor to block (or fail) until the
sensitive operation has concluded. Alternatively, untrusted appli-
cations could simply be suspended for the duration of the sensitive
input.

9. CONCLUSION

In this paper we demonstrate that the accelerometer sensor can
function as a side channel against secure input, and our results indi-
cate that a surprising amount of information can be inferred, even
when movement noise is introduced. We show that there is con-
sistency across users and devices, despite varied sample rates, and
the construction of a sensor-reading-to-input dictionary is possible;
however, in less controlled settings, such dictionaries may be inef-
fective. Further, we show that sequence predictions, in the form of
a hidden Markov model, can be applied to this problem if insuffi-
cient labeled accelerometer readings are available, but such models,
again, seem prone to false predictions caused by movement noise
and cross-user training.

Given these new results, and previous results using the accelerom-
eter sensor [24] and gyroscopic sensor [6, 34], it is now clear that
the security model for on-board sensors on smartphones should be
reconsidered. Both the new and previous results should be consid-
ered conservative estimates of the potential threat: Enhancements
to features and larger data sources will inevitably lead to greater
fidelity side channels, as was the case for the study of keyboard
acoustic side channels from the supervised learning strategies in [1]
to the unsupervised learning strategies in [35]. It is clear that ap-
plications that have access to the accelerometer sensor should not
be able to read from the sensor while the user is providing sensitive
input. Current mobile platform permission schemes are not insuffi-
cient to specify this; they provide applications with “all or nothing”
access to every sensor they might ever need to use. The permission
scheme and enforcement mechanism should restrict or allow access
to sensors based on context: untrusted applications that require ac-
cess to a sensor should be granted access only when sensitive input
operations are not occurring.

References

[1] Dmitri Asonov and Rakesh Agrawal. Keyboard accoustic emanations. In Pro-
ceedings of IEEE Syymposium on Security and Privacy, 2004.

[2] Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M.

Smith. Smudge attacks on smartphone touch screens. In Proceedings of the 4th

USENIX Workshop On Offensive Technologies, WOOT’10, 2010.

Ling Bao and Stephen Intille. Activity recognition from user-annotated acceler-

ation data. In Pervasive Computing, volume 3001 of Lecture Notes in Computer

Science, pages 1-17. 2004.

Alastair R. Beresford, Andrew Rice, and Nicholas Skehin. Mockdroid: Trad-

ing privacy for application functionality on smartphones. In 12th Workshop on

Mobile Computing Systems and Applications, HotMobile’ 11, 2011.

[5] Joseph Bonneau, Séren Preibush, and Ross Anderson. A birthday present ev-

ery eleven wallets? the security of customer-chosen banking pins. In Sixteenth

International Conference on Financial Cryptography and Data Security, FIN-

CRYPTO ’12, 2012.

Liang Cai and Hao Chen. Touchlogger: inferring keystrokes on touch screen

from smartphone motion. In Proceedings of the 6th USENIX conference on Hot

topics in security, HotSec’11, 2011.

[3

[4

[6

[7]

[8]

[9]

[10]

(1]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(311

(32]
[33]

[34]

[35]

Liang Cai and Hao Chen. On the practicality of motion based keystroke infer-
ence attack. In Proceedings of the 5th Internaltional Conference on Trust &
Trustworthy Computing, Trust’12, 2012.

Liang Cai, Sridhar Machiraju, and Hao Chen. Defending against sensor-sniffing
attacks on mobile phones. In Proceedings of the 1st ACM workshop on Network-
ing, systems, and applications for mobile handhelds, MobiHeld *09, 2009.
Mauro Conti, Vu Nguyen, and Bruno Crispo. Crepe: Context-related policy
enforcement for android. In Mike Burmester, Gene Tsudik, Spyros Magliveras,
and Ivana Ilic, editors, Information Security, volume 6531 of Lecture Notes in
Computer Science, pages 331-345. Springer Berlin / Heidelberg, 2011.

Google Android Development. http://developer.android.com/
reference/android/hardware/SensorEvent.html.

Splasho Development. Pattern lock pro. https://market.android.
com/details?id=com.splasho.patternlockpro.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. Liblinear: A library for large linear classification. J. Mach. Learn. Res.,
9:1871-1874, June 2008.

Google Inc. Google wallet. http://www.google.com/wallet/.

THQ Inc. Star wars: Lightsaber duel. http://itunes.apple.com/us/
app/star-wars—lightsaber-duel/id362158521?mt=8.

Rupesh Jain. Pattern encrypt/decrupt upgrad. https://market.android.
com/details?id=PatternEncryptDecryptUpgrade. free.

M.J. Kearns and U.V. Vazirani. An introduction to computational learning the-
ory. The MIT Press, 1994.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and
Techniques. The MIT Press, 2009.

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave:
Accelerometer-based personalized gesture recognition and its applications. Per-
vasive Mob. Comput., 5:657-675, December 2009.

Jani Mintyjérvi, Juha Kela, Panu Korpipad, and Sanna Kallio. Enabling fast and
effortless customisation in accelerometer based gesture interaction. In Proceed-
ings of the 3rd international conference on Mobile and ubiquitous multimedia,
MUM 04, 2004.

Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor.
(sp)iphone: decoding vibrations from nearby keyboards using mobile phone ac-
celerometers. In Proceedings of the 18th ACM conference on Computer and
communications security, CCS "11,2011.

Uwe Maurer, Anthony Rowe, Asim Smailagic, and Daniel P. Siewiorek. ewatch:
A wearable sensor and notification platform. In Proceedings of the International
Workshop on Wearable and Implantable Body Sensor Networks, 2006.
Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy
Choudhury. Tapprints: your finger taps have fingerprints. In Proceedings of
the 10th international conference on Mobile systems, applications, and services,
MobiSys *12, 2012.

Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel.
Semantically rich application-centric security in android. In Computer Security
Applications Conference, 2009. ACSAC "09. Annual, ACSAC *09, 2009.
Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. Acces-
sory: Keystroke inference using accelerometers on smartphones. In Proceedings
of The Thirteenth Workshop on Mobile Computing Systems and Applications,
HotMobile, 2012.

Dennis Park and Deva Ramanan. N-best maximal decoders for part models. In
1EEE International Conference on Computer Vision, ICCV’11, 2011.

Rio Park. Memorize pattern. https://market.android.com/
details?id=riopark.pattern.

Kurt Partridge, Saurav Chatterjee, Vibha Sazawal, Gaetano Borriello, and Roy
Want. Tilttype: accelerometer-supported text entry for very small devices. In
Proceedings of the 15th annual ACM symposium on User interface software and
technology, UIST 02, 2002.

C. Randell and H. Muller. Context awareness by analysing accelerometer data.
In Wearable Computers, The Fourth International Symposium on, pages 175 —
176, 2000.

Nishkam Ravi, Nikhil D, Preetham Mysore, and Michael L. Littman. Activity
recognition from accelerometer data. In Proceedings of the Seventeenth Con-
ference on Innovative Applications of Artificial Intelligence(IAAI, pages 1541—
1546. AAAIT Press, 2005.

Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou, Mehool Intwala, Apu Kapa-
dia, and XiaoFeng Wang. Soundcomber: A stealthy and context-aware sound
trojan for smartphones. In Proceedings of the Network and Distributed System
Security Symposium, NDSS, 2011.

Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis of
keystrokes and timing attacks on ssh. In Proceedings of the 10th conference on
USENIX Security Symposium, SSYM’01, 2001.

Bump Technologies. Bump app. bu.mp.

Nan Xu, Fan Zhang, Yisha Luo, Weijia Jia, Dong Xuan, and Jin Teng. Stealthy
video capturer: a new video-based spyware in 3g smartphones. In Proceedings
of the second ACM conference on Wireless network security, WiSec *09, 2009.
Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors. In Proceedings of the fifth
ACM conference on Wireless network security, 2012.

Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acoustic emanations revisited.
ACM Trans. Inf. Syst. Secur., 13, November 2009.



