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Abstract—Availability is a major concern in the design of
DNSSEC. To ensure availability, DNSSEC follows Postel’s Law
[RFC1122]: ”Be liberal in what you accept, and conservative in
what you send.” Hence, nameservers should send not just one
matching key for a record set, but all the relevant cryptographic
material, e.g., all the keys for all the ciphers that they support
and all the corresponding signatures. This ensures that validation
succeeds, and hence availability, even if some of the DNSSEC
keys are misconfigured, incorrect or correspond to unsupported
ciphers.

We show that this design of DNSSEC is flawed. Exploiting vul-
nerable recommendations in the DNSSEC standards, we develop
a new class of DNSSEC-based algorithmic complexity attacks on
DNS, we dub KeyTrap attacks. All popular DNS implementations
and services are vulnerable. With just a single DNS packet, the
KeyTrap attacks lead to a 2.000.000x spike in CPU instruction
count in vulnerable DNS resolvers, stalling some for as long as
16 hours. This devastating effect prompted major DNS vendors
to refer to KeyTrap as “the worst attack on DNS ever discovered”.
Exploiting KeyTrap, an attacker could effectively disable Internet
access in any system utilizing a DNSSEC-validating resolver.

We disclosed KeyTrap to vendors and operators on November
2, 2023, confidentially reporting the vulnerabilities to a closed
group of DNS experts, operators and developers from the indus-
try. Since then we have been working with all major vendors to
mitigate KeyTrap, repeatedly discovering and assisting in closing
weaknesses in proposed patches. Following our disclosure, an
umbrella CVE has already been assigned.

I. INTRODUCTION

The impact of the cryptographic requirements on the avail-
ability of DNS was a major concern in the design of DNSSEC
[RFC4033-RFC4035]. Strict DNSSEC validation rules could
impact DNS availability, hence, DNSSEC standard opted to
limit strict requirements to the necessary minimum that suffices
to ensure cryptographic security while maintaining availability
of DNS, aiming at a trade-off between security, performance,
and backward-compatibility. The standard requirements for
DNSSEC were designed so that the DNS resolvers do not
fail on the first cryptographic error. As long as a resolver can
verify the provided information with any available DNSSEC
material, the validation will succeed.

”Be liberal in what you accept, and conservative in
what you send” [RFC1122]. The core DNSSEC specification
mandates validating DNS resolvers to try all possible keys
when validating a resource record set (RRset) [RFC4035], and
also strongly endorses to try all possible signatures covering
it [RFC6840]. These DNSSEC requirements follow Postel’s
Law [RFC1122]: the nameservers should send all the available
cryptographic material, and the resolvers should use any of
the cryptographic material they receive until the validation
is successful. This ensures availability even if some of the

DNSSEC material cannot be used to validate authenticity
of the DNS records, e.g., if the keys are misconfigured,
incorrect or outdated. We perform experimental evaluations
and code analysis and find that these protocol requirements
are supported by all major DNS resolver implementations.

DNSSEC algorithmic-complexity attacks. In this work,
we discover that the design philosophy of DNSSEC is flawed.
We exploit the flaws in the DNSSEC standard and develop
the first DNSSEC-based algorithmic complexity attacks against
DNS. We demonstrate experimentally that our attacks are detri-
mental to availability of the affected DNS resolvers, leading to
Denial of Service (DoS) on basic DNS functionalities, such as
providing cached responses, or processing inbound or pending
DNS packets. We show experimentally that an adversary using
a single DNSSEC signed DNS response can DoS resolvers
leading to a spike of 2.000.000x in CPU instruction count.
The stalling period of the victim resolver depends on the
resolver implementation, and can be up to 16 hours, see
Table IV. For comparison, a recently proposed NRDelegation
attack [1] which exploited vulnerabilities in DNS to create
multiple referral requests, would require 1569 DNS packets to
cause a comparable increase in CPU instruction count, which
our attacks achieve with a single packet. We find that all
DNSSEC validating DNS software, DNS libraries and public
DNS services on our dataset are vulnerable to our attacks; see
list in Table I.

Flaws in DNSSEC. We find that the flaws in DNSSEC
specification are rooted in the interaction of a number of
recommendations that in combination can be exploited as a
powerful attack vector:

Key-tag collisions: First, DNSSEC allows for multiple keys
in a given DNS zone, for example during key-rollover or
for multi-algorithm support [RFC6781]. Consequently, when
validating DNSSEC, DNS resolvers are required to identify a
suitable cryptographic key to use for signature verification.
DNSSEC uses key-tag values to differentiate between the
keys, even if they are of the same zone and use the same
cryptographic algorithm. The triple of (zone name, algorithm,
key-tag) is added to each respective signature to ensure effi-
ciency in key-signature matching. When validating a signature,
resolvers check the signature header and select the key with
the matching triple for validation. However, the triple is not
necessarily unique: multiple different DNS keys can have
an identical triple. This can be explained by the calculation
of the values in the triple. The algorithm identifier results
directly from the cipher used to create the signature and
is identical for all keys generated with a given algorithm.
DNSSEC mandates all keys used for validating signatures in
a zone to be identified by the zone name. Consequently, all
DNSSEC keys that may be considered for validation trivially
share the same name. Since the collisions in algorithm-id and



key name pairs are common, the key-tag is calculated with a
pseudo-random arithmetic function over the key bits to provide
a means to distinguish same-algorithm, same-name keys. Using
an arithmetic function instead of a manually chosen identifier
eases distributed key management for multiple parties in the
same DNS zone; instead of coordinating key-tags to ensure
uniqueness, the key-tag is automatically calculated. However,
the space of potential tags is limited by the 16 bits in the key-
tag field. Key-tag collisions, while unlikely, can thus naturally
occur in DNSSEC. This is explicitly stated in [RFC4034]1,
emphasizing that key-tags are not unique identifiers. As we
show, colliding key-tags can be exploited to cause a resolver
not to be able to identify a suitable key efficiently but to have
to perform validations with all the available keys, inflicting
computational effort during signature validation.

Multiple keys: Second, the DNSSEC specification man-
dates that a resolver must try all colliding keys until it finds a
key that successfully validates the signature or all keys have
been tried. This requirement is meant to ensure availability.
Even if colliding keys occur, such that some keys may result in
failed validation, the resolver has to try validating with all the
keys until a key is found that results in a successful validation,
ensuring the signed record remains valid and the corresponding
resource therefore available. However, this ”eager validation”
can lead to heavy computational effort for the validating
resolver, since the number of validations grows linearly with
the amount of colliding keys. For example, if a signature has
ten colliding keys, all with identical algorithm identifier, key-
tag and all invalid, the resolver must conduct ten signature
validations before concluding the signature is invalid. While
colliding keys are rare in real-world operation, we show that
records with multiple colliding keys can be efficiently crafted
by an adversary, imposing heavy computation on a victim
resolver.

Multiple signatures: A philosophy, of trying all the cryp-
tographic material available to ensure that the validation suc-
ceeds, also applies to the validation of signatures. Creating
multiple signatures for a given DNS record can happen, e.g.,
during a key-rollover. The DNS server adds a signature with
the new key, while retaining the old signature to ensure the
signature remains valid for all resolvers until the new key has
propagated. Thus, parallel to the case of colliding keys, the
RFCs specify that in the case of multiple signatures on the
same record, a resolver should try all the signatures it received
until it finds a valid signature or until all signatures have been
tried.

“The worst vulnerability ever found in DNS”: We combine
these requirements for the eager validation of signatures and
of keys, along with the colliding key-tags to develop powerful
DNSSEC-based algorithmic complexity attacks on validating
DNS resolvers. Our attacks allow a low-resource adversary
to fully DoS a DNS resolver for up to 16h with a single
DNS request. Members from the 31 participant task force of
major operators, vendors and developers of DNS/DNSSEC, to
which we disclosed our research, dubbed our attack: the most
devastating vulnerability ever found in DNSSEC.

1https://datatracker.ietf.org/doc/html/rfc4035#
section-5.3.1,https://datatracker.ietf.org/doc/html/
rfc4034#appendix-B

Complex vulnerabilities are challenging to find. The
flaws are not recent. The requirement2 to try all keys was
present already in the obsoleted [RFC2535] from 1999. This
requirement, to try all the keys, was carried over to [RFC4035].
In 2013 the issue was further exacerbated by recommending
that the validators also try all the signatures, in the implemen-
tation requirements for DNSSEC validation [RFC6840]. The
vulnerabilities have been in the wild since at least August 2000
in BIND9 DNS resolver3 and were introduced into the code4

of Unbound DNS resolver in August 2007. Using the code of
Unbound as an example, the vulnerable code performs loops
over keys and signatures:

//loop over all the keys
for(i=0; i<num; i++) {

/* see if key matches keytag and algo */
if(algo != dnskey_get_algo(dnskey, i) ||

tag != dnskey_calc_keytag(dnskey, i))
continue;

numchecked ++;
/* see if key verifies */
sec = dnskey_verify_rrset_sig
(env, ve, rrset, dnskey, i, sig_idx);
if(sec == sec_status_secure)

return sec;
}

//loop over all the signatures
for(i=0; i<num; i++) {

sec = dnskeyset_verify_rrset_sig(env, ve, rrset, dnskey, i);
if(sec == sec_status_secure)

return sec;
}

Although the vulnerabilities have existed in the standard
for about 25 years and in the wild for 24 years, they have not
been noticed by the community. This is not surprising since
the complexity of the DNSSEC validation requirements made
it challenging to identify the flaws. The exploit employs a
combination of a number of requirements, which made it not
trivial even for DNS experts to notice. The security community
made similar experiences with much simpler vulnerabilities,
such as Heartbleed or Log4j [2], [3] which were there but no
one could see them, and they took years to notice and fix.

KeyTrap vulnerabilities are fundamental. Unfortunately,
in contrast to these software bugs, the vulnerabilities we find
in this work are fundamental and are not simple to resolve,
since they are rooted in the design philosophy of DNSSEC: the
DNSSEC specification from its early drafts explicitly includes
the flawed requirements, which lead to these vulnerabilities,
and indeed, all DNS resolvers that follow the RFCs were
found to be vulnerable. Using code analysis, we trace the
vulnerabilities to the early versions of BIND9 in 2000 and
Unbound in 2007. Which indicates that the vulnerabilities
were introduced from the beginning with the deployment of
DNSSEC.

Flaws are challenging to mitigate. The flaws in DNSSEC
validation are not simple to solve. There are legitimate situ-
ations in which nameservers may return multiple keys, e.g.,
to account for potential failures. For instance, some domains

2https://datatracker.ietf.org/doc/html/rfc2535#
page-46

3https://github.com/isc-projects/bind9/commit/
6f17d90364f01c3e81073a9ffb40b0093878c8e2

4https://github.com/NLnetLabs/unbound/commit/
8f58908f45d69178f8a30125d8ebcedf3c6f6761
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may be experimenting with new ciphers, not yet supported by
all the resolvers and there are keys-rollover. To avoid failures
the nameservers should return all the cryptographic material.
Similarly, to ensure successful validation, the resolvers should
not fail on the first unsuccessful validation, but should try all
the material until validation succeeds. Indeed, the experience
we made since we have started working on the patches with
the developers, described in §VII-D, shows that these flaws can
be substantially mitigated, but cannot be completely solved.
Attacks against the final patch still result in heavy CPU load
caused by high attacker traffic, but at least DNS packet loss
is prevented. Solving these issues fundamentally requires to
reconsider the basics of the design philosophy of the Internet.

Contributions. We make the following contributions:

• Conceptually, we find that the aim to ensure validation at
any cost in DNSSEC standard exposes the DNS resolvers to
attacks. We analyze the DNSSEC standards in §IV, and iden-
tify flaws in the DNSSEC standards which enable complexity
attacks.

• We combine the flaws in the RFCs to develop the first
algorithmic complexity attacks that exploit vulnerabilities in
DNSSEC. We find experimentally that all standard-compliant
DNS implementations support the flawed recommendations
and hence are vulnerable to our attacks.

• We analyze the code of popular DNS implementations
to identify the effects of the stalling on, e.g., caching, pending
DNS requests or inbound/pending DNS packets. We use our
observations to provide recommendations for adapting the
architecture of the resolvers to improve the robustness to
failures and attacks.

• We performed ethical disclosure of our vulnerabilities
to the major DNS vendors and operators on November 2,
2023. Since then, we have been intensively working with this
group on developing patches and regularly communicating
with the developers within a closed chat group. We provided
the developers with attack vectors encoded in DNS zonefiles
and set up a test environment for evaluation of vulnerabilities
in DNSSEC, which alleviates the need for manual setup and
enables quick evaluation of the attacks against the proposed
patches. We provide a timeline for disclosure and of the
patches development process. Our discovered vulnerabilities
were assigned an umbrella CVE.

Organization. We compare our research to related work
in §II. We provide an overview of DNS and DNSSEC in §III.
We analyze the recommendations in the DNS standard speci-
fications in §IV. We construct the attacks in §V and evaluate
them against major DNS implementations and services in §VI.
Disclosure and the process of developing mitigations are in
§VII. We conclude in §VIII.

II. RELATED WORK

In Distributed Denial of Service (DDoS) attacks adversaries
flood a victim resource, e.g., a network bandwidth or a buffer,
with a large volume of packets loading the target victim
beyond its available capacity and causing packet loss [4].
DNS is often a victim of DDoS, either as a target or as a
reflector to flood other victims. Since DNS responses are larger
than DNS requests, reflected DNS responses amplify the load

generated by the attacker’s requests. The amplification factor is
exacerbated with DNSSEC, whose signatures and keys further
increase the sizes of DNS responses [5]. An amplification
effect can also be achieved by exploiting vulnerabilities in
protocol implementations or vulnerabilities in the processing
of DNS records [6], [7]. NXNSAttack [8] exploited a vulner-
ability that generated a flood of queries between the recursive
resolver and the authoritative server creating a load on them
both. Recently, [1] demonstrated a complexity attack on DNS
which causes a victim resolver to issue multiple queries,
following delegation responses by a malicious authoritative
server. The victim resolver issues the queries to nameservers
which do not respond, eventually exhausting its resources.
The NRDelegation attack in [1] is shown to achieve a 5600x
increase in CPU instructions between the attack requests and
benign DNS requests. In contrast, our KeyTrap attack in this
work achieves a 2000000x increase in CPU instruction count.

To compare the impact between both attacks on the CPU
instruction count, we set up a benign and a malicious signed
domains. We set up an Unbound resolver in an isolated
environment and run Linux perf to measure CPU instruction
count. We first measure the CPU instruction count of a request
to a benign DNSSEC signed domain. To ensure reliability
we average out the instruction count over five measurements.
Further, we set up the attack domain on the same DNS server.
The measurements are conducted on Ubuntu 22.04 LTS with
Unbound 1.19.0 DNS software. In our test setup, we find
that a benign request on a signed DNSSEC domain requires
approx. 811.500 CPU instructions on Unbound. In contrast,
we find a significantly higher instruction count for the reso-
lution of the KeyTrap attack domain. To resolve and validate
the domain, Unbound takes approximately 1.725.000.000.000
CPU instructions. Comparing to the benign request, the attack
thus leads to a 2.000.000x increase in CPU instruction count,
compared to the 5600x increase in NR delegation. Directly
comparing the CPU instructions count of [1], we find that NR
delegation attack requires 1569 queries to result in the same
increase in CPU instruction count as a single request with our
KeyTrap attack. Hence, a KeyTrap request leads to the same
load as approx. 2 million benign requests.

Van Rijswijk-Deij et al. [9] explored the performance of
ECC vs RSA on BIND9 and Unbound. They evaluated the load
on the BIND9 and Unbound resolvers when sending multiple
signatures and found that the ECC algorithms do not impose
too much additional CPU load on the two resolvers in contrast
to RSA. To create load the authors made the resolver request a
large number of non-existent records (NSEC3), causing many
DNS responses, each carrying up to three NSEC3 records plus
one SOA, with one signature validation per record. In effect,
the victim resolver was validating four RRSIG records per
response. While the responses sent by [9] caused the resolver
to perform 4 validations, equivalent to the number of signatures
their nameserver returned (an order of O(n)), our specially
crafted records trigger more than 500K validations per DNS
response (an order of O(n2)). Our attack scales quadratically
with the number of keys returned to the resolver.

In contrast to previous work our KeyTrap attacks do
not require multiple packets, instead we exploit algorithmic
complexity vulnerabilities in the DNSSEC validation in DNS
resolvers as a building block to develop CPU based DoS
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attacks. Our complexity attacks are triggered by feeding the
DNS resolvers with specially crafted DNSSEC records, which
are constructed in a way that exploits validation vulnerabilities
in cryptographic validation logic. When the DNS resolvers
attempt to validate the DNSSEC records they receive from
our nameserver, they get stalled. Our attacks are extremely
stealthy, being able to stall resolvers between 170 seconds
and 16 hours (depending on the resolver software) with a
single DNS response packet. All the resolvers we tested
were found vulnerable to our attacks. We evaluate how DNS
implementations react to the load created by the attack and find
that certain choices in architectural design can enable faster
recovery from our DoS attacks.

III. OVERVIEW OF DNSSEC

DNSSEC [RFC4033-4035] ensures origin authenticity and
data integrity in DNS. To gain security benefits the domain
owners should digitally sign the records in their domains, and
should upgrade the nameservers to serve DNSSEC signed DNS
responses. The DNS resolvers should validate the received
DNS records against the digital signatures. To validate the
public keys the resolvers should construct a validation path
from the root zone to the target domain. If validation fails, the
resolver must not deliver the bogus records to the client and
instead signal an error by sending a SERVFAIL response. If
DNSSEC validation is successful, the resolver should return
the requested records to the client and cache them.

DNSSEC signatures are conveyed in RRSIG-type DNS
records. An RRSIG record is associated with the set of records
(RRset) it covers by name, class, and the record type indicated
by an RRSIG-specific record field. The public keys used to
validate the signatures are sent in DNSKEY-type records.

There are two types of keys: Zone-Signing-Key (ZSK) and
Key-Signing-Key (KSK). The ZSKs are used to sign records
in the zone and are authenticated with the KSK. The ZSK,
as well as the KSK, contains multiple fields, including usage-
indicating flags, the protocol, the algorithm, and the key-bytes.
From the key fields, the key tag can be calculated. The KSK
and all ZSKs of a zone are included into a DNSKEY-Set
which is signed by the KSK. Signature records covering the
DNSKEY set need to reference the key tag of a KSK. Only
after the DNSKEY-Set is validated can the ZSK be used to
validate signatures covering other records (RRs). To support
simpler DNSSEC setups, KSK and ZSK can be identical.

DS records from a parent zone are used to authenticate
individual KSK type DNSKEY records in a child zone. This
is done to delegate trust from a parent zone public key to a
child zone public key. DS records use the same triple (owner
name, algorithm, key tag) to identify a subset of candidate
DNSKEYs as RRSIGs.

The DNS records contain a mapping from domain names,
their type and class to resources. In this work, we use the DNS
A-type record (with ”Internet” class) in the evaluations of our
attacks. The A record contains the mapping of a domain name
in the zone to an IPv4 address. The A record includes a TTL
value. This record is queried by a resolver when resolving a
host name. For instance, an A record may map the domain
www-x.attack.er to the IP address 6.6.6.6. We explain the

functionality of DNS and DNSSEC with concrete examples
in Section V.

IV. ANALYSIS OF DNSSEC SPECIFICATION

In the following, we illustrate the validation recommenda-
tions in the DNSSEC standard relevant to the KeyTrap attacks.

Associating keys with signatures. A domain can use
multiple different keys, see [RFC6840, §6.2]. This is required
for instance to support new stronger cryptographic ciphers but
also to offer weaker ciphers for other non-supporting resolvers,
or to support stronger and weaker keys of same cipher, or
during key rollover. In such a situation the DNS records are
signed with all those keys and the resolver receives the keys
and signatures in a DNS response.

To authenticate an RRset, the RRSIG covering it needs
to be associated with the DNSKEY record carrying the corre-
sponding public key. This is done by matching the Signer’s
Name in the RRSIG record data field with the name of the
DNSKEY record and the algorithm fields. Additionally, the
value of the Key Tag field in the RRSIG must match the
key tag value of the DNSKEY. Note that the DNSKEY record
data format does not specify a Key Tag field. Instead, the
key tag value is calculated by resolvers as the unsigned 16-bit
integer sum over all two-octet words in the DNSKEY record
data (ignoring carry and allowing overflow). As highlighted
by [RFC4034, §5.3.1], the key tag is not a unique identifier,
but a mechanism to efficiently identify a subset of DNSKEYs
possibly matching the RRSIG to be validated. In consequence,
to successfully authenticate an RRset covered by an RRSIG,
the resolver MUST try all DNSKEYs in this subset until it
succeeds to validate the signature using one of the candidate
public keys or runs out of keys to try.

Moreover, the DNSSEC key tag is not a crytographic
fingerprint of the public key. Representing an unsigned integer
sum over the record data the key tag does not provide a cryp-
tographic collision resistance. In §V we develop an attack we
dub ”LockCram”, which exploits the requirement to associate
keys with signatures.

Resolvers are endorsed to try all signatures. To support
a variety of domain-side key and algorithm roll-over schemes,
as well as to increase robustness against cache-induced incon-
sistencies in the Internet-wide DNS state, resolvers must be
tolerant in case individual signatures do not validate. Besides
ignoring any RRSIGs, which do not match any authenticated
DNSKEY, resolvers are endorsed by specification (SHOULD)
to try all RRSIGs covering an RRset until a valid one is found.
Only if all signatures fail to authenticate the RRset, the resolver
should mark it invalid. When multiple RRSIGs cover a given
RRset, [RFC6840, §5.4] suggests that a resolver SHOULD
accept any valid RRSIG as sufficient, and only determine that
an RRset is bogus if all RRSIGs fail validation.

The explanation in [RFC6840] is that if a resolver adopts
a more restrictive policy, there is a danger that properly signed
data might unnecessarily fail validation. Furthermore, certain
zone management techniques, like the Double Signature Zone
Signing Key Rollover method described in [RFC6781, §4.2.1],
will not work reliably.
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Resolvers try to authenticate all DNSKEYs with all DS
hashes. The DNSSEC standard is not clear on the require-
ment of DS hashes authentication. This vagueness left it for
developers to decide how to implement the DS validation. We
experimentally find that all the resolvers in our dataset validate
all the DS hashes.

RFC-compliant resolvers are vulnerable. We find ex-
perimentally that all the resolvers on our dataset adhere to
RFC specifications, validating all signatures with all DNSSEC
keys they received from the attack server and validate all DS
hashes against all the DNSKEY records. For examples, see
the the validation routines in Unbound5. In this work we show
that these requirements are vulnerable. We develop KeyTrap
algorithmic complexity attacks that exploit the specification
weaknesses in the association process described above to forge
a DNSKEY set of cardinality k, conforming to a single key
tag tk, and to create a large number s of invalid RRSIG
records, which all reference these DNSKEYs. In consequence,
the resolver needs to check all s signatures against all k keys
– a procedure with asymptotic complexity in O(n2).

V. RESOURCE EXHAUSTION ATTACKS

Our attacks consist of a module for sending queries to
the target resolver, malicious nameservers and the zonefiles
that encode the KeyTrap attack vectors. We exploit algo-
rithmic complexity vulnerabilities in standard requirements
to develop different variants of KeyTrap resource exhaustion
attacks: KeySigTrap, SigJam, LockCram, and HashTrap. To
initiate the attacks our adversary causes the victim resolver
to look up a record in its malicious domain. The attacker’s
nameserver responds to the DNS queries with malicious record
sets (RRsets), according to the specific attack vector and zone
configuration.
In the following, we will provide descriptions of all attack
vectors. We intentionally only provide abstract descriptions,
omitting implementation details of the attacks to not provide a
step-by-step tutorial to build malicious zones exploiting Key-
Trap. Once discussions with operators confirm that the patches
have been widely deployed and widespread exploitation of the
vulnerability is unfeasible, we will update this document to
provide more in-depth attack explanations.

A. DNSSEC Setup

The attack vectors are encoded in a zonefile in the domain
controlled by the adversary. The zone contains both DNSSEC
and benign DNS records. For the attack to be effective, the
adversary needs to register a domain under a signed parent.

B. SigJam (One Key x Many Signatures)

The RFC advises that a resolver should try all signatures
until a signature is found that can be validated with the
DNSKEY(s). This can be exploited to construct an attack
using many signatures that all point to the same DNSSEC
key. Using the most impactful algorithm, an attacker can fit
340 signatures in a single DNS response, thereby causing
340 signature validation operations in the resolver until the

5https://github.com/NLnetLabs/unbound/blob/master/
validator/val_sigcrypt.c lines 641 and 704.

resolution terminates by returning a SERVFAIL response to
the client.

The SigJam attack is thus constructed by leading the
resolver to validate many invalid signatures on a DNS record
using one DNS key.

C. LockCram (Many Keys x One Signature)

Following the design of SigJam, we develop an attack
vector, we dub LockCram, that exploits the fact that resolvers
are mandated to try all keys [RFC4035] available for a signa-
ture until one validates or all have been tried. The LockCram
attack is thus constructed by leading a resolver to validate one
signature over a DNS record using many ZSK DNSSEC keys.

For this, the attacker places multiple DNS keys in the
zone which are all referenced by signature records using the
same triple of (name, algorithm, key tag). This is not trivial as
resolvers can de-duplicate identical DNSKEY records and their
key tags need to be equal6 A resolver that tries to authenticate
a DNS record from the zone attempts to validate its signature.
To achieve that the resolver identifies all the DNSSEC keys
for validating the signature, which, if correctly constructed,
conform to the same key tag. An RFC-compliant resolver
must try all the keys referred to by the invalid signature
until concluding the signature is invalid, leading to numerous
expensive public key cryptography operations in the resolver.

D. KeySigTrap (Many Keys x Many Signatures)

The KeySigTrap attack combines the many signatures of
SigJam with the many colliding DNSKEYs of LockCram, cre-
ating an attack that leads to a quadratic increase of validations
compared to the other two attacks.

The attacker creates a zone with many colliding ZSKs and
many signatures matching those keys. When the attacker now
triggers resolution of the DNS record with the many signatures,
the resolver will try the first ZSK to validate all signatures.
After all signatures have been tried, the resolver will move to
the next key and again attempt validation with all signatures.
This continues until all pairs of keys and signatures have
been tried. Only after attempting validation on all possible
combinations does the resolver conclude that the record cannot
be validated and returns a SERVFAIL to the client.

E. HashTrap (Many Keys x Many Hashes)

The attacker can also exploit hash computations to develop
an algorithmic complexity attack. Instead of triggering many
signature validations on a DNS record, the attacker can trigger
many hash calculations in the resolver, when confirming a key
was authorized with an DS entry in the parent zone. Generally,
a resolver needs to authenticate the DNSKEY records before
using the keys to validate the signatures [RFC4035]. To
authenticate the signature over the DNSKEY set, the resolver
first needs to find the DNSKEY that matches a DS record in
the parent zone. This is exploited in the attack. The attacker
creates many unique DNSKEYs and links to them from many
DS entries in the parent zone. The resolver has to iterate over

6The exact key creation concept is removed from this publication until a
later stage.
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Name Vuln. Comment
Se

rv
er

So
ft

w
ar

e
Akamai CacheServe  Still answers to cached entries
BIND9  Bigger impact due to ineffi-

cient key selection
Knot Resolver  Limited DNS key buffer size

only allows for 126 DNSSEC
keys

PowerDNS Recursor  -
Unbound  Retries increase attack dura-

tion
Windows Server 2022  Algorithm 15 not supported
Windows Server 2019  Algorithm 15 not supported
unwind (from OpenBSD7.3)  Limited msg-buffer size only

allows for 15625 validations
Technitium  -
dnsmasq 2.80  Limited msg-buffer size only

allows for 2500 validations
stubby 0.4.3  -

Se
rv

ic
e Cloudflare  Confirmed by Developers

Google  Confirmed by Developers
OpenDNS  Confirmed by Developers
Quad9  Confirmed by Developers

To
ol

dig 9.16.1 # No DNSSEC validation
kdig 2.7.8 # No DNSSEC validation
delv 9.16.1  Validation logic from Bind9
DNSViz 0.9.4 (latest)  Throws exception after attack
ldns-verify-zone  uses vulnerable ldns library
kzonechek  shipped with Knot DNS au-

thoritative server
named-checkzone # does not validate signatures

L
ib

s

dnspython  -
getdns  used by stubby
ldns  -
libunbound  used by Unbound

TABLE I: Vulnerable DNS implementations.

all colliding keys, calculate the hash and compare it to the
hash in the DS record. Only after each DS hash in the parent
zone has been compared with each key in the child zone will
the resolver conclude that it can not find the correct DNSKEY
and return a SERVFAIL to the client.

The HashTrap attack is thus constructed by leading the
resolver to calculate many hashes for validating many colliding
DNSKEYs against many DS hash records. Notice that attack
variants, similar to SigJam and LockCram, can also be con-
structed with the DS hashes instead of signatures. However,
hashes are less effective, reducing adversary’s motivation to
do that.

VI. EVALUATION OF THE ATTACKS

Through experimental evaluations we found all the major
DNS implementations on our dataset to be vulnerable to
KeyTrap attacks. The stalling interval caused by the attacks
depends on the specific resolver implementation. Our list
of DNS software includes recursive DNS resolvers, public
resolvers, DNS tooling, and DNS libraries; see details in Table
I. We consider a resolver implementation vulnerable if with a
single attack query we achieve at least 5s packet loss at the
resolver. We describe the setup, our test methodology, and the
cryptographic ciphers we use in our research zonefiles. We then
evaluate the effectiveness and the impact of the attacks. An
overview over the different DNS resolver components relevant
to the attack is given in Table V.

A. Setup

Unless mentioned otherwise, all evaluations are run on a
single CPU core. This allows us to compare between different
resolvers with various multi-threading standard configurations.
We set up a test environment with a number of components.

Components. We set up resolvers and DNS servers in an
isolated environment. This ensures that attack requests are not
propagated to validating upstream DNS resolvers. We develop
scripts for automated dynamic generation of zonefiles and
records upon each query, and scripts for automated construc-
tion of the DNSSEC chain of trust. Generating the zonefiles
dynamically enables us to use a virtually infinite number of
zones and records required for testing the attacks, which would
have otherwise quickly cluttered the zone files and hampered
investigations. The nameservers host the domains used for
testing the resolvers and exchanges DNS messages with them
according to protocol specifications and specific test semantics.
Each test is hosted in a separate subdomain consisting of one
or multiple zones. This prevents cache-induced interference
between consecutive executions of tests and reduces imple-
mentation complexity of the investigations. Test configurations
are pre-generated from configuration templates, which we
define using a small domain-specific language. This allows
efficient variations over the signature algorithms or the specific
number of RRSIGs and DNSKEYs in responses, which are
provisioned for attacking validation routines. We conduct tests
by sending queries to the resolvers, causing them to interact
with our nameservers according to the test configurations.
When a nameserver receives a query it parses it, matches it
against a pre-defined set of rules and generates a response.
The rule set is loaded from a configuration file upon startup,
and determines which tests can be conducted, as well as the
specific test semantics. A ”test” specifies, e.g., a set of domains
with specific DNSSEC algorithms, numbers of DNSKEYs and
signatures over records to validate against these DNSKEYs.

Transport protocol. DNS responses are typically delivered
over UDP. When DNS responses are too large, e.g., exceeding
the EDNS size in EDNS(0) OPT header, the nameservers
fall back to TCP to avoid fragmentation. Our attacks can
be implemented either over UDP or TCP. We implement
TCP as the transport protocol between the resolvers and our
nameservers. The maximum size of a DNS message sent over
TCP is dictated by [RFC1035], stating that a DNS message
over TCP must have a length value prefixed to the message
with 2-octets size. Resulting from the size limitation of this
field, DNS payload sent in a response from the nameserver to
the resolver can have a maximum size of 216 = 65536 bytes.
Depending on the Maximal Transmission Unit (MTU), this
payload will be sent in one or more TCP segments. Therefore,
the attack payload (i.e., DNS/DNSSEC records) in a DNS
response is limited to 65K bytes.

B. Identifying Optimal Cipher for Attacks

Different DNSSEC algorithms vary in the mathematical
computation logic and the complexity of mathematical oper-
ations. Therefore the computation of DNSSEC validation for
different algorithms differs in the amount of computation time.
This means that the load created by our attacks is determined
also by the cryptographic ciphers the adversarial domain uses.
DNSSEC generally supports two different algorithm suites7:
RSA based and Elliptic Curve Cryptography (ECC) based
cryptographic algorithms. We evaluate both suites and find that
the ECC based cryptographic algorithms exhibit a significantly

7https://www.iana.org/assignments/
dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
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Keys Signatures Validations
Cipher

ED448 907 454 411 778
ED25519 1 391 696 968 136
ECDSAP384SHA384 589 519 305 691
ECDSAP256SHA256 828 696 576 288
RSA-512 788 696 548 448
RSA-1024 444 413 183 372
RSA-2048 237 228 54 036
RSA-4096 122 119 14 518

TABLE II: Max. DNSKEYs, RRSIGs, and validations per response.

higher load than RSA based algorithms and surpass RSA by
over an order of magnitude. This is consistent with previous
work [9]. ECC-based algorithms are thus better suited to max-
imize the impact of our attacks on resolvers. In the following
only focus on ECC-based algorithms in the evaluations of the
attacks.

Comparison of computation load of ECC algorithms.
We evaluate if validation of different ECC algorithms results in
different processing times on different DNS resolvers. For the
evaluation, we set up all major DNS resolvers (see Table III) on
an identical hardware machine. We evaluated all resolvers by
running a full resolution with 2500 validations. Times were
average over 10 attempts to ensure consistency. Measuring
the validation time of the message instead of only measuring
the validation procedure allows a more accurate view of the
behavior of the resolvers for different algorithms, as overall
processing times might also be influenced by components out-
side the validation procedure. The measurements illustrate dif-
ferent processing times between resolvers, indicating differing
efficiencies of the implementation. Some efficiency divergence
is expected, as a large amount of signature validations on
a single RR set is not an expected use-case for resolvers
and thus, it is expected that resolvers are not optimized for
it. This is clearly visible in the validation times of BIND9,
which supersede the other resolvers due to an inefficient
implementation of key selection in the case of colliding keys.

The table illustrates that all resolvers take the longest val-
idation time for signature created with algorithm 14, ECDSA
Curve P-384/SHA-384. Thus, algorithm 14 is the most suited
for the attacks on all resolvers, achieving maximum impact
with the available maximum buffer size. Using the 384bit
key size of algorithm 14, and constructing the theoretical
minimal size DNS message transporting the keys, an attacker
could fit up to 589 colliding DNS keys into a single
DNS message. Similarly, using minimal DNS overhead, an
attacker could fit up to a maximum of 519 signatures into a
single DNS message. Thus, with one resolution request with
algorithm 14, an attacker could theoretically trigger 589*519
= 305691 signature validations in the DNS resolver, leading
to significant processing effort on the resolver. Table II shows
the theoretical maximum values for all commonly supported
DNSSEC algorithm. Theoretical maxima are calculated by
choosing the minimum possible size for all fields in the DNS
message. In practice, the exact value of signatures and keys
that can fit into a single message is limited by the attacker
setup. Besides the raw bytes of the signature or key, DNSSEC
messages contain additional information of varying size, esp.
the signer name, leading to the lower number of attack records
in a real-world attack setup. In our evaluation setup, we make a
conservative approximation on the practical size of the fields
in the messages, using 582 DNSSEC keys per message and

Name Alg 13 Alg 14 Alg 15 Alg 16
Unbound 172 996 880 364
BIND9 888 2448 460 628
Knot 232 496 164 456
Akamai 219 976 209 392
PowerDNS 153 924 840 628

TABLE III: Validation time per signature in µs.

Fig. 1: KeySigTrap attack on Unbound with single request.

340 signatures per message.

C. Effectiveness of the Attacks

To evaluate the attacks, we setup all the resolvers to query
a malicious domain signed with algorithm 14. During the
evaluations, we use a benign DNS client that requests ten
unique DNS entries per second from the investigated resovler
and logs received replies. We choose a 5s timeout for benign
requests, i.e., benign requests to the resolver that are not
answered after 5s are considered to have no value to the
benign user and are therefore considered lost. This timeout
is consistent with DNS tooling like dig (5s) 8, Windows DNS
tools (1s-4s), and glibc (5s) 9.

KeySigTrap. Evaluating KeySigTrap, we set up a zonefile
with 582 colliding DNSSEC keys and 340 signatures. We
illustrate the impact of the attack on Unbound in Figure 1.
As can be seen in the plot, once the attacker triggers a single
DNS request, the KeySigTrap attack payload in the DNS
response causes the CPU usage on the resolver to increase to
100% due to a large load in validating the signatures. While
busy validating signatures, the resolver does not answer any
benign requests, leading to 100% lost benign requests until
the resolver finishes the validation, which takes about 1014s.
Thus, a single attacker request causes a 1014 seconds long
complete DoS of the resolver. We measured all investigated
DNS resolvers on an identical setup. The results in Table
IV show that all resolvers are heavily affected by a single
request and stalled for a substantial amount of time. However,
the stalling duration differs significantly between resolvers.
Akamai, PowerDNS and Stubby all take about 3 minutes to
validate the signatures. The reason is that they use similar
cryptographic implementations, validating through all key-
signature pairs until they return a SERVFAIL to the client.
However, we observed three notable outliers in the impact of
the attack.

Unbound is DoSed approximately six times longer than the
other resolvers. The reason is the default re-query behavior
of Unbound. In a default configuration, Unbound attempts
to re-query the nameserver five times after failed validation
of all signatures. Therefore, Unbound validates all attacker
signatures six times before returning a SERVFAL to the client.
This explains the extended DoS of Unbound compared to the

8https://linux.die.net/man/1/dig
9https://linux.die.net/man/5/resolv.conf
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Fig. 2: SigJam attack with 10 req/s.

other resolvers. Disabling default re-queries, we find Unbound
is DoSed for 176s on a single KeyTrap request.

BIND9 is the second major outlier. The resolver is stalled
for over 16h with a single attacker request. Investigating the
cause for this observation, we identified an inefficiency in the
code, triggered by a large amount of colliding DNSSEC keys.
The routine responsible for identifying the next DNSSEC key
to try on a signature does not implement an efficient algorithm
to select the next key from the remaining keys. Instead, it
parses all keys again until it finds a key that has not been tried
yet. The algorithm does not lead to inefficiencies in normal
operation with a small amount of colliding keys. But when
many keys collide, the resolver spends a large amount of time
parsing the keys and selecting the next key, extending the
duration of the DoS to 16h.

Knot is slightly less affected by the attack than the other
resolvers. Evaluating the attack on Knot shows that the resolver
has a limited buffer size for DNSSEC keys, limiting the
number of keys per request to 126 keys. This results in a
shorter DoS duration on Knot. However, the impact of the
attack on Knot is still substantial with a 56s DoS from a single
attack request.

In the following, we will show the impact of SigJam,
LockCram, and HashTrap on the resolvers, illustrating how
to similarly achieve maximum DoS of the resolver.

SigJam. Achieving full DoS with any attack other than
KeySigTrap requires more than a single attacker request.
To evaluate SigJam, we send 1 attack response per second
to the resolver, containing the 340 (the maximum amount
of) signatures in one DNS response. Using 340 signatures
per request, we steadily increase the amount of attacker’s
requests until we observe no increase in lost benign queries.
As illustrated in Figure 2, 10 req/s cause a severe load on
the resolver, leading to 75% lost benign traffic. The reason
for intermediate responses to benign queries is I/O when the
resolvers wait for new signatures. This also explains why we
do not see improvement in effectiveness of the attack with
more malicious requests. The resolver still needs to conduct
I/O operations, hence intermediate requests get processed.

LockCram. We evaluate the LockCram attack using 582
keys of algorithm 14 on Unbound. The attack starts with 1
attacker request per second. We increase the rate of attack
until we see no increase in lost benign requests. At 10 attack
req/s, we achieve full DoS of the resolver, with ¿ 99% loss
of benign requests, see Figure 3. The figure illustrates that the
validation of the signature against all colliding keys results in
100% utilization of the CPU. In contrast to SigJam, we do
not see intermediate replies while the attack is running. The
reason is that LockCram attack requires much lower I/O effort
than SigJam. In the first attack request of the evaluation, the
resolver needs to download and validate the RRSet containing

all colliding keys. In subsequent requests, the resolver already
has the keys stored and only needs to download one signature.
Thus, the resolver spends much less time idling during the
attack, preventing it from answering benign requests while
waiting for attack I/O.

HashTrap. We evaluate the HashTrap attack using digests
of type 2 (SHA256) as it requires the largest amount of time to
compute on a 64-bit system. Since the calculation time of the
hashes does not depend on the key size, we chose the smallest
possible DNSSEC keys, fitting as many keys as possible in
one DNS message and thereby maximizing the number of
hash calculations. The smallest key size of common DNSSEC
algorithms is given by algorithm 15, using 256-bit keys. Using
256-bit keys, this allows us to fit 1357 DS records, and 1357
DNS keys in one attack request, resulting in 1357 * 1357 =
1.841.449 hash calculations per request.

We start the evaluation with 1 attack request per second and
increase the rate until we observe no increase in lost benign
requests at 2 attack requests per second. As can be seen in
Figure 4 the attack leads to 98% lost benign request. The 2%
queries still answered are again caused by I/O operations of
the resolver, allowing it to answer some benign queries.

D. Effect on Inbound/Pending DNS Packets

When resolvers are stalled from our attacks, they cannot
process pending requests nor respond to clients queries, even
for records that can be responded from the cache. We find
that a query that arrives during the time that a resolver is
stalled is generally not discarded but is placed in a buffer for
later processing. In normal operation, the resolver continuously
reads requests from the buffer and processes them, either
by replying from cache or with a recursive DNS resolution.
During a KeyTrap attack, resolvers are stalled in validation
and do not process new requests. The requests are stored in
the OS buffer, which eventually fills up to its bounds, resulting
in loss of subsequent inbound packets.

Notice that packets may also get lost even if the buffer
is not full. We find that PowerDNS discards old packets by
default. When depleting the OS UDP buffer after the attack
is over, PowerDNS discards any packets older than 2s. This
means that during the KeyTrap attack, any benign request
arriving at PowerDNS earlier than 2s before the end of the
attack does not get answered. If the OS buffer fills up more

Fig. 3: LockCram attack with 10 req/s.

Name DoS Duration
Unbound 1014s
BIND9 58632s
Knot 51s*
Akamai 186s
PowerDNS 170s
Stubby 184s

TABLE IV: DoS duration with single attack request.

*Knot has a limited buffer for DNSSEC keys (126 keys), allowing for a smaller attack
payload.
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Fig. 4: HashTrap attack with two requests per second.

Fig. 5: Impact on benign requests to Unbound under attack.

than 2s before the attack is over, the OS drops the packets that
PowerDNS would still answer to, resulting in PowerDNS not
sending out any replies to benign requests after the attack is
over.

E. Effect on Clients

We also monitor the responses sent by the resolver to a
benign DNS client during the attack. The client continuously
requests unique un-cached records from the tested resolver
and logs when it receives an answer. With this setup, we can
evaluate if the resolver still answers to benign requests while
busy validating the signatures from the attack request.

The impact is illustrated in Figure 5. In Unbound as
well as in all other resolvers we investigated, the resolver
does not answer to client requests while busy validating the
signatures of the attacker request. This can be seen in the
graph, showing the amount of answers the client receives
over time. Once the attack request is sent at two seconds, the
resolver stops answering to any benign requests. Only after
it finishes processing the attacker request, the resolver again
answers to benign queries at around 25s. The graph illustrates
that the impact of the attack is severe, as it results in a full
DoS of the resolver while the attack is running.

F. Multi-Threading

Multi-threading is supported by all major DNS resolvers
and influences how KeyTrap attacks affects their response
behavior. To investigate the influence of multi-threading, we
set up all resolvers with multi-threading enabled. Figure 6
illustrates the influence of multi-threading on the attack.
When using additional threads, the resolver is still able to
answer to some benign requests, even while busy validating
the signatures. Code review shows that the resolvers do not
consider the load on a thread when performing scheduling,
which explains why approximately half of the requests are

Resolver Buffer Discard Resp. Retries Processing Multithread
Fills packets cached Order

Unbound Y N N 5 Mesh Internal (L/I)
BIND9 Y N N 0 Mesh Internal (L/I)

PowerDNS Y Y N 0 Mesh Internal (L/I)
Knot Y N N 0 Seq. OS (L/I)

Stubby Y N N 0 Mesh OS (L/I)
Akamai N N Y 0 Mesh Internal (L/D)

TABLE V: Components in resolvers.

L/I: Load-Independent, L/D: Load-Dependent.

still scheduled on a thread that is busy validating signatures.
These requests are lost. Answering benign requests while
validating signatures extends the duration that the resolver
takes to complete validation by a short amount, in the case
of Unbound by about 20s. Note that due to inherent pseudo-
randomness in the scheduling of requests to the threads, and
the scheduling of different threads to run by the OS, a small
fluctuation of the percentage of lost requests can be observed
in the graph. We observe similar fluctuations in all resolvers.
We find one resolver, Cacheserve by Akamai, that does not
lose parts of its traffic when multi-threading is deployed. The
reason is that it considers thread load in the allocation of new
requests to worker threads, leading to no lost benign requests
while Cacheserve has open threads not busy validating attack
signatures.

The attacker can circumvent the supposed protection from
multi-threading by sending multiple requests to the resolver. In
the case of Akamai, the scheduling algorithm that considers the
load of threads still allows the attacker to fill all threads with
the attack. Since every new attacker request will be scheduled
to a free thread, the attacker only needs to send as many
attacker requests as there are threads in Cacheserve. No request
will be scheduled to an already busy thread. In contrast, for
all other resolvers, the success of the attack is influenced by
the pseudo-random scheduling algorithm. Since allocation of
requests to threads is not known to the attacker, the attacker
needs to send more requests than there are threads in victim
resolver to ensure all threads are hit, even if the scheduling
algorithm, by chance, schedules multiple attack requests to
the same thread. In the case of fully random scheduling, the
average amount of attack requests needed to fill all victim
threads can be calculated by E = n×

∑n
i=1

1
i where n is the

number of threads in the resolver. Since schedulers are usually
optimized to distribute systematically to the threads, the real
world average number of requests required to hit all threads
will generally be lower than the random value. The effect of
sending multiple queries can be seen in Figure 7. The graph
shows a scenario where the attacker sends five attacker requests
to an instance of Unbound running with five worker threads
on five CPU cores. As seen in the graph, the five requests
do not suffice to saturate the threads, as one threads remains
active in replying to benign queries, leading to approximately
80% lost requests. The fact that two attacker requests were
scheduled to the same thread can be observed in the second
half of the plot. While the validation finishes in three threads,
reducing the rate of lost requests by 60%, one thread continues
validating signatures for almost twice as long, indicating that
two requests were scheduled to a single thread.

These observations show that multi-threading is no suf-
ficient protection against the attack, as the attacker, when
sending a sufficient amount of attack requests, can hit all
threads of the resolver, leading to a comprehensive DoS of
the resolver. It also illustrates that one attack request is not
sufficient for a complete DoS of the resolver when multi-
threading is used.

G. Cached Entries

DNS resolvers implement a cache to answer recently
requested entries without recursive resolution. This greatly
improves efficiency of the resolver, as certain domains are
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Fig. 6: KeyTrap attack on Unbound with 1 request and 2 threads.

requested more frequently, like domains of commonly used
websites. However, since all the resolvers, except Cacheserve,
handle replies to cached entries on the same thread as recursive
resolution and validation, caching does not mitigate the attack.
In contrast, since Cacheserve implements a separate thread for
answering cached entries, the effect of the attack is partially
mitigated.

H. Continuous KeySigTrap Attack

Using the insights gained from the previous sections, we
construct a continuous attack on resolvers. In the initial phase
of the attack, the attacker sends multiple KeySigTrap requests
simultaneously. Sending multiple requests ensures that the
resolver gets stalled for a substantial amount of time and, in
the case of multi-threading, all threads get hit with an attack
and are busy validating signatures. The DNS implementations
we tested in this work use 2-6 resolution threads, depending
on the resolver and the size of the deployment. Creating a real-
world scenario, we thus evaluate our continuous attack on an
Unbound instance running with 4 resolution threads.

The requests should be timed in such a way that new
requests are always already in the buffer once a request from
the previous batch finishes. Using the validation time of a
single attack request in Unbound, not considering re-tries,
we find a single request approximately stalls a thread for
about 176s (see Table IV). We choose an interval half of this
duration. We further send 12, three requests per thread of the
resolver, to ensure all validation threads are hit with the attack.
The attack uses the following steps:

1. Send a batch of 12 initial attack requests
2. Wait 1s to ensure the batch has been read
3. Send a batch of 12 follow-up attack request + a buffer filler
4. Wait 90s
5. Go back to 3.

The result of this attack is plotted in Figure 8. The
attack achieves a complete DoS of the resolver for the entire
2h measurement duration, with 99.999% of benign requests
lost. All 4 processor cores continuously run on 100% CPU
utilization, validating the signatures. The attacker only requires
traffic of 13 request per 90s, i.e., on average one request every
6.9s. This attack rate is low enough to prevent any rate-limiting
mechanisms from blocking follow up attacker requests in a
real-world setting.

Fig. 7: KeyTrap attack on Unbound with 5 requests and 5 threads.

Fig. 8: Continuous KeyTrap attack on 4-threaded Unbound.

This evaluation demonstrates that KeySigTrap is a practical
attack, achieving a continuous DoS even on a multi-threaded
resolver. Even a small-scale attacker can exploit KeySigTrap
to fully stall DNS resolution in the resolver for other clients
for an indefinite amount of time.

VII. THE PATH TO MITIGATIONS

The detrimental impact of KeyTrap attacks if exploited in
the wild on vulnerable resolvers necessitated patches before
knowledge of the flaws and our attacks becomes public. We
have thus been closely working with the developers of DNS
resolvers since November 2, 2023 on developing mitigations
against our attacks. We initiated the disclosure process on
November 2. 2023, following which a group was formed
of 31 participants, consisting of vendors of DNS software,
operators of DNS/Cloud/CDN, and IETF experts. The group
communicated over a closed DNS OARC channel established
for disclosure and mitigations of our attacks. We describe the
timeline of disclosure and mitigations in Figure 9 with more
details in Appendix, §VII-D.

The immediate short-term recommendations to mitigate an
ongoing attack are to temporarily disable DNSSEC or to serve
stale data. Serving stale data to improve DNS resiliency was
proposed in [RFC8767]. Vendors that decide to implement this
should make sure to return stale data from a separate thread,
not the one that also does the DNSSEC validation, otherwise
the resolvers remain stalled. Temporarily disabling DNSSEC
validation in resolvers would help remediate an ongoing attack.
However, this would also expose clients and resolvers to threats
from DNS cache poisoning. Worse, an adversary could abuse
this fallback to insecure mode as means to downgrade the
DNSSEC protection.

We worked with the DNS developers to integrate sys-
tematic mitigations into their software. In the following, we
describe the succession of proposed patches, showing how
we evaluated and circumvented their protection against Key-
Trap. The process illustrates the challenges in mitigating such
powerful attacks as KeyTrap attacks and variants of it. We
also present the first working solution that will be published,
in variations, as patches for all major DNS resolvers. The
operators of the open DNS resolvers have already deployed
patches. The releases of patches for DNS software have been
scheduled by the different vendors to be deployed between end
of January and beginning of February. It is important to note
that these patches all disobey the Internet standard in certain
aspects, including the number of validations they are willing
to do, to protected against the flaws within the standard.

A. Patch-Break-Fix DNSSEC

Agreeing on which patches to deploy required a number of
iterations. The developers were reluctant to make substantial
changes, and rather aimed at patches that would mitigate
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Fig. 9: Disclosure and patch/break/fix timeline.

the attacks with minimal changes. This is understandable,
since complex patches required more extensive testing over
longer time periods to confirm that they do not introduce
new flaws, are interoperable with other mechanisms, and do
not incur failures in the wild. Nevertheless, developing quick
patches turned into a lengthy iterative process, during which
the vendors developed patches that we broke, which were
subsequently fixed, following with new patches. We illustrate
the timeline of the disclosure and the patch-break-fix iterations
with the vendors in Figure 9. We next explain the patches and
our attacks against them.

Limiting failures. The initial “immediate” mitigation was
to limit the maximum amount of validation failures per res-
olution. It was first implemented by Akamai, with a limit
of 32 on the number of failed validations, then BIND9,
which limited the failures to 0 and Unbound, with a limit of
16 failures. We found the limitation not to be an effective
mitigation against the worst of our attacks. If each query is
limited in the number of failures it is allowed to result in, the
failures can be spread across multiple queries. To demonstrate
this, we extended the KeyTrap attack (presented in §V-D) so
that the signature validations are distributed across multiple
queries, such that each query causes the resolver to perform
32 signature validations. Thus instead of creating multiple
validations with a single query we sent multiple queries. In
a setup with Akamai DNS resolver instance, 150 requests per
second cause the CPU to get stalled. This showed that the
chosen limit of 32 validation failures was not strict enough.

Zero failures. The strictest patch on the cryptographic
failures was implemented by BIND9, returning SERVFAIL
after a single cryptographic failure, hence removing the need
to check for collisions at all. Although allowing 0 failed vali-
dations prevents the KeyTrap attack, it does not mitigate hash
collision attack with HashTrap (§V-E). HashTrap causes the
resolver to perform a very large amount of hash calculations.
Experimentally, using 10 requests per second, we showed that
HashTrap inflicts DoS on the patched instance of BIND9
resolver. The evaluation is plotted in Figure 10: As can be
seen, during the attack against the patched BIND9 instance
more than 72% of benign requests are lost. We observe that
most benign requests get dropped. This variant of the attack
shows that merely limiting the amount of signature validation
failures is not a resilient mitigation against our DoS attacks.

Limiting key collisions. A patch by Akamai, in addition
to limiting the signature validation failures, also limited the

Fig. 10: HashTrap attack on patched BIND9 with 10req/s.

Fig. 11: ANY-type derivation of SigJam on Akamai.

key tag collisions in DNS responses to contain at most 4 keys
with colliding tags. We find that limiting key tag collisions to
4 will not impact normal operation of the resolver. Using data
from the Tranco Top1M domains, we deduce that only two
of the about 60, 000 signed zones have colliding DNSKEYS,
with no zone using more than two colliding keys.

Limiting key tag collisions proved successful in protecting
against HashTrap. The combination of both patches was never-
theless still vulnerable to the SigJam attack (§V-B). The attack
works with a single DNSSEC key and many signatures, but
requires no signature validation failures, thereby circumventing
the protection in the patch. We use ANY type responses,
which contain many different record sets, each signed with
a different signature. We can create arbitrary numbers of
different record sets, so that on the one hand the number of
signatures is maximized, and on the other hand, the response
still fits into one DNS packet. We vary over the type number
field on an A-type record to create a large number of small,
unallocated-type record sets, each covered by an individual,
valid signature. The resolver first validates all the signatures
on the records. Since all signatures are valid, the resolver
does not fail from the imposed limit on validation failures
and instead continues the validation until all signatures on
the records in the ANY-type response have been checked.
We found this attack to be effective against all patches that
limit cryptographic failures. The success of the attack on a
patched Akamai is illustrated in Figure 11. In the evaluation,
the attacker sends 4 ANY type requests per second, a rate at
which the attacker is able to completely DoS the resolver after
a few seconds. Running the attack for 60s, we were able to
achieve over 90% lost benign queries. The attack can thus
DoS the resolver, circumventing the patch. The attack that
exploits ANY-type responses illustrates that limiting only the
cryptographic failures is not a sufficient mitigation against the
complexity attacks.

Limiting all validations. The first working patch capable
of protecting against all variants of our attack was implemented
by Akamai. Additionally to limiting key collisions to 4, and
limiting cryptographic failures to 16, the patch also limits total
validations in ANY requests to 8. Evaluating the efficacy of the
patch, we find the patched resolver does not lose any benign
request even under attack with > 10 requests per second. Illus-
trated in Figure 12, the load on the resolver does not increase
to problematic levels under the ANY type attack with 10 req/s,
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and the resolver does not lose any benign traffic. It thus appears
that the patch successfully protects against all variations of
KeyTrap attacks. Nevertheless, although these patches prevent
packet loss, they still do not fully mitigate the increase in
CPU instruction load during the attack. The reason that the
mitigations do not fully prevent the effects of the KeyTrap
attacks is rooted in the design philosophy of DNSSEC. Notice
however that we are still closely working with the developers
on testing the patches and their performance during attack and
during normal operation.

B. Improving Resilience of Architecture

To understand the impact of the attacks on various DNS
functionality, including caching, pending DNS requests or
inbound DNS packets from the clients as well as from the
nameservers, we perform code analysis and evaluations. Our
observations from the analyses can be used to enhance the
robustness to failures and attacks of implementations:

Multi-threading. Using code analysis and experimental
evaluation of the multi-threading architecture of the DNS
implementations, we find that load of processes is generally
not considered in scheduling new DNS requests, leading to
substantial loss of requests even if not all threads of a resolver
are busy. Further, we find resolvers do not consider the
computational effort of a given request, leading to loss of
benign requests, if a single request creates a large load on
the resolver. We contribute the architectural recommendation
that resolvers should de-prioritize DNS requests that cause
substantial computational load, allowing the resolver to still
answer benign clients even under attacks.

OS buffers. We find that the resolvers generally only
deplete the OS UDP buffer after a batch of tasks has been
finished. This causes the buffer to fill up when the resolver is
busy, leading to lost benign requests. We recommend to adapt
the architecture of resolvers to allocate a separate thread for
reading from the OS buffer and placing pending requests in a
dynamic internal buffer.

Thread for cached records. Further, since many benign
queries by users can be answered from cache, additionally
allocating a separate thread for answering to cached entries
can reduce the impact of stalling of resolution threads.

C. Implementation Challenges

The experience we made working with the developers
on designing and evaluating the patches showed that the
vulnerabilities we found were challenging to patch. We not
only showed that patches could be circumvented with different
variants of our attack, but also discovered problems in the
implementations themselves. We provide here examples from
two major implementations: Knot and BIND9. During the

Fig. 12: ANY type attack with 10req/s on patched Akamai.

Fig. 13: KeyTrap against patched Knot.

evaluations we found that a patch for Knot, that was supposed
to limit requests to 32 failed validations per resolution, was
not working as intended. While the patch reduced the number
of validations resulting from a single attacker request, it did
not sufficiently protect against an attacker sending multiple
requests in a short time frame. With 10 attacker requests per
second, the patched Knot implementation dropped over 60% of
benign queries, as shown in Figure 13. We traced the bug to be
a broken binding, which the developers fixed in the subsequent
iterations of patches.

The second example is a problematic patch in BIND9.
While evaluating the patch with 10 requests per second to the
patched resolver, we found that after about 70s the resolver
would consistently crash, causing 100% loss of benign queries.
This bug was also communicated to developers and fixed in
later patches.

D. Timeline Disclosure

In the following, we describe the timeline of disclosure
to indicate how the vulnerability was reported and how we
worked with the experts from industries to find solutions for
the problems that we discovered.
02.11.2023 Initial disclosure to key figures in the DNS com-
munity. Both confirm that KeyTrap is a severe vulnerability,
requiring a group of experts from industry to handle.
07.11.2023 Confidential disclosure to representatives of the
largest DNS deployments and resolver implementations, in-
cluding Quad9, Google Public DNS, BIND9, Unbound, Pow-
erDNS, Knot, and Akamai. The group of experts agrees that
this is a severe vulnerability that has the potential to cut off
internet access to large parts of the Internet in case of malicious
exploitation.
A confidential chat-group is established with stakeholders
from the DNS community, including developers, deployment
specialists and the authors. The group is continuously ex-
panded with additional experts from the industry to ensure
every relevant party is included in the disclosure. Potential
mitigations are discussed in the group.
09.11.2023 We share KeyTrap zonefiles to enable developers
to reproduce the attack locally, facilitating the development of
mitigations
13.11.2023 Akamai presents the first potential mitigation of
KeyTrap by limiting the total amount of validation failures to
32.
23.11.2023 Unbound presents its first patch, limiting cryp-
tographic failures to a maximum of 16, without limiting
collisions.
24.11.2023 BIND9 presents the first iteration of a patch that
forbids any validation failures.
08.12.2023 An umbrella CVE-ID, CVE-2023-50387, is as-
signed to the KeyTrap attacks.
02.01.2023 After discussions with developers, we find some
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have problems recreating the attack in a local setup. We thus
provide them an updated environment with a DNS server to
ease local setup and further facilitate testing of patches.
03.01.2023 BIND9 presents the second iteration of a patch,
limiting validation failures.
03.01.2024 Our newly implemented DS-hashing attack proves
successful against all mitigations not limiting key collisions,
including BIND9 and Unbound, and is disclosed to the group.
16.01.2024 Our ANYTYPE attack circumvents the protection
from limiting colliding keys and limiting cryptographic fail-
ures.
24.01.2024 The first working patch is presented by Akamai.
Other resolvers are implementing derivations of the counter-
measures to protect against the attacks.

VIII. CONCLUSIONS

Our work revealed a fundamental design problem with
DNS and DNSSEC: Strictly applying Postel’s Law to the
design of DNSSEC introduced a major and devastating vul-
nerability in virtually all DNS implementations. With just one
maliciously crafted DNS packet an attacker could stall almost
any resolver, e.g., the most popular one, BIND9, for as long
as 16 hours.

The impact of KeyTrap is far reaching. DNS evolved into a
fundamental system in the Internet that underlies a wide range
of applications and facilitates new and emerging technologies.
Measurements by APNIC [10] show that in December 2023,
31.47% of the web clients worldwide used DNSSEC-validating
resolvers. Therefore, our KeyTrap attacks have effects not only
on DNS but also on any application using it. An unavailability
of DNS may not only prevent access to content but risks also
disabling security mechanisms, like anti-spam defenses, Public
Key Infrastructure (PKI), or even inter-domain routing security
like RPKI or rover [11], [12], [13], [14].

Since the initial disclosure of the vulnerabilities, we have
been working with all major vendors on mitigating the prob-
lems in their implementations, but it seems that completely
preventing the attacks requires to fundamentally reconsider the
underlying design philosophy of DNSSEC, i.e., to revise the
DNSSEC standards.
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