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Abstract

Intrusion detection systems (IDSs) must be capable of
detecting new and unknown attacks, or anomalies. We
study the problem of building detection models for both
pure anomaly detection and combined misuse and anomaly
detection (i.e., detection of both known and unknown in-
trusions). We propose an algorithm to generate artificial
anomalies to coerce the inductive learner into discovering
an accurate boundary between known classes (normal con-
nections and known intrusions) and anomalies. Empirical
studies show that our pure anomaly detection model trained
using normal and artificial anomalies is capable of detect-
ing more than 77% of all unknown intrusion classes with
more than 50% accuracy per intrusion class. The combined
misuse and anomaly detection models are as accurate as a
pure misuse detection model in detecting known intrusions
and are capable of detecting at least 50% of unknown in-
trusion classes with accuracy measurements between 75%
and 100% per class.

1 Introduction

Classification and anomaly detection are two common
data analysis tasks. Anomaly detection tracks events that are
inconsistent with or deviate from events that are known or
expected. For example, in intrusion detection anomaly de-
tection systems flag observed activities that deviate signifi-
cantly from established normal usage profiles. On the other
hand, classification systems use patterns of well-known
classes to match and identify known labels for unlabeled
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datasets. In intrusion detection, classification of known at-
tacks is also called misuse detection.

Anomaly detection systems are not as well studied, ex-
plored, or applied as classification systems. Most of the
leading commercial intrusion detection systems (IDSs) em-
ploy solely misuse detection techniques, which use patterns
of “known” attacks to detect intrusions. However, as anec-
dotes of serious break-ins to major government, military,
and commercial sites have shown, our adversaries, knowing
that intrusion prevention and detection systems are installed
in our networks, will always be attempting to develop and
launch “new” attacks. Last year’s Distributed Denial-of-
Service (DDOS) attacks have caused major disruptions for
services provided over the Internet.

In the generation of classification models, training data
containing instances of known classes is often available for
training (or human analysis) and the goal is simply to de-
tect instances of these known classes. Anomaly detection,
however, relies on data belonging to one single class (such
as purely normal connection records) or limited instances
of some known classes with the goal of detecting all un-
known classes. It is difficult to use traditional inductive
learning algorithms for such a task, as most are only good
at distinguishing the boundaries among all given classes of
data. In this paper, we explore the use of traditional induc-
tive learning algorithms for anomaly detection by working
from the dataset level. We present methods for generating
artificial anomalies based on known classes to coerce an ar-
bitrary machine learning algorithm to learn hypotheses that
separate all known classes from unknown classes. We dis-
cuss the generation of anomaly detection models from pure
normal data, and also discuss the generation of combined
misuse and anomaly detection models from data that con-
tains known classes. We apply the proposed approaches to
network-based intrusions.
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The rest of the paper is organized as follows. Section 2
discusses the motivation for artificial anomaly generation
and the different methods. In Sections 3-6, we evaluate
our methods using RIPPER [2], an inductive rule learner,
trained and tested with the 1998 DARPA Intrusion Detec-
tion Evaluation dataset. Section 7 reviews related work in
anomaly detection. Section 8 offers conclusive remarks and
discusses avenues for future work.

A longer version of this paper can be found at
http://www.cs.columbia.edu/

�
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2 Artificial Anomaly Generation

A major difficulty in using machine learning methods
for anomaly detection lies in making the learner discover
boundaries between known and unknown classes. Since
we begin without any examples of anomalies in our train-
ing data (by definition of the task of anomaly detection), a
machine learning algorithm will only uncover boundaries
that separate different known classes in the training data.
This behavior is intended to prevent overfitting a model to
the training data. Learners only generate hypotheses for the
provided class labels in the training data. These hypotheses
define decision boundaries that separate the given class la-
bels. To achieve generalization and avoid overfitting, learn-
ing algorithms usually do not specify a boundary beyond
what is necessary to separate known classes.

Some learners can generate a default classification for in-
stances that are not covered by the learned hypothesis. The
label of this default classification is often defined to be the
most frequently occurring class of all uncovered instances
in the training data. It is possible to modify this default
prediction to be anomaly, signifying that any uncovered in-
stance should be considered anomalous. It is also possible
to tune the parameters of some learners to coerce them into
learning more specific hypotheses. However, our experi-
mentation with these methods does not yield a reasonable
performance.

The failure of using more specific hypotheses and modi-
fying a model’s default prediction has motivated us to pro-
pose artificial anomaly generation for such a task. Artifi-
cial anomalies are injected into the training data to help the
learner discover a boundary around the original data. All
artificial anomalies are given the class label anomaly. Our
approach to generating artificial anomalies focuses on “near
misses,” instances that are close to the known data, but are
not in the training data. We assume the training data are
representative; hence near misses can be safely assumed to
be anomalous. Our artificial anomaly generation methods
are independent of the learning algorithm, as the anomalies
are merely added to the training data.
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Figure 1. Distribution-Based Artificial
Anomaly (DBA2) Generation Algorithm

2.1 Distribution-based Artificial Anomaly

Since we do not know where the exact decision boundary
is between the known and anomalous instances, we assume
that the boundary may be very close to the existing data. To
generate artificial anomalies close to the known data, a use-
ful heuristic is to randomly change the value of one feature
of an example while leaving the other features unaltered.

Some regions of known data in the instance space may
be sparsely populated. We compare sparse regions to small
islands, and dense regions to large islands, in an ocean. To
avoid overfitting, learning algorithms are usually biased to-
wards discovering more general hypotheses. Since we only
have known data, we want to prevent hypotheses from be-
ing overly general when predicting these known classes.
That is, sparse regions may be grouped into dense regions
to produce singularly large regions covered by overly gen-
eral hypotheses. Using our analogy, small islands are un-
necessarily grouped into large islands to form apparently
larger islands. It is possible to produce artificial anoma-
lies around the edges of these sparse regions and coerce the
learning algorithm to discover the specific boundaries that
distinguish these regions from the rest of the instance space.
In other words, we want to generate data that will amplify
these sparse regions.

Sparse regions are characterized by infrequent values of
individual features. To amplify sparse regions, we propor-
tionally generate more artificial anomalies around sparse
regions depending on their sparsity using a proposed al-



gorithm presented in detail in Figure 1. Assuming that
the value � of some feature

�
is infrequently present in

the dataset, we calculate the difference between the num-
ber of occurrences of � , �������
	�� , and the number of oc-
currences of the most frequently occurring value ��
���� of
the given feature, �������
	�� 
���� . We then randomly sample
�������
	�� 
������ �������
	�� data points from the training set. For
each data point � in this sample, we replace the value of fea-
ture

�
, ��� , with any ��� such that ������ ���������� ��� to generate

an artificial anomaly, � � . The learning algorithm used will
then specifically cover all instances of the data with value� for feature

�
. This anomaly generation process is called

distribution-based artificial anomaly generation or DBA2,
as the distribution of a feature’s values across the training
data is used to selectively generate artificial anomalies.

2.2 Filtered Artificial Anomalies

In the above discussion, we assume that artificial anoma-
lies do not intersect with any known data. We could always
check for collision with known instances, but this is a very
expensive process. Another approach is to filter artificial
anomalies with hypotheses learned on the original data. We
use the training set plus an initial generation of artificial
anomalies to learn a model. We then evaluate this model
over previously generated artificial anomalies and remove
any anomalies classified as some known class. This process
is repeated until the size of the the set of artificial anomalies
remains relatively stable.

3 Experimental Setup

For generation of our models, we have chosen to use
RIPPER [2], an inductive decision tree learner. RIPPER
can learn both unordered and ordered rulesets. The use of
these types of rulesets in IDSs has been discussed in our
previous work [3]. In all reported results, unless clearly
stated, we always use an ������ !�#"$ �"�� RIPPER ruleset and
inject an amount of distribution-based artificial anomalies
equal to the size of the training set (i.e., we use DBA2 with
� �&% ).

Our experiments use data distributed by the 1998
DARPA Intrusion Detection Evaluation Program, which
was conducted by MIT Lincoln Lab (available from the UCI
KDD repository as the 1999 KDD Cup Dataset). We use the
same taxonomy for categorization of intrusions as was used
by the DARPA evaluation. This taxonomy places intrusions
into one of four categories: denial of service (DOS), prob-
ing (PRB), remotely gaining illegal remote access to a local
account or service (R2L), and local user gaining illegal root
access (U2R). The DARPA data were gathered from a sim-
ulated military network and includes a wide variety of in-
trusions injected into the network over a period of 7 weeks.

Table 1. Intrusions, Categories and Sampling
U2R R2L DOS PRB
buffer overflow ftp write back ipsweep
loadmodule guess passwd land nmap
multihop imap neptune portsweep
perl phf pod satan
rootkit spy smurf

warezclient teardrop
warezmaster

Table 2. Anomaly Detection Rate and False
Alarm Rate of Pure Anomaly Detection

%a '('*) 94.26
%far 2.02

(a)
%a %a

buffer overflow 100.00 + ftp write 50 +
loadmodule 66.67 + guess passwd 100.00 +
multihop 57.14 + imap 83.33 +
perl - phf 100.00 +
rootkit 10.00 spy -

warezclient 64.25 +
warezmaster 80.00 +

U2R 47.06 + R2L 66.67 +
back 100.00 + ipsweep -
land 75.00 + nmap -
neptune 80.52 + portsweep 4.81
pod 9.62 satan 0.32
smurf 99.94 +
teardrop -
DOS 94.31 + PRB 1.34

+ : significant or %a ,.-�/�0
(b)

The data were then processed into connection records using
MADAM ID [9]. A 10% sample was taken which main-
tained the same distribution of intrusions and normal con-
nections as the original data (this sample is available as kd-
dcup.data.10% from the UCI KDD repository). We used
80% of this sample as training data and left the remain-
ing 20% unaltered to be used as test data for evaluation of
learned models.

4 Pure Anomaly Detection

For pure anomaly detection, we learned a model using all
available normal connections augmented by DBA2 anoma-
lies generated from these normal connections. We refer to
this collection as dataset 1 . RIPPER learns a large number
of rules for both normal and anomaly from this dataset.



4.1 Results

Table 2 shows the results of the pure anomaly detection
model. We use detection rate and false alarm rate to evalu-
ate performance. Anomaly detection rate, or percentage of
occurrences of some unknown intrusion

�
that are detected

as anomalies, is defined as ����� ��� �
	���
��� ��
���� %���� � , where�
is the set of all predicted anomalies and � � is the set

of occurrences of label
�

in the dataset. We omit the sub-
script

�
where the meaning is clear from the context. Sim-

ilarly, we calculate cumulative anomaly detection rate over
all unknown intrusions ( ��������� ) and cumulative anomaly de-
tection rate over different categories of unknown intrusions
(such as �������! ). Also, we measure the false alarm rate
( � � �# ) of anomalous classifications. This is the percentage
of predicted anomalies that are normal connections, and is
defined as � � �# � � �
	���"$#&%('*)!+,�� �-� � %$�.� � . If a measure-
ment has a value of 0, we represent it with “ � ” to enhance
readability of the presented tables.

The cumulative anomaly detection rate over all intru-
sions and false alarm rate are shown in Table 2(a). The
anomaly detection model successfully detects 94.26% of all
anomalous connections in the test data and has a false alarm
rate of 2.02%. To examine the performance for specific in-
trusion classes and categories, the anomaly detection rate
( ��� ) for each class and category is shown in Table 2(b).
The anomaly detection model is capable of detecting most
intrusion classes, even though there are no intrusions at all
in the training set. A total of 17 out of 22 intrusion classes
(all non-null measurements) are detected as anomalies. For
13 out of 22 intrusions (all entries highlighted by / ), the
proposed method catches at least 50% of all occurrences.
There are 3 intrusions (guess passwd, buffer overflow and
phf) that our approach is capable of detecting perfectly (i.e.,
��� � %$�.� � ). These 3 intrusions belong to the more harm-
ful U2R and R2L categories. The anomaly detection rates of
all 4 categories of intrusions indicate that, in general, each
category is successfully detected. In 3 out of 4 categories
(U2R, R2L and DOS), the model detects more than 50% of
all intrusion occurrences of that category, and it is impor-
tant to note that these three categories are potentially more
damaging than PRB.

5 Combined Misuse and Anomaly Detection

Pure anomaly detection might still have high false alarm
rate; the boundaries implied by artificial anomalies can be
sharpened by real intrusions. Separate modules for anomaly
and misuse detection will not be as efficient as one single
module that detects misuse and anomaly in the same time.
All these have motivated us to explore the use of artificial
anomalies for such as task.

Normal

(%far)

Intrusion
Correct detection of

intrusion class (%tc)

False alarm

unknown intrusion (%a)

Correct detection of anomaly,

Correct detection of intrusion,
but incorrect class (%othr)

Figure 2. Relationship of Metrics

We learn a single ruleset for combined misuse and
anomaly detection. The ruleset has rules to classify a con-
nection to be normal, one of the known intrusion classes,
or anomaly. In order to evaluate this combined approach,
we group intrusions together into 13 small clusters (details
can be found in the longer version of the paper). We create
datasets (dataset ��0 %21 � 1 %$3 )1 by incrementally adding
each cluster � into the normal dataset and re-generating arti-
ficial anomalies. This is to simulate the process of the in-
vention of new intrusions and their incorporation into the
training set. We learn models that contain misuse rules for
the intrusions that are “known” in the training data, anomaly
detection rules for unknown intrusions in left-out clusters,
and rules that characterize normal behavior.

Each cluster contains intrusions that require similar fea-
tures for effective detection. Clusters should not be con-
fused with the attack categories in our taxonomy. One
example of a cluster contains the following intrusions:
buffer overflow, loadmodule, perl and rootkit. These intru-
sions all attempt to gain unauthorized root access to a local
machine and require features such as root shell (whether a
root shell is obtained) and su flag (an indication of whether
the su root command been used, in any of its deriva-
tions). Some clusters have completely disjoint feature sets,
yet some intersect slightly. A model that is trained to detect
intrusions from one cluster may have difficulties detecting
intrusions from another cluster. For clusters with intersect-
ing feature sets, we hope that a model learned using train-
ing instances of intrusions from some cluster may be used
to detect intrusions of other clusters as anomalies.

Before explaining our results, we must define some fre-
quently used terms. Any intrusion class that appears in the
training data is a known intrusion. Similarly, any intrusion
class not in the training set is an unknown intrusion, or true
anomaly. Predicted anomalies include true anomalies and
may also include instances of known intrusions and normal.
We use anomaly to refer to predicted anomaly where our in-
tention is clear from context.



5.1 Results

Our results for combined misuse and anomaly detection
methods are shown in Figures 3-5 and Tables 3-4. Based
on the outcome of detection, we calculate the following
measurements: true class detection rate ( � 	 � ), anomaly de-
tection rate ( ��� ), and other class detection rate ( � ��	 �  ).
The relationship of these metrics is shown in the Venn dia-
gram in Figure 2. The outside rectangle represents the set
of data to be evaluated and the inside ellipse depicts the set
of alarms generated by our learned detection models. True
class detection rate measures the percentage of connection
class

�
(normal or intrusions) being correctly predicted as

its true class, and is defined as � 	 � � � �.
,	���
��� ��
 � � %$�.� � ,
where � � is the set of predictions with label

�
. ��� is defined

as in Section 4.1, but it can be measured for both known
and unknown intrusions or intrusion categories that are pre-
dicted as anomalies. Other class detection rate, or the rate of
detection as another class of intrusion, is the percentage of
occurrences of intrusion

�
that are detected as some class of

intrusion other than its true label or anomaly, and is defined

as � ��	 �  �
�

����� 
 � � 
�� 	���
 �� ��
!� � %$�.� � . Additionally, total

detection rate is defined as � 	 	
	 � � 	 ��� ���
� � ��	 �  .
We examine our results from several perspectives. First,

it is important to see how the proposed method influences
the true class detection rate ( � 	 � ) of known intrusions. Ide-
ally, using artificial anomalies should allow anomaly detec-
tion to classify true anomalies without degrading the per-
formance of detecting known intrusions with misuse rules.
Second, we evaluate the effectiveness of detecting true
anomalies. Third, we examine whether anomalous classi-
fication can compensate for low detection rates of known
intrusions by misuse rules. Finally, we show the false alarm
rates of anomaly detection in different test settings.

True Class Detection The true class detection rates of
models learned with and without DBA2 are shown in Fig-
ure 3. The x-axis shows each dataset, ranging from dataset �
to dataset ��� as explained in Section 5. We see that the
curves for R2L, DOS and PRB are indistinguishable. The
difference in U2R curves is reasonably small as well2. This
observation shows that the proposed DBA method does not
deteriorate the effectiveness of detecting particular cate-
gories of known intrusions. Next, we examine the efficacy
of our approach in detecting anomalies.

True Anomaly Detection In analysis, we consider an
anomaly detection model to be significant for a particular

1We leave out the ��� '�� cluster for testing.
2Note that there are only 34 U2R instances in the test data. Disagree-

ments in just a few examples can make significant difference in 0���� .
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Figure 3. Comparison of True Class Detection
Rate (%tc) of Datasets w. and w/o DBA2

Table 3. Percentage of Significant True
Anomaly Detections

Dataset 0 1 2 3 4 5 6
Anomaly
Types

22 21 17 14 13 12 11

Significant 13 15 14 10 8 9 7
% 59 71 82 71 62 75 64

Dataset 7 8 9 10 11 12
Anomaly
Types 10 7 6 5 4 2

Significant 8 6 5 5 3 2
% 80 86 83 100 75 100

detection class if ������� ��� ��� � . Across 12 experiment set-
tings, there are 122 truly anomalous cases (or 122 intrusions
types in 12 experiment settings not included in the training
data), and among them, 92 are significant; this is more than
75%. For each experiment setting, the percentage of cases
that are significant is shown in Table 3; most are at least
70%.

Next, we study the effectiveness of anomaly detection on
different categories of true anomalies. We measure anomaly
detection rate ( ��� ) of true anomalies in each intrusion cate-
gory and all true anomalies (TTL). The results are presented
in Table 4. As shown in the upper rightmost curve and the
last row of the table under “TTL,” the true anomaly detec-
tion rate for all true anomalies remains relatively constant
as we inject more clusters of intrusions. The curves for
U2R, R2L and PRB categories are more bumpy than DOS
because the anomaly detection model catches more in one
category and fewer in the others.



Table 4. Percentage of True Anomalies Detected as Anomalies ( ��� )
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Dataset 0 1 2 3 4 5 6 7 8 9 10 11 12
U2R 47.06 52.94 71.43 28.57 57.14 57.14 42.86 70.59 42.86 na na na na
R2L 66.67 71.08 40.96 93.10 77.78 100.00 16.67 83.33 33.33 66.67 33.33 0.00 0.00
DOS 94.31 84.82 99.53 98.22 72.37 73.61 94.08 77.52 99.65 99.96 99.98 99.95 100.00
PRB 1.34 32.89 42.79 43.64 21.15 75.92 58.07 55.44 na na na na na
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Figure 4. Total Detection Rate ( � 	 	
	 )

Known Intrusions Detected As Anomalies It is interest-
ing to determine if the proposed approach can prove effec-
tive in detecting un-classified known intrusions as anoma-
lies. We consider an anomaly detection method to sig-
nificantly compensate for misuse detection if either the
anomaly detection increases the total rate of detection to
nearly 100% ( � 	 ��� ��� � %���� � 0 � 	 ��� %��.� � ) or ��� �� � 3 � � � 	 � when � 	 � is very low. In 12 experiment settings,
there are 88 cases that are candidates for compensation (i.e.,
� 	 ��� %��.� � ). Among them, 76 cases (or 86%) are sig-
nificantly compensated by being detected as anomalies. In
5 of the remaining 12 cases, the intrusions are detected as
some other intrusion, leaving no room for anomaly detec-
tion to provide any compensation. In Figure 4, we show the
total percentage of detection ( � 	 	
	 ) for all 4 categories of
intrusions. As expected, there is a general trend of increase.
Comparing Figure 4 with Figure 3, we can see a signifi-
can higher total detection rate than true class detection rate,
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Figure 5. Percentage of Known Intrusions and
True Anomalies Detected as Anomalies (%a)

which is mostly attributed to known intrusions being de-
tected as anomalies.

Overall Performance In the above discussion, we have
covered the performance of true anomaly detection and mis-
use detection compensation. We now examine the com-
bined overall performance of detecting both true anomalies
and known intrusions. The results over all 4 intrusion cate-
gories are shown in Figure 5. As expected, there is a general
trend of decrease in ��� when the datasets are augmented
with more clusters of intrusions. This is caused by the fact
that we have learned misuse rules for more intrusions, leav-
ing less room for these intrusions to be detected as anoma-
lies. The shape of the anomaly detection rate curves is
somewhat inversely related to their respective true class de-
tection curves in Figure 3. This relationship is explained by



the observation that % � � 	 � is an indication of the amount
of additional detection that anomaly detection can provide.
These decreasing and inverse relationships apply through-
out the U2R, R2L and DOS curves, and can be seen in the
PRB curves for dataset ��� ��� . As we see in Figure 3, as more
intrusion clusters are used to augment the normal data, the
true class detection rates for both U2R and R2L increases
and leave less room for anomaly detection to compensate.
This explains the generally decreasing tendency of U2R and
R2L ��� curves. For DOS attacks, the true class detection
rate only rises from 0 to 30% after dataset � , and there is still
sufficient room for compensation by anomaly detection —
this explains the flatness of the DOS ��� curve in Figure 5.
For PRB, the rise in � 	 � takes place after dataset � , which
is also when we see the complimentary decrease in ��� for
dataset ��� ��� . The slight bumpiness of the U2R ��� curve is
due to the inverse bumpiness of U2R � 	 � curve in Figure 3.
The slight bumpiness of the DOS and PRB curves are most
likely caused by insufficient feature values available when
learning a decision boundary for anomalies.

The false alarm rate of anomalous classifications are uni-
formly below 0.40% (details shown in the longer version of
this paper). This confirms that nearly all detected anomalies
are either true anomalies or known intrusions. Additionally,
the � 	 � rates of normal connections (or normal correctly
classified as normal) are over or near 99.00%. These obser-
vations show the utility of the anomaly detection approach
in building highly precise models.

Effects of Cluster Ordering We performed two tests to
verify that our results are not influenced by the order in
which clusters are added to the training sets. One test is to
reverse the cluster ordering as in the previous section, and
the other one is a random ordering totally different from the
original or second orderings. The results have confirmed
that our results are indeed not influenced by cluster order.

6 Additional Issues

We have experimented with different amounts of injected
artificial anomalies ( � � % � � or 3 ). The general trend is that
as we increase the injection amount, � 	 � of normal connec-
tions decreases slightly and � � �# increases slightly. When
the amount of injected artificial anomalies increases, there
are more artificial anomalies than normal connections in the
training data and the learning algorithm tends to generate
more anomaly rules. In general, however, the proposed al-
gorithm is not sensitive to the amount of artificial anomalies
in the training data.

We experimented with the use of other forms of RIPPER
rulesets ( � �  !"�� and � � � " � , both of which are �� !�#"$ �"�� rule-
sets). � �  !"�� rulesets classify connections in order of in-
creasing frequency followed by normal, with a default clas-

sification of anomaly. For � � � "$� , we used the following
rule order: normal, anomaly and alphabetically ordered in-
trusion classes (essentially arbitrary). The results gathered
for the use of a � �  !"�� ruleset are very close to the detailed
results given for our ������ !�#"$ �"�� rulesets. It is interesting
to observe that the � � � "$� rulesets are similar to ������ !�#"  !"��
rulesets at later datasets (when more than 3 clusters of in-
trusions are added to the normal data). However, in the first
2 datasets (dataset � and dataset � ), the anomaly detection is
more likely to classify known intrusions as anomalies. This
is due to the fact that anomaly rules appear before intrusion
rules.

We experimented with the filtering method for DBA2 as
proposed in Section 2.2. The generated artificial anoma-
lies were filtered 3 times with a resulting reduction of be-
tween % � and � � each time. We did not see any signif-
icant improvement in performance using this method. We
also experimented with filtering anomalies generated using
the naive approach and observed that no artificial anomalies
were removed at all. The main conclusion to be drawn from
these filtering experiments is that most artificial anomalies
are truly anomalous, and do not collide with known training
data.

7 Related Work

SRI’s IDES [6] measures abnormality of current system
activity from the probability distributions of past activities.
The activities they monitored are host events (e.g., CPU uti-
lization and file accesses); in our work, we monitor net-
work events. Forrest et al. [4] record frequent subsequences
of system calls that are used in the execution of a program
(e.g., sendmail). Absence of subsequences in the current
execution of the same program from the stored sequences
constitutes a potential anomaly. Lane and Brodley [8] used
a similar approach but they focused on an incremental algo-
rithm that updates the stored sequences and used data from
UNIX shell commands. Lee [9], using a rule learning pro-
gram, generated rules that predict the current system call
based on a window of previous system calls. Abnormality
is suspected when the predicted system call deviates from
the actual system call. Ghosh and Schwartzbard [5] pro-
posed using a neural network to learn a profile of normality.
Similar to our approach, random behaviors are generated to
represent abnormality for training purposes. Unlike our ap-
proach, each of their input features is a distance value from
an exemplar sequence of BSM [14] events. This study is
one of the first attempts in applying machine learning algo-
rithms to network events for anomaly detection.

Algorithms for anomaly detection and misuse detection
have traditionally been studied separately. In SRI’s EMER-
ALD [12], anomaly and misuse detection algorithms are
encased in separate system components, though their out-



put responses are correlated to generate alarms by the re-
solver. Ghosh and Schwartzbard [5] applied neural net-
works to both anomaly and misuse detection and compared
their relative performance. One of our unique goals in this
paper is to study the combination of anomaly and misuse
detection in one model to improve overall performance.

We are not aware of closely related work in the gener-
ation of training data belonging to an unknown opposite
class. Given unlabeled instances, Nigam et al. [13] assigned
labels to them using a classifier trained from labeled data
and put them in the training set for another round of train-
ing. In a skewed distribution scenario, Kubat and Matwin
[7] attempted to remove majority instances too close to and
too far from the decision boundary. Maxion and Tan [11]
used conditional entropy to measure the regularity in the
training set and have shown that it is easier to detect anoma-
lies for data with high regularity. Lee and Xiang [10] also
applied entropy to determine how hard it is to learn a model
of normality and abnormality. Chang and Lippman [1] ap-
plied voice transformation techniques to add artificial train-
ing talkers to increase variabilities.

8 Conclusion and Future Work

Recent hacker activity has made evident the importance
of network-based intrusion detection. Anomaly detection
of unknown intrusions is an important and difficult area of
IDS. In this paper, we studied the problems of using artifi-
cial anomalies to detect unknown and known network intru-
sions. We proposed a distribution-based anomaly genera-
tion algorithm that has proven effective in building anomaly
and combined misuse and anomaly detection models that
successfully detect known and unknown intrusions.

One assumption of DBA2 is that each dimension (i.e.,
feature) can be treated individually. In other words, we ex-
amine and generate anomalies “dimension by dimension.”
A possible variation of the algorithm could consider multi-
ple dimensions concurrently or give each dimension a dif-
ferent weight depending on its importance.
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