

ETERNALBLUE
Exploit Analysis and Port to Microsoft Windows 10

RiskSense Threat Research| Version 1.2 | June 5, 2017

Executive Summary
On April 14, 2017, the Shadow Brokers Group released the FUZZBUNCH framework, an exploitation toolkit for Microsoft®
Windows®. The toolkit was allegedly written by the Equation Group, a highly sophisticated threat actor suspected of being
tied to the United States National Security Agency (NSA). The framework included ETERNALBLUE, a remote kernel exploit
originally targeting the Server Message Block (SMB) service on Microsoft Windows XP (Server 2003) and Microsoft Windows
7 (Server 2008 R2).

In this paper, the RiskSense Cyber Security Research team analyzes how using wrong-sized CPU registers leads to a seemingly
innocuous mathematical miscalculation. This causes a chain reaction domino effect ultimately culminating in code execution,
making ETERNALBLUE one of the most complex exploits ever written.

We will discuss what was necessary to port the exploit to Microsoft Windows 10, and future mitigations Microsoft has already
deployed, which can prevent vulnerabilities of this class from being exploited in the future. The FUZZBUNCH version of the
exploit contains an Address Space Layout Randomization (ASLR) bypass, and the Microsoft Windows 10 version required an
additional Data Execution Prevention (DEP) bypass not needed in the original exploit.

Finally, we will demonstrate how we stripped the exploit down to its essential parts to defeat detection rules previously
recommended by numerous governments and antivirus vendors. This includes the addition of a stealthier payload which,
unlike the original, does not use the DOUBLEPULSAR implant.

Please note that this deep technical overview of the exploit process is provided to white hat information security researchers
so that new generic and targeted techniques can be developed to prevent attacks. Overly meticulous details of the exploit
process, such as math and alignment issues that would only be useful to attackers, have been omitted. Due to the sensitive
nature of the exploit and other time constraints, the source code will not be made available until a later time.

Authors
Sean Dillon (@zerosum0x0) is a senior security analyst at RiskSense. He has been involved in reverse engineering and exploit
development for 15 years, with a research focus on Microsoft Windows NT kernel internals.

Dylan Davis (@JennaMagius) is a senior security analyst at RiskSense. He has performed a variety of Fortune 500 incident
response engagements, discovered new CVEs in major software, and performed vulnerability analysis on a wide variety of
embedded devices.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 3

Version 1.2 | June 5, 2017 | © 2017 RiskSense

Acknowledgements
The following people and organizations assisted in the exploit understanding with prior research, support, and other
contributions:

• Alex Ionescu
• Countercept
• Dan Tentler
• Danny Quist, Ph.D.
• Equation Group
• H.D. Moore
• James Lee
• Laurent Gaffié
• Luke Jennings
• Matt Miller
• Matthieu Suiche
• Metasploit Community
• Nate Caroe (RiskSense)
• nixawk

• pgboy1988
• Rapid7
• Shadow Brokers
• Srinivas Mukkamala, Ph.D. (RiskSense)
• Stéfan Le Berre
• Stephen Fewer
• Tarjei Mandt
• Torsten George, Ph.D. (RiskSense)
• Trend Micro
• William Gamazo Sanchez
• William Vu
• Worawit Wang
• Zach Harding (RiskSense)

About RiskSense

RiskSense®, Inc., is the pioneer and market leader in pro-active cyber risk management. The company enables enterprises
and governments to reveal cyber risk, quickly orchestrate remediation, and monitor the results. This is done by unifying and
contextualizing internal security intelligence, external threat data, and business criticality across a growing attack surface.

The company’s Software-as-a-Service (SaaS) platform transforms cyber risk management into a more pro-active,
collaborative, and real-time discipline. The RiskSense Platform™ embodies the expertise and intimate knowledge gained from
real world experience in defending critical networks from the world’s most dangerous cyber adversaries. As part of a team
that collaborated with the U.S. Department of Defense and U.S. Intelligence Community, RiskSense founders developed
Computational Analysis of Cyber Terrorism against the U.S. (CACTUS), Support Vectors Intrusion Detection, Behavior Risk
Analysis of Vicious Executables (BRAVE), and the Strike Team Program.

By leveraging RiskSense cyber risk management solutions, organizations can significantly shorten time-to-remediation,
increase operational efficiency, strengthen their security programs, heighten response readiness, reduce costs, and ultimately
minimize cyber risks. For more information, please visit www.risksense.com or follow us on Twitter at @RiskSense.

https://www.risksense.com/
https://twitter.com/RiskSense

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 4

Version 1.2 | June 5, 2017 | © 2017 RiskSense

Table of Contents
Executive Summary ... 2

Authors .. 2

Acknowledgements ... 3

About RiskSense ... 3

1.0 Background ... 6
1.1 The Shadow Brokers .. 6
1.2 Microsoft Windows MS17-010 Patch .. 6
1.3 Weaponized FUZZBUNCH Exploit .. 7
1.4 Metasploit Module ... 8

1.4.1 Bypass of IDS Rules ... 9
1.4.2 Removal of DOUBLEPULSAR .. 9

2.0 Vulnerability .. 10
2.1 Early MS17-010 Research .. 10
2.2 Memory Buffer Miscalculation ... 10
2.3 Origins ... 11

3.0 Exploit ... 12
3.1 Target Version of Microsoft Windows 10 ... 12
3.2 Exploit Mitigations .. 12

3.2.1 Data Execution Prevention (DEP) .. 12
3.2.2 Address Space Layout Randomization (ASLR) .. 13

3.3 Network Traffic Analysis ... 13
3.3.1 Overflow Socket ... 13
3.3.2 Groom Packets .. 14
3.3.3 Allocation Connection .. 14
3.3.4 Free Hole Connection .. 14

3.4 FEA and Kernel Structures ... 15
3.4.1 SMB_FEA.. 15
3.4.2 SMB_FEA_LIST ... 15
3.4.3 SRVNET_BUFFER_HDR ... 15
3.4.4 MDL .. 16
3.4.5 SRVNET_RECV.. 17

3.5 SMB Exploitation Sequence ... 17
3.6 Execution Chain of Events ... 18

3.6.1 ASLR Bypass .. 19
3.6.2 DEP Bypass ... 19
3.6.3 Hijacking Code Execution .. 20

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 5

Version 1.2 | June 5, 2017 | © 2017 RiskSense

4.0 Payload .. 23
4.1 Overview of Operation ... 23

4.1.1 Hook the SYSCALL Handler .. 23
4.1.2 Emulate a SYSCALL .. 24
4.1.3 Locate NTOSKRNL.exe Base Address .. 24
4.1.4 Dynamically Calculate ETHREAD ThreadListEntry ... 24
4.1.5 Find a Target SYSTEM Process .. 24
4.1.6 Copy User-mode Shellcode to Target Process ... 25
4.1.7 Find an Alertable Thread .. 25
4.1.8 Create and Queue APC ... 25
4.1.9 Perform Cleanup .. 25
4.1.10 User Mode Tasks .. 26

4.2 Summary of Improvements ... 26

5.0 Conclusion .. 27

Bibliography .. 28

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 6

Version 1.2 | June 5, 2017 | © 2017 RiskSense

1.0 Background

1.1 The Shadow Brokers
On August 13, 2016, a mysterious Twitter account [1] for the Shadow Brokers hacking entity appeared, tweeting a
PasteBin link to numerous news organizations. The link described the process for an auction to unlock an encrypted file
that claimed to contain hacking tools belonging to the Equation Group.

Dubbed in 2015 by Kaspersky Lab [2], Equation Group are sophisticated exploit and malware authors believed to be part
of the Office of Tailored Access Operations (TAO), a cyber warfare intelligence-gathering unit of the United States
National Security Agency (NSA). As a show of good faith by the Shadow Brokers, a second encrypted file and
corresponding password were released, with tools containing numerous exploits and even zero-day vulnerabilities.
Among the exploits made available was EXTRABACON, a remote code execution for Cisco ASA firewalls, which the
RiskSense Cyber Security Research team previously improved upon [3].

On April 14, 2017, the Shadow Brokers issued a message titled “Lost in Translation” [4], which released the FUZZBUNCH
framework, an exploitation tool similar to the open-source Metasploit project [5]. The framework included a treasure
trove of weaponized Microsoft Windows exploits and other malware. Among the exploits leaked was the ETERNALBLUE
exploit, which is a remote Microsoft Windows kernel exploit that targets the Server Message Block (SMB) protocol.

The FUZZBUNCH version of the ETERNALBLUE exploit, which uses the DOUBLEPULSAR backdoor implant as its primary
payload, gained significant notoriety and infamy as they were the hacking tools chosen for the international WannaCry
ransom worm attack that began on May 12, 2017.

1.2 Microsoft Windows MS17-010 Patch
One month prior to the Shadow Brokers leak of Microsoft Windows exploits, Microsoft rolled out a patch with the
TechNet security bulletin MS17-010 [6].

The MS17-010 patch fixed the following vulnerabilities:

Common Vulnerability Enumeration Description

CVE-2017-0143 Windows SMB Remote Code Execution Vulnerability

CVE-2017-0144 Windows SMB Remote Code Execution Vulnerability

CVE-2017-0145 Windows SMB Remote Code Execution Vulnerability

CVE-2017-0146 Windows SMB Remote Code Execution Vulnerability

CVE-2017-0147 Windows SMB Information Disclosure Vulnerability

CVE-2017-0148 Windows SMB Remote Code Execution Vulnerability

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 7

Version 1.2 | June 5, 2017 | © 2017 RiskSense

It is unclear which CVE is the vulnerability which ETERNALBLUE targets. However, Microsoft has stated CVE-2017-0146
and CVE-2017-0147 are part of the ETERNALCHAMPION exploit [7].

These vulnerabilities can be remediated through methods other than applying the patch, such as disabling the SMBv1
protocol, isolating vulnerable machines, not exposing SMB to the Internet, and the use of an inline intrusion detection
system (IDS).

1.3 Weaponized FUZZBUNCH Exploit
The ETERNALBLUE exploit in FUZZBUNCH is referred in many sources as the weaponized version of the exploit. It is
weaponized in that it appears to be the development of a nation state (e.g., it is a cyber weapon).

There are several exceptional characteristics, which make ETERNALBLUE a highly-advanced cyber weapon:

• It targets the Microsoft Windows operating system, which does not have publicly available source code.

• It exploits the kernel, which is prone to crashes, making research and development a slow process.

• It is a remote exploit, meaning no local offset calculations can be performed.

• It sends malicious traffic via SMB, an esoteric and poorly documented network protocol.

• It simultaneously exploits both x86 and x64 CPU architectures.

• It performs pool grooming, a type of heap spray of kernel memory structures.

• It contains a bypass for Data Execution Prevention (DEP).

• It contains a bypass for Address Space Layout Randomization (ASLR).

Every exploit contains at least one trick, some stratagem or artifice to deliver its payload. The FUZZBUNCH ETERNALBLUE
exploit contains several of such tricks. The exploit started with modest potential, at one point allegedly nicknamed
ETERNALBLUESCREEN [8]. However, over the years it was clearly improved, and now that it is in the hands of attackers
and the open-source white hat community it has been further refined.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 8

Version 1.2 | June 5, 2017 | © 2017 RiskSense

FIGURE 1: The original FUZZBUNCH version of the ETERNALBLUE exploit.

1.4 Metasploit Module
The Metasploit exploit module [9] was written by the RiskSense Cyber Security Research team and completed on May
14, 2017. The timing was unfortunate in that the culmination of research ended two days after the WannaCry attacks.
As such, there were false reports that the ransom worm “lifted” code from the Metasploit module. Instead, WannaCry
used a packet capture of the FUZZBUNCH exploit that was recorded for research purposes.

The exploit module currently only targets Microsoft Windows 7 and Microsoft Server 2008 R2, which are the highest
versions that the FUZZBUNCH exploit release can target. Plans to add offsets for newer versions of Microsoft Windows,
such as Microsoft Windows 10 and Microsoft Server 2012, have been discussed within the community. It was decided
that Metasploit would accept offsets for these versions as soon as they can be made available.

The Microsoft Windows 10 proof-of-concept analyzed in this document is not yet part of the Metasploit module.
RiskSense has no immediate plans to publish code for exploits outside of the scope of the original exploits.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 9

Version 1.2 | June 5, 2017 | © 2017 RiskSense

FIGURE 2: The ETERNALBLUE Metasploit module directly staging a Meterpreter payload.

1.4.1 Bypass of IDS Rules
The Metasploit module strips the exploit down to its essential, barebone components. By performing this task,
RiskSense demonstrated that numerous intrusion detection system (IDS) patterns recommended by government
agencies and antivirus vendors were inadequate against potential future attacks. More robust rules could be created
against the stripped-down exploit.

The following is one of several SNORT rules that were demonstrated to be inadequate [10]:

alert tcp $HOME_NET 445 -> any any (msg:"ET EXPLOIT Possible ETERNALBLUE MS17-
010 Echo Response"; flow:from_server,established; content:"|00 00 00 31
ff|SMB|2b 00 00 00 00 98 07 c0|"; depth:16; fast_pattern; content:"|4a 6c 4a 6d
49 68 43 6c 42 73 72 00|"; distance:0; flowbits:isset,ETPRO.ETERNALBLUE;
classtype:trojan-activity; sid:2024218; rev:2;)

1.4.2 Removal of DOUBLEPULSAR
The Metasploit module also differs from the FUZZBUNCH exploit in that the primary payload is custom-crafted ring
0 kernel shellcode. The new payload directly stages Metasploit’s collection of user-mode payloads; it does not use
the DOUBLEPULSAR implant at all.

RiskSense was the first organization to publish a detailed technical analysis of the DOUBLEPULSAR payload [11] [12]
[13]. While DOUBLEPULSAR is an ingenious payload, it has insecure cryptographic practices relying on steganography
that is now widely known, and thus is not a suitable solution for a penetration testing tool such as Metasploit.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 10

Version 1.2 | June 5, 2017 | © 2017 RiskSense

2.0 Vulnerability

2.1 Early MS17-010 Research
RiskSense Cyber Security Research analysts reviewed the MS17-010 patch shortly after its release, one month before the
Shadow Brokers FUZZBUNCH leaks, as it is a rare circumstance for multiple remote code execution vulnerabilities to be
patched at once. Reverse engineering determined that code paths for SMB traffic had been changed, resulting in error
messages for certain invalid operations being changed. Essentially, the patch inadvertently added an information
disclosure that allows a remote, uncredentialled attacker to determine if the patch has been installed.

One example of a new code path can be observed by connecting to the Inter-Process Communications (IPC$) tree and
attempting an SMB NT Trans2 transaction on FID 0. Prior to the patch, machines will return the
STATUS_INSUFF_SERVER_RESOURCES error code. On a patched machine, additional authentication checks were added,
meaning STATUS_INVALID_HANDLE or STATUS_ACCESS_DENIED will be given, depending on the version of Microsoft
Windows being tested.

Due to the determined critical nature of the patch, RiskSense decided to release a free scanner for system administrators
to assess their networks via the Metasploit project on March 29, 2017 [14], sixteen days before the Shadow Brokers leak
on April 14, 2017. This auxiliary scanner module, after the WannaCry attacks, became an extremely popular tool for
defenders to use and has since been ported to Python [15] and NMAP [16].

2.2 Memory Buffer Miscalculation
The vulnerability that ETERNALBLUE exploits is quite subtle. One could easily miss it if simply running a binary diffing tool
against a patched and unpatched Srv.sys driver. Srv.sys is where large portions of the SMB protocol lives, as Microsoft
has opted to do many networking tasks in the kernel, perhaps for additional performance reasons (see also: HTTP.sys).

On most versions of Microsoft Windows, there is a function named srv!SrvOS2FeaListSizeToNt, which is used to calculate
the size needed for a converting OS/2 Full Extended Attributes (FEA) List structures into the appropriate NT FEA
structures. These structures are used to describe file characteristics. This calculation function is not present in Microsoft
Windows 10, as it has been in-lined by the compiler. The vulnerability thus appears in srv!SrvOs2FeaListToNt.

FIGURE 3: The root cause vulnerability for ETERNALBLUE, which also sets the status code seen in successful exploitation.

Essentially, an attacker-controlled DWORD value is subtracted here, however you will notice WORD-sized registers are
used in the calculation. This buffer size is later used in a memcpy [17] or memmove [18] operation, depending on the
Microsoft Windows version, both of which perform a copy of a memory from one location to another.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 11

Version 1.2 | June 5, 2017 | © 2017 RiskSense

This mathematical miscalculation is easy to overlook, however such a small error leads to disastrously unintended
consequences. The vulnerability is best classified as CWE-680: Integer Overflow to Buffer Overflow [19].

Matthieu Suiche has suggested the following macro, available in cifs.h header of Windows Drivers SDKs [20], may have
been used:

#define SmbPutUshort(SrcAddress, Value) \
 *(PSMB_USHORT)(SrcAddress) = (Value)

The vulnerability itself could potentially have been found through either static code analysis, to identify the mathematical
error, or through fuzzing the SMB protocol and getting a lucky Blue Screen of Death. However, turning a crash into a
reliable exploit requires in-depth knowledge for many of Microsoft Windows undocumented kernel structures,
implementation details, and the SMB protocol.

The vulnerable code snippet is still present in versions of the MS17-010 patch. There is a secondary mitigation that
disallows SMBv1 traffic from travelling the code path, effectively fixing successful exploitation. This was done by adding
additional checks in srv!ExecuteTransaction [21].

2.3 Origins
The vulnerability itself appears to have been around for quite some time. RiskSense observed that the vulnerability is
present in a base install of Windows 2000 without any service packs installed.

FIGURE 4: It is trivial to crash Microsoft Windows 2000 with an error consistent for exploitation.

The Microsoft NT 4 source code was at one point leaked, and it is claimed the vulnerability is not present [22]. RiskSense
did not look at the NT 4 source, but it is possible the vulnerability was introduced in a service pack for NT 4.

As the earliest FUZZBUNCH exploit targets Microsoft Windows XP (Server 2003), it can be argued this vulnerability was
around for a number of years before being discovered.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 12

Version 1.2 | June 5, 2017 | © 2017 RiskSense

3.0 Exploit

3.1 Target Version of Microsoft Windows 10
For this exploit analysis and port, we target Microsoft Windows 10 x64 Version 1511, the November Update with the
codename Threshold 2. The build number is Microsoft Windows 10.0.10586. The MS17-010 patch, while available, is not
installed.

This version is the currently supported Current Branch for Business (CBB) version of Microsoft Windows 10. Our exploit
uses information about offsets and structures originally reversed for Microsoft Server 2012 by Worawit Wang [22], to
whom a tremendous debt of gratitude is owed.

This build of Microsoft Windows has firewall rules that prevent the SMB port from being open by default. However, with
default settings for both enterprise domain and private home networks, the firewall allows the port to be accessed. The
IPC$ share also disallows anonymous logins. We do not consider these features to be significant exploit mitigations.

For our analysis, we will utilize the WinDbg Kernel Mode Debugger, an official tool from Microsoft Corporation which
contains symbols for some, but not all, of the kernel data structures being examined.

3.2 Exploit Mitigations
Unfortunately, there are no working mitigations for Microsoft Windows Server 2003 (XP), Server 2008 (Vista/7), or Server
2012 (8/8.1). While certain versions do have mitigations enabled, the mitigations in place have straightforward
workarounds.

Microsoft Windows 10, however, receives exploit mitigations that previous versions of Microsoft Windows simply do not
get. The last exploitable version with known workarounds is Threshold 2, which is still supported in the Current Branch
for Business (CBB). If the machine has the Redstone 1 update, which was publicly available in August 2016, randomization
added to page table entries prevents the DEP bypass [23]. If the machine has the Redstone 2 update, introduced in April
2017 (after the MS17-010 patch), the HAL heap is also randomized, defeating the ASLR bypass.

Microsoft Server 2016’s first release includes Redstone 1, meaning a path to successful exploitation is not currently
known. However, it is still simple to cause denial-of-service, and future DEP / ASLR bypasses may still be discovered.

3.2.1 Data Execution Prevention (DEP)
Data Execution Prevention (DEP) is an exploit mitigation designed so that even if an arbitrary memory-write primitive
is obtained, hijacking execution to the write location will not result in execution. There is a No eXecute (NX) bit in
the page table entry that defines a memory location cannot be executed. Attempting to do so will result in a CPU
exception, which will be unhandled in kernel mode resulting in a system crash.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 13

Version 1.2 | June 5, 2017 | © 2017 RiskSense

3.2.2 Address Space Layout Randomization (ASLR)
A traditional avenue for DEP bypass is code re-use attacks. A technique known as Return-Oriented Programming
(ROP) was developed, in which execution flow is set by overflowing many return addresses containing small code
snippets, or “gadgets”. There is a mitigation, which generally defeats ROP attacks called Address Space Layout
Randomization (ASLR). ASLR means that memory addresses are no longer static offsets that can be pre-determined.

3.3 Network Traffic Analysis
When FUZZBUNCH was first released, simple packet analysis of the exploit’s network traffic was performed. The
phenomenon of successful exploitation by replaying a recording of the exploit was observed. This means that every offset
of the exploit can be pre-calculated; there is no secondary memory leak information disclosure being used to dynamically
calculate exploit requirements.

That stated, porting the exploit to a new version of Microsoft Windows (or writing the original exploit) is a tremendous
task, which requires precise setup. Structure offsets must be properly reverse engineered for essential functionality, as
in many cases they must be set to appropriate values or face rejection to runtime checks (causing Blue Screen of Death).
The integer overflow vulnerability must be calculated exactly, as other values rely on it and must be fixed up throughout
the course of the exploit. There can be no ambiguity and many kernel objects change drastically between the major
versions of Microsoft Windows.

There are two main drivers in play which work in synergy with each other, being Srv.sys and Srvnet.sys. The vulnerable
miscalculation and buffer overwrite will be performed because of actions in Srv.sys. The code execution hijack will occur
later in processing done by Srvnet.sys. A large non-paged pool, with custom Srvnet.sys headers instead of pool headers,
is where the memory corruption will happen.

The exploit opens several bare minimum connections, added by a variable NumGrooms amount. Grooms are used to
perform a type of heap spray attack of kernel pool memory, so that memory lines up correctly and overflow is controlled
to a correct location. SMB drivers use large non-paged memory with its own structures for memory management of
packets [24]. By adjusting the amount of grooms against a highly-fragmented pool, it is more likely to enter a known
state and end up with a successful overwrite of desired structures.

The connections used in the exploit are one of four basic types: an Overflow Socket, the Allocation Connection, the Free
Hole Connection, and Groom Packets.

3.3.1 Overflow Socket
This is the primary connection in the exploit, and the size of the malicious OS/2 Full Extended Attributes (FEA) List is
essentially present as an attacker-controlled value. This socket connects to the IPC$ tree and begins an NT Trans
request of a large FEA List. This large FEA List is sent through as many NT Trans2 secondary requests that are required,
depending on size. These packets can be filled with gibberish, until the last NT Trans2 packet which contains data
that will overwrite the headers of a Groom Packet connection.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 14

Version 1.2 | June 5, 2017 | © 2017 RiskSense

The final packet is deferred until all pool grooming is completed, as it exists in a different pool until the transaction
is complete. The final request should return the status code error STATUS_INVALID_PARAMETER if everything goes
well. This means the vulnerable code path was successfully travelled.

3.3.2 Groom Packets
Groom packets are several connections that are opened by a variable amount set by the attacker. The purpose of
grooming is to achieve contiguous kernel pool memory so that buffer overwrite ends up in the desired location—as
in the headers of one of these groom packets’ internal driver implementation structs. Exploit failures, where an
overwrite occurs in a location that is not a groom packet internal struct, do not generally result in a crash, but occurs
fairly regularly when grooming is unable to properly achieve contiguous memory. This is usually observed when the
pool is highly fragmented, especially after multiple exploitation attempts.

The NumGrooms amount is used after an allocation connection is opened, and six additional grooms are sent after
a hole connection is opened and the allocation connection is closed. Groom packets also have the job of holding the
exploit payload, which is sent after the overflow condition packet has been received and acknowledged by the
server.

Groom packets in the original exploit appear to be SMB2 packets, but are otherwise completely invalid and perhaps
only have the SMB2 header to defeat detection rules. The SMB2 header “magic” value can in practice be written
with anything.

3.3.3 Allocation Connection
The allocation connection is simply used to create a large allocation on the server, to reserve a buffer of that is
significantly smaller than the overwrite packet, so that when it is freed the Overflow Socket does not end up in its
place. This connection is used to fill a slot that will have trailing pool headers, which if overwritten would be hard to
forge and likely result in a crash. The allocation must be smaller than the final Overflow Socket FEA List, so that it
will go into the Free Hole Connection and not occupy this memory. The allocation connection is opened directly
before the NumGrooms amount of groom packet headers are sent. The hole connection is then opened, and the
allocation connection is closed.

3.3.4 Free Hole Connection
After the NumGrooms amount of groom packet headers are sent, the hole connection is opened. This buffer is
virtually the same size as the expected size of the overflowing buffer, with minor adjustment to make things line up.
At the last second, this Free Hole will be closed so that it can be quickly replaced with the overflowing buffer, who
believes there is enough space to use here, but miscalculates how much data to copy. It is expected that a non-
paged pool allocation with pool headers will not be adjacent to the hole connection because of the previous
allocation connection. The headers for this will be overwritten when the last fragment of the overflow socket is sent.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 15

Version 1.2 | June 5, 2017 | © 2017 RiskSense

3.4 FEA and Kernel Structures
Several kernel structures are overwritten or otherwise used during the exploit. Many of these structures are
undocumented, and must be reverse engineered. This process is performed by looking at function calls that are used
during normal execution in the attempt to determine what types exist at certain offsets.

3.4.1 SMB_FEA
A Full Extended Attribute is generally used to describe the characteristics of a file. One of SMBs primary functions
is to serve as a file share, and the dated SMBv1 protocol has support for many opcodes. According to MSDN: “The
SMB_FEA data structure is used in Transaction2 subcommands and in the NT_TRANSACT_CREATE subcommand to
encode an extended attribute (EA) name/value pair” [25].

typedef struct _SMB_FEA
{

UCHAR ExtendedAttributeFlag;
UCHAR AttributeNameLengthInBytes;
USHORT AttributeValueLengthInBytes;
UCHAR AttributeName[AttributeNameLengthInBytes + 1];
UCHAR AttributeValue[AttributeValueLengthInBytes];

} SMB_FEA, *PSMB_FEA;

3.4.2 SMB_FEA_LIST
A FEA List is simply many contiguous SMB_FEA. This is another documented structure on MSDN [26]. A malicious
SMB_FEA_LIST is the structure that is sent in the Overflow Socket, which is miscalculated while being converted into
an internal NT FEA List structure.

Typedef struct _SMB_FEA_LIST
{

ULONG SizeOfListInBytes;
UCHAR FEAList[];

} SMB_FEA_LIST, *PSMB_FEA_LIST;

3.4.3 SRVNET_BUFFER_HDR
This is the actual structure that will be overwritten during the out of bound memory copy caused by the original
vulnerability miscalculation. This contains buffer metadata that is appended to the real buffer of an SMB packet
allocation.

One of the most important aspects of this structure is the Memory Descriptor List PMDL (offset 0x38), which allows
placing the fake PSRVNET_RECV struct pointed to by pSrvNetWskStruct (offset 0x58) into a desired memory location.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 16

Version 1.2 | June 5, 2017 | © 2017 RiskSense

typedef struct SRVNET_BUFFER_HDR {
 LIST_ENTRY List;
 USHORT Flag; // clear least 2 significant bits
 BYTE unknown0[0x6];
 PBYTE pNetRawBuffer; // 0x18 points to valid start of buffer
 DWORD dwNetRawBufferSize; // 0x20
 DWORD dwIoStatusInfo;
 DWORD dwNonPagedPoolSize;
 DWORD dwPadding;

PVOID pNonPagedPoolAddr; // 0x30 points to SRVNET_BUFFER
PMDL pMDL; // 0x38 point to offset 0x90 of this struct
DWORD dwByteProcessed; // 0x40
BYTE unknown1[4];
QWORD qwSMBMsgSize; // Set to size of all RECV data
PMDL pMDL2; // 0x50 optionally fixed to free buffer
PSRVNET_RECV pSrvNetWskStruct; // 0x58 fake SRVNET_RECV struct address
DWORD unknown2;
char unknown3[0xc];
char unknown4[0x20];

// original struct ends

 MDL WriteWhatWherePrimitive; // 0x90
} SRVNET_BUFFER_HDR, *PSRVNET_BUFFER_HDR;

3.4.4 MDL
Memory Descriptor Lists are a kernel structure that describe a memory buffer for certain types of memory I/O
operations. Controlling the MDL in packet metadata essentially causes the TCP stack to perform an arbitrary write-
what-where, a common primitive used in kernel exploitation, when data is sent to the connection. This structure is
exported by NTDLL, and thus we can query the debugger for its type.

FIGURE 5: The debugger contains symbols for the MDL structure.

We essentially need to set this up in the overwritten packet with the bytes that would equal the same pseudocode
seen below:

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 17

Version 1.2 | June 5, 2017 | © 2017 RiskSense

SIZE_T nSentBytes = 0x7f;
PVOID pTargetLoc = 0xffff…;

MDL mdl = { 0 };

mdl.Next = NULL; // the list entry should not point anywhere
mdl.Size = 0x60;

mdl.MdlFlags = MDL_NETWORK_HEADER | MDL_SOURCE_IS_NONPAGED_POOL; // 0x1004
mdl.Process = NULL;

mdl.MappedSystemVa = pTargetLoc – nSentBytes;

3.4.5 SRVNET_RECV
This is the structure that is written with the write-what-where primitive. Once the corrupted connection is closed,
this is used by Srvnet.sys to call the handler function, which points to the shellcode address.

typedef struct _SRVNET_RECV {
 BYTE unknown0[0x50];
 PKSPIN_LOCK SpinLock; // 0x50 lock is acquired during processing
 LIST_ENTRY List; // 0x58 Flink and Blink point to self
 BYTE unknown1[0xa0];
 PVOID **pHandlers; // 0x110 pointer to handler table
 QWORD qwUnknown2;
 QWORD qwOverwriteSize; // 0x118 set to pre-calculated overwrite amount
 QWORD qwUnknown3;
 DWORD dwUnknown4;
 DWORD dwInvokeIndex; // 0x13c set to 3
 BYTE unknown5[0xb0];

 // original struct ends

 QWORD qwFuncArgument;
 PVOID HandlerFunction; // set to &shellcode
} SRVNET_RECV, *PSRVNET_RECV;

3.5 SMB Exploitation Sequence
The four types of connections must be sent in the proper order, so that pool memory is properly groomed. Performing
these actions out of sequence can lead to overwrite occurring in the improper location, which later could lead to an
unhandled kernel exception, meaning the system will crash.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 18

Version 1.2 | June 5, 2017 | © 2017 RiskSense

Socket Type Action

1 Overflow SMBv1 negotiation, Anonymous login, and IPC$ tree connect

1 Overflow Initial NT Trans request, followed by multiple Trans2 requests (FEA List)

2 Allocation Create a buffer which may have trailing pool headers we do not want to overwrite

4+ NumGrooms Empty packet headers, just to open connections, these should line up next to each other

3 Hole Create a buffer of similar size to Overflow data, so it can be switched out at appropriate time

2 Allocation Disconnect to free buffer

4+ Final Grooms Create six new connections, sending same headers as previous NumGrooms

3 Hole Disconnect to free buffer, Overflow will begin copy starting here

1 Overflow Send the last fragment of the exploit packet, causing overwrite of a Groom SRVNET_BUFFER_HDR

4+ All Grooms Any data now transmitted will be written by TCP stack to the address in the fake MDL

1+ All Close all sockets, resulting in SRVNET_RECV executing shellcode

3.6 Execution Chain of Events
The following is a high-level chain of events that allow the buffer overflow to achieve reliable code execution:

1. The OS/2 FEA to NT FEA conversion results in an overflow of a Groom Packet’s internal metadata.

2. The Memory Descriptor List (MDL) of the overwritten Groom Packet’s SRVNET_BUFFER_HDR struct results in an
arbitrary write-what-where primitive on the next data transmitted.

3. MDL is used to disable DEP on a fixed static region of the HAL Heap, whose Page Table Entry (PTE) is also fixed.

4. A second malicious OS/2 to NT FEA conversion is used to overwrite the SRVNET_BUFFER_HDR again, to change
the MDL write target.

5. MDL is used to place shellcode in newly executable region, prepended with a fake SRVNET_RECV struct.

6. The address for the SRVNET_RECV struct is in the overwritten SRVNET_BUFFER_HDR, and contains the “handler”
function pointer which is the address of the shellcode.

7. The corrupted Groom connection is closed, and the “handler” function filled with shellcode is eventually called
in Srvnet.sys.

Portions of the basic sequence are repeated, once for the DEP bypass MDL, and again for the SRVNT_RECV MDL, which
causes code execution. These can be triggered in sync in all testing and there does not appear to be a race condition with
the write orders.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 19

Version 1.2 | June 5, 2017 | © 2017 RiskSense

3.6.1 ASLR Bypass
ASLR bypasses generally consist of locating components which are still forced to rely on fixed offsets. There exists a
region of memory in the kernel called the HAL Heap, which is used by the Hardware Abstraction Layer. Until
Microsoft Windows 10 Redstone 2 (April 2017), which randomizes the HAL Heap location [27], this region can be
located at 0xffffffff`ffd00000.

On Microsoft Server 2008 R2, the latest version exploited by FUZZBUNCH, the HAL Heap has both write and execute
permissions. For this reason, a DEP bypass was not necessary for the original exploit, as it was already “built-in” to
the ASLR bypass.

The region is known to store important structures such as the HalpInterruptController, which is a table of function
pointers that perform critical operations, so exploits should be careful in choosing where to perform the arbitrary
write.

3.6.2 DEP Bypass
Starting sometime in Microsoft Windows 8/8.1 (Server 2012), the HAL Heap became non-executable. A virtual
memory Page Table Entry (PTE) contains information about a memory location, such as base physical addresses, CPU
ring mode, a dirty bit, and starting with the introduction of hardware-enforced DEP, a No eXecute (NX) bit at offset
63. If the NX bit is set and we attempt to move the instruction pointer to the page, a kernel panic will prevent the
exploitation.

FIGURE 6: The PTE for the desired shellcode address has the NX bit enabled.

The remote bypass for DEP used [28] is a technique which can be used to have the MDL write a 0 into the NX bit.
PTEs until Microsoft Windows 10 Redstone 1 (August 2016), like HAL Heap, are in a fixed, static location, and can be
pre-calculated [23]. Disabling the bit will mark the page as executable.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 20

Version 1.2 | June 5, 2017 | © 2017 RiskSense

FIGURE 7: The NX bit is cleared from the Page Table Entry.

We can confirm that the overwrite is successful, as the debugger afterwards informs us that the memory is marked
as executable.

FIGURE 8: After the first MDL write, the shellcode address is safely executable.

3.6.3 Hijacking Code Execution
After the DEP bypass is complete, we can overwrite the Groom buffer again with a new SRVNET_BUFFER_HDR
containing an MDL that points to the location we just marked as executable. We send the fake SRVNET_RECV struct
and shellcode which causes the TCP stack to use the MDL to write to the preset location in the HAL Heap.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 21

Version 1.2 | June 5, 2017 | © 2017 RiskSense

FIGURE 9: The TCP stack performs I/O on the overwritten struct, resulting in arbitrary write.

We can query the preset address we chose for the MDL to write the fake SRVNT_RECV structure and shellcode to.
We observe that the shellcode and structure are present and the offsets are in the proper locations. With proper
setup, the handler function pointing to the shellcode payload will be called when the socket is closed.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 22

Version 1.2 | June 5, 2017 | © 2017 RiskSense

FIGURE 10: The SRVNET_RECV struct laid out in kernel memory after MDL write.

Setting a breakpoint at the start of the payload shellcode (interrupt 3, or “\xcc”), one can see the call stack when
code execution is transferred.

FIGURE 11: Successful exploitation and shellcode execution on Microsoft Windows 10 Threshold 2.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 23

Version 1.2 | June 5, 2017 | © 2017 RiskSense

4.0 Payload

4.1 Overview of Operation
RiskSense previously documented the DOUBLEPULSAR implant used in the original exploit [11]. The problem with
DOUBLEPULSAR is that it is not a cryptographically secure payload; it opens an insecure backdoor which anyone can
come along and use to load secondary malware.

In our improved payload, an Asynchronous Procedure Call (APC) is queued directly to cause normal Metasploit user-
mode payloads to be executed without requiring the backdoor. An APC can “borrow” a process thread that is in an idle
Alertable state, and while it relies on structures whose offsets change between versions of Microsoft Windows, it is one
of the most reliable and easiest ways to exit kernel mode and enter user mode. Kernel shellcode techniques were gleaned
from the Uninformed journal [29] and the DOUBLEPULSAR DLL injection payload [30].

The shellcode for Microsoft Windows 10 is similar to the code for Microsoft Windows 7 (Server 2008 R2), present in the
ETERNALBLUE Metasploit module [31]. Many of the structures necessary have offsets which change between major
versions, however WinDbg has symbols available for them so this is not a tedious task.

From a high level, here is the sequence of operations that the payload must take care of after the code execution hijack
as occurred.

4.1.1 Hook the SYSCALL Handler
The first task the payload must perform is to hook a new system call handler, which will point to stage two. This is
because we are executing at an undesired Interrupt Request Level (IRQL). At the current level, the dreaded
DISPATCH_LEVEL, interrupts are disabled, and we cannot use nifty features such as paged memory, which we will
need to copy the user-mode payload into. Thus, it is necessary to have the second stage of shellcode called in a
process context so that more kernel functionality is available.

mov ecx, 0xc0000082 ; IA32_LSTAR syscall MSR
rdmsr
movabs rbx, 0xffffffffffd00ff8 ; another HAL heap address
mov dword [rbx+0x4], edx ; save old syscall handler
mov dword [rbx], eax
lea rax, [rel x64_syscall_handler] ; load relative address to 2nd stage
mov rdx, rax
shr rdx, 0x20
wrmsr ; write hook
ret

x64_syscall_handler: ; the syscall handler follows this stub

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 24

Version 1.2 | June 5, 2017 | © 2017 RiskSense

4.1.2 Emulate a SYSCALL
Emulating a system call is simple enough to do, and code can mostly be directly copied from nt!KiSystemCall64.
Essentially the GS segment register needs to be swapped from user to kernel, all registers need to be saved, and
interrupts need to be resumed. Once this is done, the shellcode can call the third stage which will queue the APC.
When the third stage completes, clear interrupts, restore registers, and jump the instruction pointer to the real
system call address.

The original system call handler MSR should also be restored as soon as possible, to prevent a bug check from Kernel
Patch Protection (PatchGuard).

4.1.3 Locate NTOSKRNL.exe Base Address
Now that interrupts are enabled in the third stage, the payload can finally use the necessary APIs to queue the APC.
The ntoskrnl.exe Portable Executable (PE) headers must be found so that function export addresses can be located.
These can be looked up with a hash function like user-mode shellcode often uses for Kernel32.dll.

Luckily there is a trick which can be used here to again bypass ASLR. Locate the Interrupt Descriptor Table (IDT) from
the Kernel Processor Control Region (KPCR), and traverses backwards from the first Interrupt Service Routine (ISR)
handler to find ntoskrnl.exe base address.

; this stub loads ntoskrnl.exe into r15
x64_find_nt_idt:
 mov r15, qword [gs:0x38] ; get IdtBase of KPCR
 mov r15, qword [r15 + 0x4] ; get ISR address
 shr r15, 0xc ; strip to page size
 shl r15, 0xc

_x64_find_nt_idt_walk_page:
 sub r15, 0x1000 ; walk along page size
 mov rsi, qword [r15]
 cmp si, 0x5a4d ; 'MZ' header
 jne _x64_find_nt_idt_walk_page

4.1.4 Dynamically Calculate ETHREAD ThreadListEntry
In order to support multiple service packs, the offset to ETHREAD.ThreadListEntry should be found dynamically.
This can be done with the following steps:

• Call nt!GetCurrentProcess to get the PEPROCESS->ThreadListHead

• Call nt!GetCurrentThread to get the current thread

• Walk the current process thread list until the address is found within a defined delta offset.

4.1.5 Find a Target SYSTEM Process
The next step is to loop over PIDs calling nt!PsLookupProcessById and nt!PsGetProcessImageFileName until a desired
process to inject into is found. Generally, this should be a SYSTEM process, such as lsass.exe, or, more safely,
spoolsv.exe.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 25

Version 1.2 | June 5, 2017 | © 2017 RiskSense

Searching PIDs can be done in multiples of 4, and the desired SYSTEM processes are usually in the lower range. Care
should be taken to ensure the loop does not go on infinitely if a desired process cannot be found.

4.1.6 Copy User-mode Shellcode to Target Process
In order to call nt!ZwAllocateVirtualMemory, the shellcode must first call nt!KeStackAttachProcess to attach to the
process virtual address space. This needs to later be followed up with nt!KeUnstackDetachProcess during the final
cleanup phase or strange errors and crashes can occur.

Memory should be allocated with PAGE_EXECUTE_READWRITE permissions. A simple rep movs instruction can be
used to perform the memory copy.

4.1.7 Find an Alertable Thread
A thread needs to be “alertable” in order to queue an APC. Again, walk the PEPROCESS->ThreadListHead, searching
for threads which satisfy the following conditions:

• Thread Environment Block (TEB) is not NULL.

• TEB.ActivationContextStackPointer is not NULL (will cause crash after APC execution).

• The 5th bit of the ETHREAD.Alertable offset should be set. This is simply a bool packed into a bit.

4.1.8 Create and Queue APC
An executable, non-paged pool should be allocated using nt!ExAllocatePool to hold the APC structure. The APC
structure needs a dummy kernel-mode APC function, which can be set to simply ret. The call to nt!KeInitializeApc
should be formed as such:

KeInitializeApc(rcx = ApcPoolAddr,
 rdx = pChosenThread,
 r8 = NULL = OriginalApcEnvironment,
 r9 = KernelApcRoutine,
 NULL /* RundownRoutine */,
 &UserModeShellCode,
 1 /* UserMode */,
 NULL /* Context */);

The APC can then be passed to nt!KeInsertQueueApc with NULL arguments. The user-mode payload will now be
scheduled for execution.

4.1.9 Perform Cleanup
Perform a call to nt!KeUnstackDetachProcess to leave the target process virtual memory space. A call to
nt!ObDereferenceObject on the target EPROCESS is also needed. If the process crashes and there are still references,
it will not cleanly exit and linger in memory.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 26

Version 1.2 | June 5, 2017 | © 2017 RiskSense

4.1.10 User Mode Tasks
Since the APC thread in user-mode is being temporarily borrowed from an Alertable thread, the starting stage of the
user-mode payload should make a call to kernel32!CreateThread. Well known user mode techniques can now be
utilized, such as acquiring the Process Environment Block (PEB) from the GS register and searching the Loader Data
structure (PEB_LDR_DATA) for Kernel32.dll. The start location of the new thread should be the actual desired user-
mode payload. In the case of Metasploit, this is generally Meterpreter stager.

4.2 Summary of Improvements
Much like the payload used by the alleged Equation Group exploit EXTRABACON, the ETERNALBLUE payload had room
for some improvements. It can only be fairly compared against the DOUBLEPULSAR DLL injection payload, which
performs a similar task.

The ETERNALBLUE exploit in this setup only allows a payload of 4096 bytes. There may be numerous tricks available to
stage larger kernel payloads, but this amount of space is more than sufficient for using a two-stage Meterpreter payload.
The kernel payload for the Metasploit module is around 1000 bytes, plus the size of the user-mode payload. The
DOUBLEPULSAR payload is around 5000 bytes, plus the size of the user-mode payload.

The reduction in shellcode size, to about 20% of the original size, was possible with the following optimizations:

• Use of x86 registers over x64 where possible (avoid REX prefix bytes).

• Removal of NOPs in shadow stack (such as add rsp, 20 directly followed by sub rsp, 20).

• Direct hash API calls, instead of stored API pointers.

• Removal of safety checks deemed unnecessary.

• Handwritten assembly over what appeared to be compiler output.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 27

Version 1.2 | June 5, 2017 | © 2017 RiskSense

5.0 Conclusion

ETERNALBLUE has many moving parts and can be a confusing exploit to follow. There were scarce, but excellent prior works
that have described the integer overflow to buffer overflow process [21] [22] [24]. We have built upon this information by
describing the methodology for the instruction pointer hijack and staging of the final payload, which are important points of
study to thoroughly understand this complicated exploit.

The RiskSense Cyber Security Research team slowly dissected the original exploit, discovering parts of the data that were
deemed unnecessary for exploitation. By removing superfluous fragments in network packets, our research makes it possible
to detect all potential future variants of the exploit before a stripped-down version is used in the wild. We also substantiated
the premise that the original exploit’s DOUBLEPULSAR payload is a red herring for defenders to focus on, as stealthier payload
mechanisms can be crafted.

This research confirms that porting the original exploit to more versions of Microsoft Windows, while difficult, is not an
impossible feat. Port to virtually all vulnerable Microsoft Windows versions that use the NT kernel is possible, apart from the
key defenses recently made available in the bleeding-edge versions of Microsoft Windows 10. Redstone 1 (August 2016) and
Redstone 2 (April 2017) introduce mitigations such as the Page Table Entry and HAL Heap randomizations, which will help
protect users against future exploits of this class.

The ETERNALBLUE exploit is highly dangerous in that it can provide instant, remote, and unauthenticated access to almost
any unpatched Microsoft Windows system, which is one of the most widely used operating systems in existence for both the
home and business world. The vulnerabilities fixed in the MS17-010 patch, like the unwavering MS08-067 vulnerability before
it, will continue to be exploited by black-hat criminal organizations, white-hat security researchers and penetration testers,
and many nation-states for presumably a decade to come.

Only by analyzing the tools that are available to malicious actors can the wider information security community build proper
protections and security measures. RiskSense is dedicated to helping build a more secure digital world, and it is our sincere
hope that this work will serve anti-virus vendors, intrusion detection system rule authors, and other types of defenders to
help understand the exploitation process so that future attacks can be prevented.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 28

Version 1.2 | June 5, 2017 | © 2017 RiskSense

Bibliography

[1] theshadowbrokers, "Twitter @shadowbrokerss," [Online]. Available: https://twitter.com/shadowbrokerss.

[2] Kaspersky Lab, "Kaspersky Lab Discovers Equation Group: The Crown Creator of Cyber-Espionage," [Online]. Available:
https://usa.kaspersky.com/about/press-releases/2015_equation-group-the-crown-creator-of-cyber-espionage.

[3] zerosum0x0, "Reverse Engineering Cisco ASA for EXTRABACON Offsets," [Online]. Available: https://zerosum0x0.blogspot.com/2016/09/reverse-
engineering-cisco-asa-for.html.

[4] Shadow Brokers, "Lost in Translation," [Online]. Available: https://steemit.com/shadowbrokers/@theshadowbrokers/lost-in-translation.

[5] Rapid7, "Metasploit Project," [Online]. Available: https://www.metasploit.com/.

[6] Microsoft Corporation, "Microsoft Security Bulletin MS17-010 - Critical," [Online]. Available: https://technet.microsoft.com/en-
us/library/security/ms17-010.aspx.

[7] Microsoft Corporation, "Protecting customers and evaluating risk," [Online]. Available:
https://blogs.technet.microsoft.com/msrc/2017/04/14/protecting-customers-and-evaluating-risk/.

[8] E. Nakashima and C. Timberg, "NSA officials worried about the day its potent hacking tool would get loose. Then it did.," Washington Post, [Online].
Available: https://www.washingtonpost.com/business/technology/nsa-officials-worried-about-the-day-its-potent-hacking-tool-would-get-loose-
then-it-did/2017/05/16/50670b16-3978-11e7-a058-ddbb23c75d82_story.html?utm_term=.bcf53ff72cd6.

[9] S. Dillon and D. Davis, "MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption," Metasploit Project, [Online]. Available:
https://www.rapid7.com/db/modules/exploit/windows/smb/ms17_010_eternalblue.

[10] SANS Institute, "Massive wave of ransomware ongoing," [Online]. Available:
https://isc.sans.edu/forums/diary/Massive+wave+of+ransomware+ongoing/22412/.

[11] zerosum0x0, "DoublePulsar Initial SMB Backdoor Ring 0 Shellcode Analysis," [Online]. Available:
https://zerosum0x0.blogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html.

[12] D. Lawrence, "Seriously, Beware the ‘Shadow Brokers’," Bloomberg Businessweek, [Online]. Available:
https://www.bloomberg.com/news/articles/2017-05-04/seriously-beware-the-shadow-brokers.

[13] M. Mimoso, "NSA’s DoublePulsar Kernel Exploit In Use Internet-Wide," Kaspersky Lab Threatpost, [Online]. Available: https://threatpost.com/nsas-
doublepulsar-kernel-exploit-in-use-internet-wide/125165/.

[14] S. Dillon and L. Jennings, "Metasploit Module, MS17-010 SMB RCE Detection," Metasploit Project, [Online]. Available:
https://www.rapid7.com/db/modules/auxiliary/scanner/smb/smb_ms17_010.

[15] nixawk, "labs/MS17_010/smb_exploit.py," [Online]. Available: https://github.com/nixawk/labs/blob/master/MS17_010/smb_exploit.py.

[16] NMAP, "File smb-vuln-ms17-010," [Online]. Available: https://nmap.org/nsedoc/scripts/smb-vuln-ms17-010.html.

[17] cplusplus.com, "memcpy," [Online]. Available: http://www.cplusplus.com/reference/cstring/memcpy/.

[18] cplusplus.com, "memmove," [Online]. Available: http://www.cplusplus.com/reference/cstring/memmove/.

[19] MITRE, "CWE-680: Integer Overflow to Buffer Overflow," Common Weakness Enumeration, [Online]. Available:
https://cwe.mitre.org/data/definitions/680.html.

[20] Microsoft Corporation, "cifs.h," [Online]. Available: https://github.com/tpn/winsdk-10/blob/master/Include/10.0.10240.0/km/cifs.h.

[21] progmboy, "NSA Eternalblue SMB vulnerability analysis," 360 Security Guards Technology Blog, [Online]. Available:
http://blogs.360.cn/360safe/2017/04/17/nsa-eternalblue-smb/.

ETERNALBLUE | Exploit Analysis and Port to Microsoft Windows 10 P 29

Version 1.2 | June 5, 2017 | © 2017 RiskSense

[22] sleepya_, "Microsoft Windows Windows 8/2012 R2 (x64) - 'EternalBlue' SMB Remote Code Execution (MS17-010)," [Online]. Available:
https://www.exploit-db.com/exploits/42030/.

[23] A. Ionescu, "Owning the Image Object File Format, the Compiler Toolchain, and the Operating System: Solving Intractable Performance Problems
Through Vertical Engineering," [Online]. Available: http://www.alex-ionescu.com/?p=323.

[24] W. G. Sanchez, "MS-17-010: EternalBlue's Large Non-Paged Pool Overflow in SRV Driver," Trend Micro Labs Security Intelligence, [Online]. Available:
http://blog.trendmicro.com/trendlabs-security-intelligence/ms17-010-eternalblue/.

[25] Microsoft Developer Network, "SMB_FEA," [Online]. Available: https://msdn.microsoft.com/en-us/library/ee915515.aspx.

[26] Microsoft Developer Network, "SMB_FEA_LIST," [Online]. Available: https://msdn.microsoft.com/en-us/library/ff359296.aspx.

[27] N. Economou, "Windows 10 HAL’s Heap – Extinction of the "HalpInterruptController" Table Exploitation Technique," [Online]. Available:
https://labs.bluefrostsecurity.de/blog/2017/05/11/windows-10-hals-heap-extinction-of-the-halpinterruptcontroller-table-exploitation-technique/.

[28] S. L. Berre, "Bypassing Kernel ASLR Target: Windows 10 (Remote Bypass)," [Online]. Available: https://drive.google.com/file/d/0B3P18M-
shbwrNWZTa181ZWRCclk/edit.

[29] bugcheck and skape, "Windows Kernel-mode Payload Fundamentals," Uninformed, [Online]. Available: http://uninformed.org/?v=3&a=4&t=txt.

[30] Countercept, "Analyzing the DOUBLEPULSAR Kernel DLL Injection Technique," [Online]. Available: https://countercept.com/our-thinking/analyzing-
the-doublepulsar-kernel-dll-injection-technique/.

[31] S. Dillon, "Windows x86/x64 Multi-Arch Kernel Ring 0 to Ring 3 via Queued APC Shellcode," Metasploit Project, [Online]. Available:
https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/multi_arch_kernel_queue_apc.asm.

RiskSense New Mexico
4200 Osuna Road NE, Suite 3-300
Albuquerque, NM 87109
United States

RiskSense Silicon Valley
1230 Midas Way, Suite 220
Sunnyvale, CA 94085
United States

General Inquiries
+1 505.217.9422
+1 844.234.RISK (toll free)
info@risksense.com

Media Inquiries
media.relations@risksense.com

© 2017 RiskSense, Inc. All rights reserved. RiskSense and the RiskSense logo are registered trademarks of
RiskSense, Inc. The information contained herein is subject to change and we do not offer any warranty on
this information.

mailto:info@risksense.com
mailto:media.relations@risksense.com

	Executive Summary
	Authors
	Acknowledgements
	About RiskSense
	1.0 Background
	1.1 The Shadow Brokers
	1.2 Microsoft Windows MS17-010 Patch
	1.3 Weaponized FUZZBUNCH Exploit
	1.4 Metasploit Module
	1.4.1 Bypass of IDS Rules
	1.4.2 Removal of DOUBLEPULSAR

	2.0 Vulnerability
	2.1 Early MS17-010 Research
	2.2 Memory Buffer Miscalculation
	2.3 Origins

	3.0 Exploit
	3.1 Target Version of Microsoft Windows 10
	3.2 Exploit Mitigations
	3.2.1 Data Execution Prevention (DEP)
	3.2.2 Address Space Layout Randomization (ASLR)

	3.3 Network Traffic Analysis
	3.3.1 Overflow Socket
	3.3.2 Groom Packets
	3.3.3 Allocation Connection
	3.3.4 Free Hole Connection

	3.4 FEA and Kernel Structures
	3.4.1 SMB_FEA
	3.4.2 SMB_FEA_LIST
	3.4.3 SRVNET_BUFFER_HDR
	3.4.4 MDL
	3.4.5 SRVNET_RECV

	3.5 SMB Exploitation Sequence
	3.6 Execution Chain of Events
	3.6.1 ASLR Bypass
	3.6.2 DEP Bypass
	3.6.3 Hijacking Code Execution

	4.0 Payload
	4.1 Overview of Operation
	4.1.1 Hook the SYSCALL Handler
	4.1.2 Emulate a SYSCALL
	4.1.3 Locate NTOSKRNL.exe Base Address
	4.1.4 Dynamically Calculate ETHREAD ThreadListEntry
	4.1.5 Find a Target SYSTEM Process
	4.1.6 Copy User-mode Shellcode to Target Process
	4.1.7 Find an Alertable Thread
	4.1.8 Create and Queue APC
	4.1.9 Perform Cleanup
	4.1.10 User Mode Tasks

	4.2 Summary of Improvements

	5.0 Conclusion
	Bibliography

