Practical Automated Detection of Stealthy Portscans

Stuart Staniford, James A. Hoagland, Joseph M. McAlerney
Silicon Defense
513 2nd Street
Fureka, CA 95501

Until some brilliant researcher comes up with a betler technique, scan detection will
boil down to testing for X events of interest across a Y-sized time window.

Stephen Northcutt [8]

Abstract

Portscan detectors in network intruston detection products are
still primitiwve. The algorithm is: if there are packets to more
than N different port/IP combinations within M seconds from
a single source, then the activity 1s a portscan. This algorithm
1s very easy for an attacker to defeat.

In this paper, we consider the requirements for a portscan
detector by studying the likely goals of an attacker in scan-
ning, and by analyzing the methods that she can use to defeat
detection. We ilustrate this discussion with examples from
real-world detection incidents and portscan tools. We also
develop quantitative ways to assess how big the scan is, and
how much the scan stands out from normal activity.

Next we present the conceptual design for a better portscan
detector that can still be run on busy networks at operational
sites. We call this tool Spice (Stealthy Probing and Intrusion
Correlation Engine). Our design involves maintaining a prob-
ability model for the total activity on the defended network.
This s done using nested self-balancing binary trees to encode
the joint probability tables, which allows us to say approxi-
mately how anomalous a given packet 1s. We then maintain
historical state for anomalous packets, keeping them longer
the more anomalous they are. We use simulated annealing
to cluster packets together into portscans using heuristics we
have developed from real scans. This should enable us to detect
all the scans that are detected by current techniques, plus a lot
of stealthy scans, with manageable false positives. We have
completed the implement of the anomaly sensor, which we
have publically released as Spade (Statistical Packet Anomaly
Detection Engine). We give some preliminary erperimental
data to justify this part of our approach.

We argue that this technique could be used to do distributed
detection and correlation, and that this would aid greatly in
automatically detecting not just portscans, but also the use
of distributed denial of service networks, and the spread of
worms.

1 Portscanning

Portscanning is a common activity of considerable impor-
tance. It is often used by computer attackers to characterize
hosts or networks which they are considering hostile activity
against. Thus it is useful for system administrators and other
network defenders to detect portscans as possible preliminar-
ies to a more serious attack. It is also widely used by net-
work defenders to understand and find vulnerabilities in their
own networks. Thus it is of considerable interest to attackers
to determine whether or not the defenders of a network are
portscanning it regularly. However, defenders will not usu-
ally wish to hide their portscanning, while attackers will. For
definiteness, in the remainder of this paper, we will speak of
the attackers scanning the network, and the defenders trying
to detect the scan.

There are several legal/ethical debates about portscanning
which break out regularly on Internet mailing lists and news-
groups. One concerns whether portscanning of remote net-
works without permission from the owners is itself a legal and
ethical activity. This is presently a grey area in most juris-
dictions. However, our experience from following up on unso-
licited remote portscans we detect in practice is that almost
all of them turn out to have come from compromised hosts
and thus are very likely to be hostile. So we think it reason-
able to consider a portscan as at least potentially hostile, and
to report it to the administrators of the remote network from
whence it came.

However, this paper is focussed on the technical questions
of how to detect portscans, which are independent of what
significance one imbues them with, or how one chooses to re-
spond to them. Also, we are focussed here on the problem
of detecting a portscan via a network intrusion detection sys-
tem (NIDS). We try to take into account some of the more
obvious ways an attacker could use to avoid detection, but to
remain with an approach that is practical to employ on busy
networks. In the remainder of this section, we first define
portscanning, give a variety of examples at some length, and

discuss ways attackers can try to be stealthy. In the next sec-
tion, we discuss a variety of prior work on portscan detection.
Then we present the algorithms that we propose to use, and
give some very preliminary data justifying our approach. Fi-
nally, we consider possible extensions to this work, along with
other applications that might be considered. Throughout, we
assume the reader is familiar with Internet protocols, with
basic ideas about network intrusion detection and scanning,
and with elementary probability theory, information theory,
and linear algebra.

There are two general purposes that an attacker might have
in conducting a portscan, a primary one, and a secondary
one. The primary purpose is that of gathering information
about the reachability and status of certain combinations of
IP address and port (either TCP or UDP)!. The secondary
purpose is to flood intrusion detection systems with alerts,
with a view to distracting the network defenders or prevent-
ing them from doing their jobs. In this paper, we will mainly
be concerned with detecting information gathering portscans,
since detecting flood portscans is easy. However, the possibil-
ity of being maliciously flooded with information will be an
important consideration in our algorithm design.

We will use the term scan footprint for the set of port/IP
combinations which the attacker is interested in character-
izing. It is helpful to conceptually distinguish the footprint
of the scan, from the script of the scan, which refers to the
time sequence in which the attacker tries to explore the foot-
print. The footprint is independent of aspects of the script,
such as how fast the scan is, whether it is randomized, etc.
The footprint represents the attacker’s information gather-
ing requirements for her scan, and she designs a scan script
that will meet those requirements, and perhaps other non-
information-gathering requirements (such as not being de-
tected by a NIDS).

The most common type of portscan footprint at present is
a horizontal scan. By this, we mean that an attacker has an
exploit for a particular service, and is interested in finding
any hosts that expose that service. Thus she scans the port
of interest on all IP addresses in some range of interest. Also
at present, this is mainly being done sequentially on TCP
port 53 (DNS). An example is shown in Figure 1. But other
ports are common also, including 139 (NetBIOS file and print
sharing), 98 (linuxconf), and 23 (telnet). The distribution
of ports of interest changes over time as the popularity of
different exploits grows and wanes in the attacker community.

Vertical scans are also seen. This is where an attacker scans
all, or some range, of ports on a single host. Here the ratio-
nale is that the attacker is interested in this particular host,
and wishes to characterize the services on 1t, perhaps with a
view to finding which exploit to attempt, or to find a suitable
exploit via her network of contacts and resources. Part of an
example vertical scan, produced using the popular nmap scan
tool[4] is shown in Figure 2. In some cases, scans may only
target a small range of ports. For example, a scan on just
three ports is shown in Figure 3. This was an actual scan we

1'We do not directly discuss ICMP scans in this paper, but the ideas
can be extended to that case in a obvious way.

111.11.11.193:53 SYNFIN
111.11.11.194:53 SYNFIN
111.11.11.195:53 SYNFIN
111.11.11.196:53 SYNFIN
111.11.11.197:53 SYNFIN
111.11.11.198:53 SYNFIN
111.11.11.199:53 SYNFIN
111.11.11.200:53 SYNFIN
111.11.11.201:53 SYNFIN
111.11.11.202:53 SYNFIN

Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1

19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->
19:02:12 666.66.666.66:53 ->

Figure 1: A fragment of a Snort portscan preprocessor log for
a sequential DNS scan.

111.11.11.49:21 SYN
111.11.11.49:22 SYN
111.11.11.49:23 SYN
111.11.11.49:25 SYN
111.11.11.49:42 SYN
111.11.11.49:8010 SYN
111.11.11.49:8080 SYN
111.11.11.49:79 SYN
111.11.11.49:110 SYN
111.11.11.49:80 SYN
111.11.11.49:119 SYN
111.11.11.49:111 SYN

Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1

18:36:01 666.66.666.66:1093 ->
18:36:01 666.66.666.66:1094 ->
18:36:01 666.66.666.66:1095 ->
18:36:01 666.66.666.66:1096 ->
18:36:01 666.66.666.66:1097 ->
18:36:02 666.66.666.66:1116 ->
18:36:02 666.66.666.66:1117 ->
18:36:02 666.66.666.66:1100 ->
18:36:02 666.66.666.66:1102 ->
18:36:02 666.66.666.66:1101 ->
18:36:02 666.66.666.66:1104 ->
18:36:02 666.66.666.66:1103 ->

Figure 2: A fragment of a Snort portscan preprocessor log for
a vertical portscan.

detected, but the purpose of this scan, and the tool used to
generate it, are currently unknown.

A scan may combine horizontal and vertical types into a
block scan of numerous services on numerous hosts. More
complicated geometries of what is to be scanned are possible
in principal, though not seen much in practice.

Turning now to the individual scan probes, a number of
types are known. Considering TCP first, perhaps the sim-
plest type is for the scan tool to simply initiate the full three
way handshake (nmap -sT for example). If the handshake
succeeds, the port is open, whereas if it does not, the port
is closed or perhaps filtered at some packet filter or firewall

Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1
Apr 1

11:18:56 666.66.666.66:2419 ->
11:18:56 666.66.666.66:2420 ->
11:19:00 666.66.666.66:2423 ->
11:19:00 666.66.666.66:2427 ->
11:19:31 666.66.666.66:2434 ->
11:19:31 666.66.666.66:2434 ->
11:19:34 666.66.666.66:2435 ->
11:19:34 666.66.666.66:2435 ->
11:19:37 666.66.666.66:2436 ->
11:19:38 666.66.666.66:2437 ->
11:19:38 666.66.666.66:2437 ->
11:19:41 666.66.666.66:2438 ->
11:19:44 666.66.666.66:2439 ->

111.11.11.47:80 SYN
111.11.11.47:80 NOACK
111.11.11.47:80 SYN
111.11.11.47:80 SYN
111.11.11.47:37 SYN
111.11.11.47:37 NOACK
111.11.11.47:37 SYN
111.11.11.47:37 NOACK
111.11.11.47:37 SYN
111.11.11.47:13 SYN
111.11.11.47:13 NOACK
111.11.11.47:13 SYN
111.11.11.47:13 SYN

Figure 3: Portscan scanning 3 ports. This is the whole log.

device in front of the target address. This scan type is some-
times used by security consultants, but rarely by attackers.
From an attacker’s standpoint, the drawback to this method
is that, since the accept() call on the socket at the server end
has completed, the server application may generate a log en-
try for the connection (perhaps via TCP wrappers on Unix
and similar systems). This leaves a trace of their activity
unnecessarily.

The most popular TCP scan probe therefore is a syn-scan
(nmap -sS). In this application, the scan tool generates just
the initial syn packet. If this reaches an open port, the server
will respond with a syn-ack packet. If the port is closed,
the server will respond with a reset. If there is simply no
response, this suggests that the port is firewalled between
scanner and server. Modern scan tools can generate these
syn packets to many hosts very rapidly, and then collect and
collate the responses asynchronously as they arrive back at
the scanning machine. Since the scan tool never completes
the three way handshake, even if a syn-ack is returned, the
host accept() socket call never completes successfully for that
instance, and so no log of the scan is generated on the host
machine (usually).

There are other scan probe possibilities. For example, syn-
fin scanning involves sending packets with both syn and fin
flags set. This is a combination that would never occur in nor-
mal TCP traffic. The attacker’s hope in sending this is that
an incorrectly implemented packet filter which would not pass
a bare syn packet, will pass the syn-fin packet. Fin scanning
(just F flag alone), and XMAS scans (FPU), similarly hope
to pass a firewall, and result in a reset from a closed port, and
nothing from an open port.

Ack scanning involves sending an unsolicited packet with
just the Ack flag set. It cannot distinguish open ports from
closed, but can sometimes be used to map firewall rule sets
(according to whether packets are dropped or result in resets).

Additionally, an important application of TCP portscan-
ning is operating system (OS) identification. This relies on
the fact that the TCP/IP RFCs do not specify how to handle
illegal unanticipated flag combinations. Thus different imple-
mentations do it differently, and these ideosyncracies can be
used to determine what OS is in use at a particular IP ad-
dress. For example, one popular tool QueSO [13] sends seven
packets:

0 SYN
1 SYN+ACK
2 FIN
3 FIN+ACK
4 SYN+FIN
5 PSH
6 SYN+1+22

All packets have a random sequence number and a 0 ack field.
The replies are examined for their flag combination, ack, and
similar, and this is compared to a table of popular OS’s.
Current scanners can determine many kinds of operating
systems - for example, nmap v2.53 can distinguish 468 dif-

21 and 2 denote the reserved TCP flags

ferent cases. On the face of it, this represents about 9 bits
of information. However, there are probably only a couple of
bits of true entropy per host because most hosts will have one
of just a few popular operating systems.

UDP scanning is a little different from TCP scanning in
that, if the port is open, the server will typically not respond
to the probe (since the probe packet will not usually be a valid
request in whatever protocol is being used over that port).
However, if the port is closed, the server should respond with
an TCMP message of Type 3 and Code 3 (Destination Un-
reachable because Port Unreachable). Thus UDP scanning
involves listening for the ICMP responses from closed ports
and then assuming that any ports that do not respond are
open. This is sometimes slow (since hosts may rate limit
how they send out the ICMP messages) and unreliable (since
packets may be lost with no way to tell). UDP scans are
much rarer in practice than TCP scans at present, but they
certainly are possible and do occur.

For more detail on portscanning techniques, see [5, 6]. Up
to date information can presently be found at [4].

From the standpoint of a network intrusion detection sys-
tem, all the scan probe types which involve illegal flag combi-
nations are extremely straightforward to detect. Rules which
simply flag any packet with a non-standard combination of
flags will detect all such scans with essentially no false posi-
tives. Thus, although these are often referred to as “stealth
scans”, they are not stealthy for our case. A network intru-
sion detection system is much more challenged by full connect
scans, syn scans, and UDP scans where the individual packets
could, on the face of it, be normal traffic. In the remainder
of the paper, we shall concentrate on these cases.

It is helpful for us to be able to characterize how “big” a
scan footprint is, or how big the portion of the footprint which
falls into some particular organization’s domain of IP space is.
Clearly this tells us a lot about how difficult a scan is going to
be to detect, and thus in measuring the efficiency of portscan
detection, it’s useful to parametrize against the size of the
scan footprint. For example, a scan of every port on every
host of a full Class C network involves the attacker checking
16,646,144 distinct host/port combinations. This is going to
be hard to hide. By contrast, an attacker who only wants to
know whether a single port is turned on on a single host on
our network will find it much easier to evade detection.

The simplest method, then, of sizing a footprint is just to
count the IP/port combinations the attacker needs to test.
We call this the total size of the footprint. From the at-
tacker’s standpoint, this is often a good metric of how big her
scan 1s, as it may be directly related to the number of bits of
information about the target network that she obtains as a
result of performing her scan. However, this is not always so
- sometimes the attacker is attempting to obtain a number of
bits of information from each port/IP combination. OS de-
tection is the most obvious case in point. Thus it’s useful then
to talk about the total information of the footprint, as being
the total number of bits of information the scan is intended
to obtain.

However, there are alternative metrics that are useful from

a detection standpoint. To motivate these, we consider that
some pieces of the scan may be far easier for us to detect than
others. Most obviously, if a scan probe finds an open port, it
is much harder for us to determine that this was a scan than
if it hits a closed port. This is because, absent some miscon-
figuration, normal traffic will not hit closed ports very often.
Normal internet users do not generally attempt to find ser-
vices by making connections to the host/port in question to
see whether the service is there. Rather, they rely on various
forms of advertisements to tell them where services are (for
example, links on web servers to other web servers, DNS infor-
mation, information about where mail servers are that users
enter into their computers manually). Thus connections to
closed ports are inherently a lot more suspicious than con-
nections to open ports (though by no means guaranteed to
be intrusive). So another measure of the size of a scan foot-
print is the closed size of it - the number of distinct port/TP
combinations the scan is targeting which are in fact closed at
the time of scanning.

Indeed one approach to portscan detection is not to look
at the scan packets (which we will call forward scan detec-
tion), but rather to look for packets that could be responses
to portscan probes from closed server ports; TCP resets in the
case of TCP scans, and ICMP port unreachable packets in the
case of UDP scans. We refer to this as backward scan detec-
tion. The advantage of backward scan detection is that the
packets are inherently more anomalous than the packets used
in forward scan detection. The drawback is that we will miss
portscans into empty IP addresses, which are particularly di-
agnostic. Forward and backward scan detection are both of
value, and complement one another. In the remainder, we will
generally use the language of forward scan detection for the
sake of definiteness, but most of our techniques apply equally
to both cases.

We present one final metric, which is the one we make most
actual use of, and which is a generalization of the idea of the
closed size of a scan. Suppose that the current probability
distribution of normal traffic to ports and hosts on the pro-
tected network is known (in practice, it can be estimated from
samples, but is not known perfectly). Then, when faced with
any given scan probe for a given port/IP combination z, it
is possible to tell what is the probability P(z) that a normal
traffic packet would be targeting this port. Then we can give
a packet an anomaly score A(z) as the negative log likelihood

of this probe:
A(z) = —log(P(z)) (1)

Now the footprint of the scan is defined by a set X, of indi-
vidual z. We can therefore define the total anomaly score of

the scan as

AX) =) Ax). (2)

reX

Note that this is not usually the log likelihood of the overall
scan, but it 1s a convenient measure of how easy it will be to
detect this particular scan. The more unlikely the port/TP
combinations the attacker needs information about in terms
of our usual traffic, the more easily we should be able to detect

her.

It’s important to understand that the anomaly score of a
scan is site dependent. If two sites have exactly the same con-
figuration of hosts and services, and both sites are scanned in
an identical way, the anomaly score of the scans may be quite
different if the probability distribution of traffic is different.
Even if the two usual traffic distributions are isomorphic, if
the volume of normal traffic on one site is much greater than
on the other site, then the scan will be more anomalous on
the high traffic site.

We also note that we are making a simplification here. The
probability distribution of traffic is time dependent. If the
scan 1s spread out over time, then the anomaly scores for dif-
ferent probes are defined with respect to different probability
distributions, which makes our definition of the total anomaly
score for the scan footprint logically incoherent. We do not
think this issue is of practical importance at present, and so
we ignore it.

We now turn to looking at what an attacker can do with
her script to make it hard for us to detect her investigating
her chosen footprint. A variety of techniques are available to
her.

Changes of scan order. Most scans in the wild at present
move through TP addresses sequentially going from lower to
higher. However, if this assumption is used by defenders
in detection, it is straightforward for attackers to change it.
Randomizing the order in which IP addresses and ports are
searched can easily be done. nmap is currently capable of
randomizing the addresses it uses within blocks of 2048 hosts.
Also, if an attacker suspects that a particular detection algo-
rithm is in use, the scan order can be constructed maliciously
to put that detection algorithm into its worst case perfor-
mance.

Slowing down. By slowing down the scan, an attacker can
make 1t more difficult to detect. This easily defeats current
naive scan detectors by simply extending the scan so that suc-
cessive probes appear out of the detection window. It forces
any detector to keep more state, and pick the scan pattern
out of far more normal traffic. Thus detection becomes more
difficult. The price the attacker pays is that it takes more
time for her to obtain the information she needs. Thus it
may be useful to characterize scans by the average informa-
tion rate the scan is achieving (how many bits of information
per second it discovers on average).

Randomizing inter-probe timing. Deterministic delays be-
tween probes can help some detection algorithms. Therefore,
it is of value for an attacker to insert random delays into the
probes. An exponential waiting distribution would be a natu-
ral thing to try to introduce noise into the process, but power
law distributions with long tails could also be used, since it is
known that network traffic distributions often have features
of self-organized criticality.

Randomizing non-essential fields. Fields such as sequence
number, ack number, IP id, and source port in the scan pack-
ets are often hard coded with fixed values in current scans.
Alternatively, they may be generated with some simple de-
terministic algorithm. This makes detection easy, and so at-
tackers are likely to randomize them in future.

Affecting the source address. The source address is more
difficult for an attacker to affect, and so is a key piece of infor-
mation for scan detection. In the simplest case, the attacker
does need to use a real source address, since she needs to see
the packets that servers generate in response to the scan in
order to know what ports are actually open.

An exception to this is if an attacker i1s able to monitor a
network close to the target network (perhaps the ISP of the
target network). In that case, the attacker is free to forge
the source addresses randomly, and rely on monitoring to see
the response packets. This idea has been implemented in at
least one tool - Iempenum [1]. This idea will often not be
practical as the attacker may not be able to compromise the
ISP, or if she can, the fast switched networks there may not
be amenable to network monitoring.

However, as a diversionary tactic, it is certainly feasible for
an attacker on a network that does not do egress filtering to
create additional probes with forged addresses. Nmap has a
mode to do just this (-D). This makes it more likely the scan
will be detected, but harder to determine what response to
make.

Dustributed scanning. An attacker who can launch her scan
from a number of different real IP addresses can investigate
different parts of the footprint from different places. This
complicates the detection task. In the extreme case, large
networks of agents similar to those used for distributed de-
nial of service attacks could be used for portscanning. As of
early 2000, such tools were under development, but not in
widespread use. It is reasonable to assume that portscanning
may evolve in this direction.

We should assume that all these tactics will be used by
attackers. Some are in use already. It may take several years
for tools with all these features to be in widespread use, but it
will certainly happen eventually. And sophisticated attackers
with large budgets could develop tools with these features in
several months effort (and may have done so already).

It is worth noting also some common events that look like
hostile portscans but are not. A variety of network computer
games will, on startup, contact a range of different servers
very rapidly (often using UDP). The scans often use a default
port, but with variations depending on the individual server.
An example from the popular game “Half Life” is shown in
Figure 4.

Also, web pages will sometimes contain elements located on
several different servers (ads, scripts, and graphical elements
may be in a variety of different places). When the browser
loads the page, it will issue a quick burst of DNS lookups and
port 80 connections as it assembles all the resources it needs
to render the page. This may trigger present day portscan
detectors.

2 Prior work in scan detection
To our surprise, there seems to have been very little work on

the problem of efficiently and reliably detecting portscans.
Given all the research in intrusion detection over the last

Apr 1 21:16:21 111.11.11.197:4344 -> 23.222.22.222:27015 UDP
Apr 1 21:16:21 111.11.11.197:4345 -> 32.233.33.233:27015 UDP
Apr 1 21:16:21 111.11.11.197:4346 -> 34.244.44.244:27015 UDP
Apr 1 21:16:21 111.11.11.197:4242 -> 43.250.55.250:27016 UDP
Apr 1 21:16:21 111.11.11.197:4320 -> 45.100.66.100:27015 UDP
Apr 1 21:16:21 111.11.11.197:4329 -> 54.120.77.120:27015 UDP
Apr 1 21:16:21 111.11.11.197:4347 -> 56.180.88.180:27015 UDP
Apr 1 21:16:21 111.11.11.197:4354 -> 65.190.15.190:27015 UDP
Apr 1 21:16:21 111.11.11.197:4311 -> 67.200.55.200:27015 UDP
Apr 1 21:16:21 111.11.11.197:4205 -> 76.202.13.202:27015 UDP
Apr 1 21:16:21 111.11.11.197:4350 -> 78.195.13.195:27015 UDP
Apr 1 21:16:21 111.11.11.197:4355 -> 87.199.85.199:27015 UDP
Apr 1 21:16:21 111.11.11.197:4313 -> 89.190.95.160:27015 UDP
Apr 1 21:16:21 111.11.11.197:4356 -> 98.248.15.230:27015 UDP
Apr 1 21:16:21 111.11.11.197:4325 -> 90.123.16.157:27015 UDP

Figure 4: A fragment of a Snort portscan preprocessor log of
a Half life scan.

decade and a half, and the enormous practical importance
of this problem, it is striking how little attention it has re-
ceived. A number of research IDS systems, data mining stud-
ies, etc., must have detected portscans, but how they did so
is not generally published or commented upon. Commercial
systems generally use the naive algorithm to the best of our
knowledge. However, they may often be unwilling to reveal
their algorithm choices. We survey the few relevant systems
here.

2.1 NSM

The Network Security Monitor (NSM)[7] was the first NIDS,
and also the first NIDS to detect scanning. It had rules to de-
tect any source IP address connecting to more than 15 other
source TP addresses (presumably within some time window,
but this is not clearly specified in the paper). Thus it pi-
oneered the algorithm that has been used by most systems
ever since.

2.2 GrIDS

The Graph Based Intrusion Detection System (GrIDS) pro-
totype was built by UC Davis[14, 2] (the team involved two
of the present authors). It was intended to detect rapid auto-
mated hostility of various kinds, including portscans. It was
the first system to attempt to do this on a large scale using
hierarchical processing.

GrIDS detected portscanning by building graphs of activ-
ity in which the nodes represented hosts, and the edges rep-
resented some network traffic between hosts. Thus a scan
probe could be represented as an edge between the scanning
host and the server being scanned. GrIDS assembled these
edges into graphs based on the fact that the edges shared at
least one node, and on other user definable rules. Thus scans
in which all the probes had the same source IP could be de-
tected. In practice, the rules were usually conditioned on time
so that only scans that occurred fairly rapidly were detected.

This was not a limitation in principle, however, whereas the
restriction to same source IP of probes was.

GrIDS had a complex design which allowed it to propagate
information about graph edges up a hierarchy of processing
engines which viewed the network on larger and larger scales.
This enabled it to detect even very sparse random scans as
long as they were rapid and used the same source IP.

GrIDS had no notion of anomaly or probability for packets,
so 1t would always be limited in its ability to handle stealthy
Additionally, the prototype implementation was in
Perl and was quite slow for modern networks. Nonetheless it
was used in practice for a number of months on a network of
about a hundred hosts and was quite useful there.

scans.

2.3 Snort preprocessor

Snort [11, 10] is an open source lightweight network intrusion
detection system based on libpcap. It can produce real-time
alerts as well as packet logs in a variety of formats. Snort
has a flexible rules language to describe what alerts should
be alerted, logged, or passed. Different members of the Snort
community provide rules that can be used for a particular in-
stallation and sites can write their own rules. The detection
engine uses a modular plugin architecture, which allows de-
velopers to extend Snort and users to choose the functionality
required to meet their needs.

The portscan detection functionality in Snort is made pos-
sible by a preprocessor plugin. The Snort portscan detector
attempts to look for X TCP or UDP packets sent to any num-
ber of host/port combinations from a single source host in Y
seconds, where X and Y are user defined values. Additionally,
the portscan detector looks for single TCP packets that are
not used in normal TCP operations. Such packets will have
odd combinations of TCP flags set, or no flags set at all.

Upon arrival, a packet’s structure is checked for soundness.
The packet i1s then tested to see if it is part of a scan cur-
rently in progress. This is achieved by comparing the packet
type and source address to those of scans currently being in-
vestigated. If it is not part of a current scan, it becomes the
starting node of a new scan. Otherwise, the matching scan’s
packet count is incremented, and a check is made to deter-
mine whether the threshold of X packets sent in Y seconds
was broken. If so, the scan is reported. The scan will also
be reported, regardless of the threshold being broken, if the
packet contained an abnormal TCP flag combination.

The current version of the Snort portscan detector has a
few notable shortcomings that can easily be used to evade
portscan detection. First, it is unable to detect scans orig-
inating from multiple hosts. Secondly, the threshold is de-
termined by a static combination of user specified numbers.
The threshold is usually set high enough to allow for only a
bearable amount of portscan false positives. As a result, it 1s
very easy to avoid detection by increasing the time between
sending scan probes. Thirdly, the portscan detector does not
process fragmented TCP packets. Therefore, using the frag-
mentation option on most scan tools will allow the scan to
slip by undetected. In the case of nmap, this is done simply

by adding a ”-f” to the list of arguments.

2.4 Emerald

The EMERALD system[9] from SRI International has also
been used to detect portscanning, and uses a different algo-
rithm than the usual one. EMERALD can regard each source
IP address communicating with the monitored network as
a subject. It constructs statistical profiles for subjects, and
matches a short term weighted profile of subject behavior to
a long term weighted profile. When the short term profile
goes far enough into the tails of the distribution for the long
term profile, EMERALD views it as suspicious. One of the
aspects of subject behavior can be the volume of particular
kinds of network traffic generated. This can be used to de-
tect portscanning as a sudden increase in the volume of syn
packets, for example, from a particular source IP.

This approach has some limitations. It is not capable of
detecting slow stealthy scans, since those will not create the
kind of sharp volume increase that EMERALD looks for. It
also cannot easily correlate distributed source scans. And fi-
nally, it is not clear how EMERALD would interpret scanning
from IPs that have never been seen before and which have no
profile.

3 Spice detection approach

So how might we detect a slow randomized scan which is
buried in days, weeks, or months of normal traffic? If we
only use a short detection window, we will miss slow scans.
However, if we try to use a long detection window, we face
searching through massive amounts of normal traffic looking
for patterns. It’s generally completely infeasible to save all
network traffic for any length of time since there is so much
of it.

The key insight that we invoke is that the attacker is trying
to gather information which she does not already know, and
she is trying to find out this information in some systematic
way, rather than simply approaching the target site as any
normal user would®. Therefore, at least some of the portscan
is likely to be highly anomalous traffic relative to the usual
traffic distribution. If the packet has unusual features (i.e.,
is a “crafted packet”) this will be still more true. Thus our
approach is to save information about packets to be searched
later based on how anomalous the packet is. Thus a TCP
syn to port 98 (linuxconf) on a Windows host will be saved
for much longer than one to port 80 (http) on a known web
server. This allows us to accumulate such rare events over a
longer period of time.

We then try to group the saved packets together into activ-
ities that are similar, using simulated annealing with a variety
of heuristics discussed later. Packets that fall into a sizeable
group are also saved longer, thus meaning that a stealthy

30f course a good attacker will have used less noticeable reconnais-
sance first, but if she is portscanning, it implies a desire to know about
ports that may or may not be open.

portscan will be saved, grouped, and noticed while normal
traffic on the site will timeout and be lost from state quickly.

Architecturally, Spice has two kinds of components: an
anomaly sensor and a correlator. The sensor (Section 3.1)
monitors the network and assigns an anomaly score to each
event. Those events that are sufficiently anomalous are
passed, along with their anomaly scores, to the Spice cor-
relator (Section 3.2). This correlator groups events together
and reports scans. We discuss how the anomaly sensor was
implemented in Section 3.3 and how we plan to implement
the correlator in Section 3.4.

3.1 Anomalous event assessment

As discussed in Section 1, we assess the anomalousness of an
event based on the probability that a normal event would look
like the event. This is based on packet header fields such as
source IP, destination IP, source port, destination port, pro-
tocol (TCP or UDP), and protocol flags. Some combination
of these should go into the characterization of the packet for
these purposes. The optimal way to do this in general could
be the subject of years of research and may vary with the
monitored network. We describe two general approaches. In
either case, 1n order to assess the anomalousness of events, the
sensor will need to maintain probability tables of feature in-
stances and multi-dimensional tables of conditional probabili-
ties observed. We discuss how we implemented this efficiently
for Spade in Section 3.3.2.

The first approach is to directly maintain the joint proba-
bility of a certain set of features. That is, directly measure
things like P(destination port,destination IP,source IP,source
port). This has the advantage of simplicity. However, if there
are more normal combinations of this than are seen regularly
on the network, then the result can be noisy and not reliable.
Also, maintaining all the different combinations of values may
be resource intensive. Generally, employing as few features as
needed to characterize the packet’s probability should make
this more tractable.

The second approach is to construct an estimate based
upon more limited probabilities and conditional probabili-
ties such as P(destination port), P(source port—destination
port), and P(destination IP—source IP,source port) using a
construction known as a belief network, or Bayes network [12].
A Bayes network is a diagram describing how variables in a
system of variables are related. For example, it will describe
whether two variables are independent or conditionally inde-
pendent. If variables are independent then there is no need
to measure their joint probabilities. A Bayes network that
we provide in Spade is shown in Figure 5. The Bayes net-
work allows us to estimate the joint probability distribution
while only measuring the conditional probability distribution
of pairs and triples of packet header fields (which is a more
tractable thing to do). To derive the full joint probability of a
packet, the product of the probabilities of each feature in the
network, given that the parent features(s) (if any) have the
values that they do. Thus while the conditional probability of
source port given destination port is needed, the conditional

Source Port

Source IP

Destination |P

Figure 5: The Bayes network provided in Spade. Arrows
indicate that one feature influences the other. For example,

source IP and source port influence the destination IP.

probability of destination IP given destination port is not.

The way in which we assessed independence and conditional
independence in designing our network is by making entropy
measurements on live traffic. We compute the amount of en-
tropy in different fields of the packet header, and then com-
pute the mutual information between various fields of interest.
This allows us to assess quantitatively which fields are related
to which others. With real network traffic, we were not able
to establish the total independence of fields, but it might be
close enough. Given the way in which we use the result, it
should not be overly sensitive to this effect. Figure 6 shows
the relationship between source IP, source port, destination
TP, and destination port in real network traffic. This is based
on 3 weeks of observation of 1,258,251 TCP syn packets on the
network of a small company. Note that once the source IP
and source port are known, not much remains unexplained
about the destination IP. Providing the destination port as
well explains not much more (just 0.166 bits). So, the Bayes
net shown asserts that destination IP 1s independent of des-
tination port, given source IP and source port.

3.2 Portscan correlation in Spice

Events which have an anomaly score greater than a certain
threshold at the sensor will be sent to the correlator. There,
they are assembled into groups as described in this section.
The challenge that we face is that we wish to consider a
number of heuristics in determining exactly what to group,
and we don’t know a priori which heuristics will be helpful in
grouping any particular scan. For example, in one scan, the
fact that the ID fields in the TP packets are all the same will be
very helpful, while in another scan, the fact that source port
and TP address proceed in lockstep is what will be helpful.
The other challenge is that we do not know in what order
and how quickly the events to be grouped will arrive - the
ordering and timing may even be malicious. Thus determin-

H(dip) = 4.602 H(sip) = 7.980

H(dipldport) = 2.876 H (sip|dip) = 4.995

H(dip|sip) = 1.616 H (sip|dport) = 6.048
H(dip|sport) = 2.750 H (sip|sport) = 4.225
H(dip|stp, dport) = 1.447 H (sip|dip, sport) = 1.814
H(dip|stp, sport) = 0.530 H (sip|dip, dport) = 4.619
H(dip|sport, dport) = 1.467 H (sip|sport,dport) = 2.718
H(dip|stp, sport,dport) = 0.364 H(sip|dip, sport,dport) = 1.615
H(dport) = 3.118 H(sport) = 13.938
H(dport|dip) = 1.393 H(sport|dip) = 12.278
H(dport|sip) = 1.186 H (sport|dport) = 12.557
H(dport|sport) = 1.737 H(sport|sip) = 10.183
H(dport|dip, sport) = 0.263 H (sport|sip,dip) = 9.097
H(dport|sip, dip) = 1.018 H (sport|sip,dport) = 9.227
H(dport|sip, sport) = 0.230 H (sport|dip, dport) = 11.148
H(dport|sip, dip, sport) = 0.064 H(sport|sip, dip, dport) = 8.144

Figure 6: Observed entropy amounts for source TP and port
and destination TP and port among TCP syn packets. All
numbers are bits of entropy. The conditional entropies are
the amount of entropy that remain in a feature when the
feature conditioned on are known.

istic algorithms can easily be led astray. In this setting, we
turn to statistical physics algorithms for inspiration (though
we will use them in a loose and creative way).

3.2.1 Correlation graph

The metaphor that motivates our approach is this: the events
(packets) to be correlated are like atoms living in space. Each
heuristic is expressed as a bonding energy between the atoms.
Then we create bonds between those events where the attrac-
tion is strongest. These are described in a graph, where the
events are nodes and the bonds are undirected edges. We re-
fer to this as the bond graph. Roughly speaking, two events
will be bonded if there is a strong connection between the
events. Each bond has a certain strength associated with it.
As a constraint, all events are connected in a single graph.

Groups of related events are represented in the graph
by subgraphs in which each connection is above a certain
strength. The events in such subgraphs describe an entire
group. Thus the groups are the connected subgraphs left
when bonds weaker than some threshold are deleted.

3.2.2 Evaluation function

The strength of connections between events is evaluated pair-
wise. The form of the evaluation function is:

f(e1,e2) = crhi(er, es) + caha(er,ea) + ...+ cihi(er, ez)

where e; and es are the events whose connection is being eval-
uated, ¢1 ...cx are constants, and hj ...hg are heuristic eval-
uation functions. The heuristic evaluation functions capture
knowledge of how events are connected in scans. The methods
by which a heuristic may operate are arbitrary. (We believe
that a set of simple heuristics can capture most portscans

seen in the wild today and that it is feasible to capture the
stealthier portscans that are likely to be more common in the
future with somewhat more sophisticated heuristics.) So as
to prevent any heuristic from exerting undue influence over
the evaluation function, all heuristic evaluation functions are
required to produce results within the continuous range [0,1],
where 0 indicates the heuristic finds no connection between
the events and 1 indicates the strongest possible connection
between the events. Initial heuristics are likely to include:

e Feature equality heuristics. Is the source IP address the
same between the events? The destination port? How
about the destination network? If so, 1. Else, 0.

e Feature prorimity heuristics. How close are the times
of the events? How about the destination IP? Or the
destination port? The closer, the closer to 1 the result

would be. If they are too far apart, the result is 0.

Feature separation heuristics. This heuristic attempts to
recognize gaps in a feature’s value between events. This
can be done in a primitive way using just the two im-
mediate events being evaluated. It might recognize well-
known separations between events, e.g., 1 hour between
events or a step of 1 in destination TP. Considering the
bond partners of events allows more sophisticated analy-
sis. It can recognize that a certain feature has the same
gap between two events as between another two events.
An efficient implementation might find the bond partner
of one of the events with closest to the same gap as the
reference events and evaluate the heuristic based on this
closeness.

Feature covariance heuristics. Recognizing event features
that vary together can be implemented to a limited ex-
tent by looking at just two events. It can be noted, for
instance, that source port is rising at the same rate as
destination TP (e.g., (destipl - destip2)/(srcportl - src-
port2)=1) and that would result in a high value. Con-
sidering the events bonded to some event allows more
sophisticated heuristics. If e; and e have a rate between
two features that is the same as the rate between e and
some bond partner of ey, there is a connection and the
heuristic would yield higher results. This would be useful
for destination IP to time based rates.

The constants ¢; ...cg are expected to be within a small
factor of each other for active heuristics.

3.2.3 Adding Events

When a new event is presented to the correlator, it needs
to be added to the graph somehow. There may be a large
number (perhaps thousands) of events in the graph so a new
event cannot be tested for connections with every event. We
use the technique of simulated annealing [12], assigning some
number (perhaps 4) of bonding partners randomly initially
(though we may wish to make one of these the last event
added as a possible optimization).

Simulated annealing is a technique that was originally de-
veloped in statistical physics for finding the global energetic
minima of physical systems. However, it has since been used
in a variety of applications in Al and other fields for prob-
lems associated with finding the configuration that globally
maximizes some evaluation function in the presence of local
maxima. The name and algorithm derives from an explicit
analogy with annealing which is the process of gradually cool-
ing a liquid till it freezes. It can be viewed as a variation on
a hill-climbing algorithm. In the hill climbing algorithm, all
successor states (neighbors) of a given state are evaluated and
the one that evaluates the highest 1s chosen as the new ref-
erence point. This continues until all successors are worse
than the present. This termination condition i1s a problem if
there are local maxima in the state space. Simulated anneal-
ing overcomes this problem by sometimes making moves to
states that seem worse.

At each step in simulated annealing, a possible successor is
chosen randomly among the successors of the current state.
If the successor state evaluates better than the current state,
it 1s made the next current state. If it i1s worse, then a move
is made to it only with certain probability. This probability
decreases with the degree to which the possible successor state
is worse than the current state and is regulated by a cooling
schedule. The cooling schedule controls the degree to which
negative moves are allowed. The cooling schedule is defined
by a function that starts off high (at 1) and decreases to 0 by
the time at which the global maxima is expected to be found.
When it is at 0 it is essentially hill-climbing.

As we apply it to the process of finding bond partners for
a new event, the states are events in the bond graph and
the evaluation function is the one introduced in the previous
section, applied between the new event and the other event.
Successors of a state are the existing bond partners of the cur-
rent event. The exception to this is if a successor already has
a bond with a new event in which case its bond partners are
considered successors but it is not. We denote the schedule
function by sched, where sched(t) is its value at time ¢ This
becomes 0 in some finite time. We will illustrate the pro-
cess with the following algorithm, where maze is the highest
possible value of the evaluation function:

add_event(new)

fori=1to 4
current= randomly chosen event in the graph
t=1

while (sched(t) > 0)
neighbor-set= neighbors(current,new)
next= randomly chosen event from
neighbor-set
change= e(new,next) - e(new,current)
if (change > 0 or (rand(0,1) >
echange/(sched(t)*maxe))
current= next
t++
create a new bond between
current and new

neighbors(refevent,avoid)
set n to {}
for each event e in a bond from refevent
if there is not an bond between
e and avoid
n=n-+e
else
n= n + neighbors(e,avoid)
return n

Figure 7 shows some example steps in the annealing pro-
cess. Initially, a new event ejgg is given a bonding partner
e17 at random; their link evaluates a strength of 1.7. ey is
chosen as the next event since it 1s a neighbor of ey7. The
link between ejgp and ess evaluates to 4.0, better than the
link with eq7, so it becomes the current event. es i1s chosen
at random among ess’s bonding partners as the next possi-
ble successor. Although it evaluates lower (2.1), it is selected
anyway by chance. er4 1s not as lucky; it evaluates lower than
es but 1t 1s not selected and es remains the current event. e99
is chosen as the possible successor to e5 and is selected due to
its higher evaluation. es5q is chosen among es5’s bonding part-
ners and 1t becomes the new current event since it evaluates
higher.

When other correlators provide groups of events for consid-
eration, they are added individually to the graph using the
process described above. There is no attempt to maintain
global consistency as to the disposition of event groups. This
would be complex in general and this way allows individual
correlating sites to decide on the own parameters and heuris-
tics.

Weak bonds in the graph that are not necessary to main-
tain graph connectedness would be discarded as a low priority
background operation. This helps keep the graph tidy.

3.2.4 Timing out events

All events time out. How long they are around depends on
their anomaly score and the other events in the group they are
a part of. An event’s individual lifetime is proportional to its
anomaly score. This is added to the time of the event to find
its scheduled timeout. However, events in a group inherit the
latest timeout of any event in the group. This keeps events
around while they are part of an active group and rewards
being bonded to long lived events.

If, after removing events that have timed out, the graph
is separated, then an operation must take place to reconnect
the graph. Consider two of the graph segments. If there
are more than two segments, this operation is repeated until
all segments are connected. The events in these two graphs
that were recently connected to other parts of the graph are
tentatively joined. The simulated annealing process is run on
one of these two events with respect to another. This may
result in one end of the new bond moving. Next the process
is repeated for the other end of the link.

t=0: current=el7
(randomly chosen)

€100
177
/
er’4 el7
eSS €227 €50

\

t=1: next=e22
better so becomes current
€100
I
1
er’4 el7 , 4.0
1
I
1
|
e e227 €50

\

€70 €9 e60— €74 | e70 €9 e60— €74
t=2. next=e5 t=3. next=e74
worse but becomes current worse and rejected
on chance
, el00 09 .-, el00
21, S
e74 <, el7 e74 ,el7
/ 2.1/
/ /
/ /
/ /
/ /
e5 e22— e50 e5 e22— e50
€70 €9 e60— €74 | e70 €9 60— €74
t=4. next=e22 t=5. next=e50
better so becomes current better so becomes current
elpO elQO
I \
e74 €17 |, e74 el7 '\ 53
1 N
\
! \
1 \
| \
e5 e22— &30 e5 e22— &30
€70 €9 e60— €74 | e70 €9 60— €74

Figure 7: Some simulated annealing steps to add €100 to the

correlation graph.

10

3.2.5 Sharing and alerting scans

The anomaly score for a group of events is the sum of the
anomaly scores for the events in a group. This is used when
deciding when to share or alert groups of events. If a certain
threshold is exceeded, the group of events 1s shared with other
correlators. If a separate (presumedly higher) threshold is
exceeded, then a group of events is sent as an alert to a user.

3.3 Spade

We have an implementation of the Spice anomaly detector
publically released under GNU GPL. It is called SPADE (Sta-
tistical Packet Anomaly Detection Engine) and can be down-
loaded from http://www.silicondefense.com/spice/. Tt is a
Snort preprocessor plugin, which gives us the benefit of us-
ing Snort’s input/output facilities such as receiving packets
already parsed into a data structure. This is where we main-
tain the probability tables that are used to assign an anomaly
In its present form, Spade only looks at TCP syn
packets since this where the interesting truly stealthy scans
are now (by design though, it can easily handle other packet
types).

The portscan correlation will run 1n a separate process,
possibly on a remote machine (see Section 3.4). The commu-
nication between the anomaly detector and the correlator is
via sockets and consists of the anomaly detector passing along
details of anomalous events along with their anomaly scores.
We think that having separate processes and communicating
via sockets makes sense for a couple of reasons. First, this way
Snort does not take too long in processing any packet, which
might otherwise lead to dropping packets. The correlating
process has a little more liberty to do extra computations
with the anomalous events. Also, if other correlators want to
communicate anomalous events that they have found, then
they can send it to the correlating process and not to Spade.

score.

3.3.1 Spade features

Spade has a number of features that can be enabled and con-
figured through the Snort configuration file. It offers the user
four alternatives for assessing the likelihood of packets. One is
the Bayes network depicted in Figure 5. The other three are
direct joint probability measurements: P(source IP, source
port, destination IP, destination port), P(source IP, destina-
tion IP, destination port), and P(destination IP, destination
port). The user may also elect to have Spade only monitor
packet going into certain networks. This allows Spade to fo-
cus its assessment on the traffic of interest, removing the noise
of outgoing traffic (which typically has a much larger range
of possible addresses and ports).

Since Spade maintains state over a period of time, it pro-
vides checkpointing and recovery facilities. Spade starts up
recovering its state for a specified file and periodically (and
on signals and Snort exit) stores its state in a designated file.

The anomalous event reporting threshold is an important
parameter in a Spade installation. Unfortunately it is also
one whose ideal value varies from site to site depending on

the characteristics of the network. This could also vary over
time. If the threshold is too high, interesting events may be
missed. If it is too low, the use may be flooded with events,
most of which are not interesting. To allow the user to get
Spade running well ”out of the box” with minimal threshold
adjustment, three capabilities are provided by Spade to au-
tomatically adjust the threshold to observed network traffic.
These aim to meet a specified target rate (in term of packet
count or in terms of a fraction of traffic).

Spade also provides two modes unrelated to its primary
purpose of reporting anomalous events. One is a survey mode
in which statistics about the distribution of anomaly scores
recently observed are appended to a file periodically, thus
producing a table of this information. The other is the ca-
pability to report on certain known feature statistics such as
entropy and conditional probabilities. It is this functionality
that produced the measurements shown in Figure 6.

3.3.2 Maintaining probabilities in Spade

Depending on the probability mode, Spade needs to maintain
certain joint probabilities for packet features*. The most ef-
ficient way to do this in a real time system is to maintain
a count of features in observed events. Conceptually, for a
feature A whose probabilities are needed, there would be a
table with the different possible values of A and a count of
their occurrences. To determine the probability of a partic-
ular value of A, its count is divided by the total number of
events recorded in the table. If we need to know the probabil-
ity of the joint occurrence of a € A and b € B, then we need
a two dimensional table, where the entry for a and b records
a count of their joint occurrence. In general a k-dimensional
table is used to record the joint occurrence of k feature-values.

Now comes the question of how to efficiently represent these
tables. The nature of network traffic influences this. Certain
feature values may be much more likely than others (e.g., des-
tination port 80 may be much more likely than destination
port 5037). In fact, the observed values may be sparse com-
pared to the total range of possible values for a feature, so an
array representation (while it would be efficient for lookups)
would be too expensive in terms of memory usage. Hash ta-
bles can be similarly inefficient and it would be difficult to
find a good general hash function that is not biased with the
data for all cases. For the conditional probability tables, we
would require hash tables of pointers to other hash tables.
This would certainly make for much waste of space for rows
in the table that were almost empty.

It is also important to have a data structure which will
perform tolerably well even when the sensor is seeing a flood
scan designed deliberately to fill up the data structure with
all possible cases that could occur in the table. This rules out
linked lists and similar structures.

We take a general approach. We have decided on a cus-
tom data structure and algorithm based on a balanced binary
search tree. Our aim is a solution which generally provides

4Uonditional probabilities needed for the Bayes network calculation
can be derived from unconditional probabilities.

11

21

4 \\
53 80
1 2

Figure 8: Balanced Binary Search Tree for counts of desti-
nation ports. The upper number in leaf nodes are the port
number represented and the lower number is a count of in-
stances. In interior nodes, the upper number is the indication
of the position of value beneath and the lower number is the
sum of instances counted below.

very fast access for the common cases (main servers and most
popular ports), but can handle very large growth in the num-
ber of entries in the structure while still maintaining tolerable
performance and being space efficient.

Let us first introduce the data structure as it would be used
for a single dimension. A tree is maintained that stores all
the values observed. These values are stored in leaf nodes
along with a count of the number of instances observed. Asis
standard in binary search trees, these nodes are kept in order
from left to right. Interior nodes record the largest value on
the left side of the node. This serves as an indication whether
to go left or right to look for (or insert) a leaf node of a
particular value. Interior nodes also maintain the sum of the
counts of the leaf nodes beneath the node. Consider as an
example the tree in Figure 8, depicting counts of destination
ports.

It is this sum that is the focus of balancing in our efforts
to maintain the tree. We feel the counts serve as a predictor
of future accesses. Specifically, we wish for the left and right
child nodes of all interior nodes to have as close to the same
count/sum as possible. The result of this is a tendency to
push leaf nodes with higher counts higher in the tree, since
they have more weight for the balancing than other nodes.
This results in more efficient access for this common case.

The need to rebalance a subtree is checked periodically.
This period is in terms of the number of count increments
in the subtree. To support this, a wait count 1s maintained
on each interior node. This count is decremented with each
increment in the subtree. When an interior node is created
and after a rebalance check, the wait count is set to the greater
of 10 or the minimum number of insertions that would be
needed to unbalance the subtree. Any interior nodes whose
children were changed in the process of rebalancing are also
checked for rebalancing. Also to avoid frequent rebalancing,

21

4 \\
53 80
1 6

Figure 9: Balanced Binary Search Tree after 4 more port 80
observations.

S

80

21

Figure 10: Rebalanced Balanced Binary Search Tree after a
left rotate at the root.

no effort is made to rebalance a subtree unless one side is
more than twice the size of the other side.

To rebalance a subtree, left and right rotates (see [3]) are
performed. If the left has a higher count/sum than the right,
then a right rotate is done; otherwise a left rotate is done. In
addition to right and left rotates, more general relocation of
subtrees from right to left and left to right are performed if
needed for rebalancing. This is repeated for the node in that
position in the tree until a further rotate would bring the tree
more out of balance than current or until no further rotates
can be done since a leaf node and the bottom of the tree is
encountered.

As an example, consider the balanced binary search tree in
Figure 9, which is the tree shown in Figure 8 after 4 additional
port 80 observations. Notice that the children of the root are
unbalanced. After a left rotate, this would be rebalanced to
the tree shown in Figure 10.

To use this structure in two-dimensions, the type of trees
described would also be used for a second dimension and
would be anchored off the leaf nodes in the first dimension.

12

This is extended in a straight forward manner for more than
two dimensions.

The characteristics of a network will change over time and
the most attention should be paid to recent characteristics.
Furthermore if we were to store artifacts of every access in-
definitely, this would lead to a large amount of memory use
and large data structures. The approach taken in Spade to
this is to de-emphasize past observations periodically with re-
spect to new observations. It would be too inefficient to scale
all current counts down by certain amount with each new
event (and ultimately too inflationary to increasingly empha-
size new events, besides which it would not eliminate old one-
time events). Instead, we take the optimization of only doing
the de-emphasis on occasion. For example, every hour we
might multiply all counts by 99.5%, discarding occurrences
with too low a result (say below 0.25). Thus an observa-
tion that occurred once (and was given an initial weight of 1)
would only have a weight of 0.886 after 24 hours.

3.3.3 Spade results

Though our results are preliminary, Spade seems stable and
efficient. We have had it running for over 5 weeks on a client’s
Internet connection without problems. Using the 3 week data
set (see Section 3.1), we measured that Spade processed the
file in about 2 minutes, including producing reports. This is
an average of about 86 microseconds per packet. Memory use
was between 2 Mb and 42 Mb depending on the probability
mode employed.

In using it for our commercial monitoring with a thresh-
old setting that typically produces about 300 alerts per day,
Spade has noticed (at least) most of the events in every TCP
syn portscan that we would have noticed otherwise. In ad-
dition, there are many slow or small scans we have detected
though the Spade alerts that we would not have noticed oth-
erwise.

As a step in assessing the effectiveness of Spade in detecting
actual portscans, we identified 28 horizontal scans (consisting
of 1245 packets) and 4 nmap network scans (107026 packets)
in the 3 week data set. (There may have been scans we did
not find in that data set.) We then compared this against the
alerts produced when Spade was run in different configura-
tions. We present some of our results here.

We calculate two indicators, which we term efficiency and
effectiveness. Efficiency is the ratio of the number of true
positives to all positives. For these experiments, it is the
number of alerts that had been labeled as part of one of the
scans divided by the number of alerts produced. The bigger
this number is, the less noise the correlator will have to deal
with. Effectiveness is the ratio of true positives to all trues.
This is how well Spade detected scan packets. For us, this is
the number of alerts that had been labeled as part of one of
the scans divided by the number of labeled events.

There is a tradeoff between these indicators. Generally, if
you want increased effectiveness (that is, you want to catch
more of the scans), the lower your efficiency will be (that
is, you will have more noise). This is illustrated in Table 1.

threshold: 10.5 10.75 11.0 probability mode: | joint-2 | joint-3 | joint-4 | Bayes
of alerts 384696 | 114834 | 107777 # of alerts 94174 | 93288 | 357677 | 167223
events detected | horiz. 1029 779 682 # events | horiz. 1183 263 224 100

Nmap | 99773 | 94899 | 90433 detected | Nmap | 85161 | 70212 | 99061 | 39853

total 100802 | 95678 | 91115 total 86344 | 70475 | 99285 | 39953
efficiency 0.2620 | 0.8332 | 0.8454 efficiency 0.9169 | 0.7555 | 0.2776 | 0.2389
effectiveness 0.9310 | 0.8837 | 0.8415 effectiveness 0.7975 | 0.6509 | 0.9170 | 0.3690

Table 1: Spade results on the 3 week data set with threshold
settings of 10.5, 10.75, and 11 and with the 2 feature joint
probability mode.

threshold: 8.0 8.5 9.0
of alerts 116255 | 114756 | 113569
events detected | horiz. 1179 1160 1126

Nmap | 106910 | 106904 | 106818

total 108064 | 107944 | 108089
efficiency 0.9417 | 0.9505 | 0.9298
effectiveness 0.9983 | 0.9981 | 0.9970

Table 2: Spade results on the portion of the 3 week data
set that has destination internal to the monitored network.
Threshold settings of 8.0, 8.5, and 9.0 and the 2 feature joint
probability mode were used.

This shows the results of running Spade over all the packets
in the data set using the two feature joint probability mode
with static threshold settings of 10.5, 10.75, and 11.0. The
higher the cutoff, the higher the efficiency but the lower the
effectiveness.

However, using Spade’s homenet option improves both.
The homenet was set to cover the IP addresses of the moni-
tored network. This leaves 1,010,909 packets whose destina-
tion is in the home network. The two joint probability mode
is used again with static threshold settings of 8.0, 8.5, and
9.0. The results are depicted in Table 2. For any of these
settings, the efficiency is in the 90%’s and the effectiveness
is above 99.7%. The reason for the improvement seems to
be that outgoing traffic could not be adequately sampled in
terms of destination port and IP combination due to the wide
variety of destinations.

Table 3 depicts some results of comparing the different
probability modes available in Spade (see Section 3.3.1). We
used the simple threshold adapting mode, which quickly ad-
justs the threshold to recent conditions in an attempt to meet
a target rate. As configured, every hour the rate is adjusted
by averaging the previous threshold and the threshold that
would have produced 8 alerts during the previous hour. The
homenet option was again employed. The computed total ef-
fectiveness and efficiency varied, mostly due to the number of
labeled nmap scan packets detected. The reason more of these
were not detected is due to the threshold adapting. Adapting
took place in the middle of some of these large scans. Nat-
urally, the target rate is raised drastically in this situation
due to the large number of packets with high anomaly scores.
We suggest then that the detection rate among the horizontal

13

Table 3: Spade results for the different probability modes on
the portion of the 3 week data set that has destination internal
to the monitored network. Simple threshold adapting was
used with a target rate of 8 alerts per hour.

scans is more meaningful since these scans are smaller. The
joint probability mode with 2 features clearly does the best
here, detecting 95% of those scan packets. To truly have a
fair comparison between the modes, we should compare the
results when they are in the configuration that works best for
them (e.g., at their best reporting threshold).

These preliminary results serve to support our belief that
Spade can detect portscan packets well, but that it may take
some amount of configuration work to find and optimal con-
figuration. Note also that the a low efficiency rate might be
acceptable when Spade is being used to feed the correlation
engine, part of whose task it is to weed out non-scan events.

3.4 Correlator Implementation

We have begun a detailed design of the correlator in prepara-
tion for implementation. We will be using a multi-threaded
approach. These threads include: a thread to receive anoma-
lous event reports into a queue, threads to add events from
the queue to the bond graph and to report scans, a thread
to clean up the graph (removing weak links), a thread to
time out and remove events from the graph, a checkpointing
thread, a thread to respond to queries about correlator state,
and a thread to receive commands to adjust operational pa-
rameters dynamically. Certain read and write mutual exclu-
sion locks will need to be maintained for data shared between
threads (e.g., the bond graph).

The bond graph has a pretty straightforward representa-
tion for traversing the graph. Two operations that a graph
representation is not good for is discussed in the following
section.

3.4.1 Timeout data structure

The representation of the bond graph is not suited for main-
taining event timeouts nor choosing random events from the
graph. Thus we maintain a separate timeout structure for
these operations. A simple example of this is depicted in
Figure 11.

At a conceptual level, the timeout structure maintains a
record of events and when they will time out. As an opti-
mization, it actually records the scheduled timeout — the time
it was to time out in the last instance it was checked. This
may be different than its timeout value at a given moment

1
event count
tree
2 3
/ \ / \
/ \ / \
1/ \\ 4, \\
timeout 4 A / 3
hash
table
Time 485 Time 34
€5, e6 €7,e8,e9,e10,el

Time 1096
e4

Figure 11: Timeout structure example. The lower part is the
timeout hash table of size N=4. The upper part is the event
count array depicted as a tree. Dashed lines show how these
relate. The value on the event count tree nodes is the number
of events beneath its left side. Event numbers illustrate the
implicit ordering of events in the hash table.

14

since the timeout might be delayed due to new events that
are added to its group. When the clock reaches the value of a
entry in the timeout tree, each event associated with that en-
try 1s checked. If the timeout is still current, then it is deleted
from the timeout structure and from the bond graph. Other-
wise 1t 1s reinserted into the structure with its new scheduled
timeout value.

At an implementation level, we will use a hash table to
maintain the list of times at which timeouts are scheduled
to occur and for which events. A simple hash function is
employed, h(t) = ¢t mod N, where N is the size of the hash
table array. When multiple timeout times hash to the same
bucket in the hash table array, a linked list of times (and the
associated events) is used for the bucket. This linked list is
kept sorted by increasing timeout time.

We also use this timeout structure in selecting random
events. Our strategy for picking events with uniform proba-
bility is to conceptually order all the events in the hash ta-
ble, to choose an order position by choosing a integer with
equal probability among the positions. The corresponding
event would then be retrieved. We order the events as fol-
lows: first by hashtable array position (smallest to largest),
then by timeout time, and finally by event position in the list
of events at the time. (It does not matter that the event list
i1s in arbitrary order or that the timeout values may not be
current; we only care that the order is well defined at any
given time.)

Standard hash tables are not efficient for selecting events
in this manner, so we augment the hash table with an ar-
ray of size maintaining certain counts of events in a range of
hash table array slots. As is often done with the heap data
structure [3], we view this count array as a complete binary
tree. The tree root is node 1, the left of node 7 is 2 % 4, and
the right of node ¢ is 2 x 2 + 1. For simplicity in discussion,
we assume than N is a power of 2. The tree is a full one of
height logs(N) in this case. The N/2 leaves of this tree each
(conceptually) have adjacent left and right nodes in the time-
out hash table array. The count maintained on each node in
tree 1s the number of events below its left node. For example,
node 2 in the figure stores the number of events in the first
hash bucket and node 1 contains the number of events below
node 2. This allows a particular event position to be located
by walking down the tree from the root. To further increase
selection efficiency, we maintain a count of events at a given
timeout (not depicted in the figure), so that events in certain
times can be skipped entirely.

4 Future Work and Extensions

In this work, we have sketched the design for Spice, which we
hope will be a viable method of picking stealthy portscans out
of background traffic. We also described the implementation
of the Spice anomaly sensor, Spade. Much remains to be
done; we are beginning to implement the correlator and we
continue experiments to determine appropriate values for the
various parameters that need to be set. There will be a lot of

tuning to do.

We note also that if this tool is successful, 1t should also be
very useful for detecting the spread of worms and the use of
distributed denial of service networks. Like portscans, those
applications involve large numbers of connections or packets
with similar structures which will typically be quite anoma-
lous relative to regular traffic. The only difference from de-
tecting portscans will be some change in the heuristics. Thus
Spice could be a tool capable of detecting such misuses of the
network without first reverse engineering the particular worm
or DDOS tool in use.

We also note that Spice lends itself in a natural way to
distributed or hierarchical use. We could share events up-
wards or sideways only if they were particularly anomalous
(more so than required just to correlate them locally). This
would allow a set of Spice correlators to collectively detect and
characterize very sparsely distributed network misuse across
a number of autonomous networks. Hence, it might be possi-
ble for collaborating sites to compare strange events such as
Figure 3, and determine whether they genuinely are isolated,
or whether they are part of a larger pattern at present unseen.

5 Acknowledgements

This work was supported under DARPA contract #F30602-
99-C-0181. We thank DARPA for their ongoing support of
our research, and intrusion detection research in general. This
paper was helped by discussions with some of our collabora-
tors at Boeing (Randy Smith and Dan Schnackenberg), UC
Davis (Karl Levitt, Jeff Rowe, and Dave Klotz), and NAI
Labs (Dan Sterne, Kelly Djandahari, and Roshan Thomas).
Dave Farrel and Raymond Parks at Sandia National Labs
provided helpful ideas about the attacker’s view of portscan-
ning. The idea to use Bayes networks in this way came to
us following discussions with Al Valdes at SRI of his quite
different use of Bayes networks in [15]. We also thank Marty
Roesch, Patrick Mullen, and the rest of the Snort community
for making available a viable open-source IDS; that was im-
portant in the development of this research. Finally, thanks
to Steve Northcutt for the quote given at the start of this
paper, which partially inspired this work. We aren’t brilliant
yet, but we aspire to be.
All opinions in the paper are those of the authors alone.

6 About the authors

Dr. Stuart Staniford is President of Silicon Defense, an In-
trusion Detection Research and Monitoring company in Eu-
reka, CA. He received a Ph.D. in Physics from UC Davis in
1993, with a dissertation concerning the application of sta-
tistical physics techniques to particle physics. He received
an MS in Computer Science from UC Davis in 1995 with a
thesis about tracing intruders over the Internet. He worked
under Karl Levitt. He then worked as a Researcher at UC
Davis, leading the team that developed the GrIDS prototype

15

intrusion detection system, which was the first IDS that at-
tempted to do wide area detection of scans and worms. He
was the founding chair of the Common Intrusion Detection
Framework (CIDF) working group, which developed a data
format for research IDS systems to share data. This led to
the start of the TETF working group IDWG to develop an
Internet standard for intrusion detection alerting, which Dr.
Staniford now co-chairs.

Dr. Staniford left UC Davis to work full time for Silicon De-
fense, his own company, in mid 1999. There he works on ways
for intrusion detection systems to share and correlate data,
methods for traceback of intruders, improving the operational
practice of intrusion detection, and promoting IDS standards.
He is a member of the board of the Common Vulnerabilities
and Exposures Project, and of the program committee for the
Recent Advances in Intrusion Detection (RAID) workshop se-
ries. He strongly believes in the importance of bringing the
research and operational intrusion detection communities to-
gether, and so is a frequent contributor on internet mailing
lists about intrusion detection systems and incident analysis
and handling.

Dr. James Hoagland is an Associate Researcher at Sili-
con Defense. His current work includes research on stealthy
scan detection (part of the Multi-Community Cyber Defense
project sponsored by US DARPA), development of the Snort-
Snarf IDS alert navigator, and catching bad guys attacking
client’s networks. In the UC Davis Computer Science depart-
ment, he received his BS in 1993, MS in 1996, and Ph.D.
in 2000. His Ph.D. dissertation was on specifying and imple-
menting security policies under the supervision of Profs. Raju
Pandey and Karl Levitt. He was a Research Assistant in the
UCD Computer Security Research Lab for six years, where
he conducted research in security policies, intrusion detection
(notably being an original GrIDS designer and implementer),
audit log visualization and analysis, and network security. In
summer 1997, he was a Graduate Technical Intern under the
supervision of Dr. Baiju Patel at the Internet Security group
of the Intel Architecture Labs.

Joseph McAlerney is a programmer and security analyst
at Silicon Defense. He graduated from Humboldt State Uni-
versity in December of 1999 with a BS degree in Computer
Information Systems. He has developed APT’s for the Intru-
sion Detection Inter-component Adaptive Negotiation (ID-
TAN) project. Currently, he works on a number of Silicon
Defense’s projects, monitors clients networks for intrusions,
and maintains an implementation of the Intrusion Detection
Exchange Message Format (IDEMF) called libidmef, as part
of the IDWG working group.

References

[1] Simple Nomad. http://razor.bindview.com/tools/desc/-
icmpenum_readme.html

[2] Cheung, S., R. Crawford, M. Dilger, J. Frank, J.
Hoagland, K. Levitt, J. Rowe, S. Staniford-Chen, R. Yip,

D. Zerkle. ” The Design of GrIDS: A Graph-Based Intru-
sion Detection System.” U.C. Dawvis Computer Science
Department Technical Report CSE-99-2, 1999.

[3] Cormen, T., C. Leiserson, and R. Rivest. Introduction

to Algorithms. MIT Press. Cambridge, MA. 1990.
[4] Fyodor. http://www.insecure.org/nmap/

[6] Fyodor. The Art of Scanning, Phrack 51
www.phrack.com

[6] Fyodor. Remote OS detection via TCP/IP Stack Finger-
printing, Phrack 54 www.phrack.com

[7] Heberlein, L.T., G. Dias, K. Levitt, B. Mukherjee, J.
Wood, and D. Wolber, “A network security monitor,”
Proc., 1990 Symposium on Research in Security and Pri-
vacy, pp. 296-304, Oakland, CA, May 1990.

[8] Northcutt, S. Network Intrusion Detection: An Analyst’s
Handbook. New Riders, Indianapolis, 1999. p. 125

[9] Porras, P. and A. Valdes, Live Traffic Analysis of
TCP/IP Gateways. 1998 Internet Society Symposium on
Network and Distributed System Security. San Diego,
March 1998.

[10] Roesch, M. http://www.snort.org/.

[11] Roesch, M. “Snort - Lightweight Intrusion Detection for
Networks,” Proceedings of the 1999 USENIX LISA con-
ference. November 1999.

[12] Russell, S. and P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hill. Upper Saddle River, NJ.
1995.

[13] Savage. http://www.apostols.org/projectz/queso/

[14] Staniford-Chen S., S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, D.
Zerkle, ”GrIDS — A Graph-Based Intrusion Detection
System for Large Networks”. The 19th National Infor-
mation Systems Security Conference.

[15] Valdes, A., K. Skinner. http://www.sdl.sri.com/-
emerald/adaptbn-paper/adaptbn.html

16

