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Abstract 

We discuss the KDD process in “data-flow” environments, 
where unstructured and time dependent data can be 
processed into various levels of structured and semantically- 
rich forms for analysis tasks. Using network intrusion 
detection as a concrete application example, we describe 
how to construct models that are both acczLrate in describing 
the underlying concepts, and efficient when used to analyze 
data in real-time. We present procedures for analyzing 
frequent patterns from lower level data and constructing 
appropriate features to formulate higher level data. The 
features generated from various levels of data have different 
computational costs (in time and space). We show that 
in order to minimize the time required in using the 
classification models in a real-time environment, we can 
exploit the “necessary conditions” associated with the low- 
cost features to determine whether some high-cost features 
need to be computed and the corresponding classification 
rules need to be checked. We have applied our tools to 
the problem of building network intrusion detection models. 
We report our experiments using the network data provided 
as part of the 1998 DARPA Intrusion Detection Evaluation 
program. We also discuss our experience in using the mined 
models in NFR, a real-time network intrusion detection 
system. 

1 Introduction 

In many business and engineering applications, raw 
data collected from fielded systems needs to be pro- 
cessed into various forms of structured and semantically- 
rich records before data analysis tasks can produce ac- 
curate, useful, and understandable results. Consider 
the problem of credit card fraud detection. Each credit 
card purchase transmits a stream of data containing the 
credit card number, amount, and the type of merchan- 
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dise, etc., to the credit card company’s data server. The 
data is then processed into a “transaction record” that 
contains additional computed features (fields) measur- 
ing the short and long term activity behavior of the 
account. In network intrusion detection, a packet “snif- 
fer” such as tcpdump [ JLM89] can be used to record each 
passing network packet. The data then needs to be pro- 
cessed into “connection records” that contains for each 
connection its hosts, service (e.g., telnet, ftp, etc.), and 
number of bytes, etc., that describe the network states. 
We refer to such applications that involve real-time data 
collection, processing, and analysis as “data-flow” envi- 
ronments. 

The accuracy of data \analysis depends not only on 
the algorithms employed, but to a very large degree, 
on the quality of the processed data. For example, if 
the activity history of the account, e.g., “number of 
X type of purchases in the past n hours”, which is 
very useful in predicting certain frauds, is missing from 
the credit card transaction records, the accuracy of the 
fraud detection system will suffer. However, defining 
such features, that is, determining the constituent 
attributes of records, have traditionally been based on 
deep domain knowledge. 

In a real-time environment, the efficiency of data 
analysis is critical. For example, on-line fraud detection 
systems need to respond, with an approval or rejection 
on the transaction, within a few seconds. A trade- 
off between model accuracy and model evaluation 
efficiency needs to be considered. 

Researchers have recognized that KDD is not a 
single plan of well-defined operations, rather, it is a 
sequence of iterative steps that include (but not limited 
to) data cleaning and preprocessing, feature extraction 
and data mining, and consolidating and utilizing the 
discovered knowledge [FPSS96]. However, most of the 
research in KDD focuses on the data mining step, which 
assumes the availability of preprocessed data. Since 
KDD is about finding useful knowledge, it would be 
interesting to see whether and how we can apply KDD 
techniques to automate some of the knowledge-intensive 
data preprocessing tasks. 
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Many data mining techniques consider only accuracy 
and/or complexity measures as evaluation criteria when 
extracting models from data. The problem of efficiency, 
i.e., the cost, in time and space, of model execution in 
real-time has not been adequately studied. 

To address these important and challenging problems 
adequately, one needs to have access to the “data-flow” 
in its entirety. This is sometimes impossible because 
of legal or organizational constraints. Our research 
is in a somewhat different and advantageous context 
since, in applying data mining techniques to build 
network intrusion detection models [LSM98, LSM99], 
data is abundant nearly everywhere (all one needs is a 
computer on a network). 

In this paper, we focus our discussion on the auto- 
matic techniques of comparing frequent patterns mined 
from normal and intrusion data, and constructing ap- 
propriate features for building classification models. We 
report the results of the 1998 DARPA Intrusion Detec- 
tion Evaluation, which showed that the detection mod- 
els produced using our data mining programs performed 
better than or equivalent to the knowledge engineered 
intrusion detection systems. We also discuss techniques 
for deriving the low cost “necessary” conditions of each 
learned rule, which are used to filter out “unnecessary” 
(i.e., wasteful) real-time rule checking. 

Our contributions to KDD are: new techniques for 
feature construction based on frequent patterns mined 
from the data with a “minimum” preprocessing; a 
simple yet useful pattern encoding and comparison 
technique to assist model construction; strategies for 
minimizing the cost of model execution in real-time; 
and most importantly, the demonstration (i.e., through 
objective evaluation) of the feasibility and advantage 
of applying these more systematic and semi-automatic 
data mining approaches to network intrusion detection, 
an important, challenging, and traditionally knowledge 
engineering application area. 

This rest of the paper is organized as follows. We 
first give a brief overview of the problem of network 
intrusion detection, and summarize the extentions we 
made to the basic association rules [AIS93] and frequent 
episodes [MTV95] algorithms, that are based on the 
characteristics of network audit data. We then discuss 
the feature construction steps, which include mining 
and comparing two sets of patterns to identify the 
“intrusion only” frequent patterns, and parsing each 
such pattern to construct temporal and statistical 
features. We report the experiments of using our 
techniques on the DARPA data. We then describe how 
to utilize the associations between low cost features and 
the class labels as the “necessary” conditions for rules 
to be checked in real-time execution. 

2 Data Mining and Intrusion 
Detection 

Intrusions are actions that aim to compromise the secu- 
rity goals of a computer system, namely, confidential- 
ity, integrity, and availability. Intrusion detection (ID) 
is considered an integral part of critical infrastructure 
protection mechanisms. Traditionally, intrusion detec- 
tion systems (IDSs) have been built using purely knowl- 
edge engineering approaches, that is, system builders 
encode their security knowledge into detection ,models. 
The manual and ad hoc nature of the development pro- 
cess impinges upon the effectiveness and adaptability 
of IDSs (in the face of new attack methods or changed 
network configurations). 

We aim to automate the process of building IDSs 
as much as possible. We are developing a framework, 
MADAM ID (d escribed in detail in [LSM99]), for 
Mining Audit Data for Automated Models for Intrusion 
Detection. This framework consists of classification and 
meta-classification [CS93] programs, association rules 
and frequent episodes programs, as well as a feature 
construction system. The end product is concise and 
intuitive classification rules that can detect intrusions. 

We had previously discussed and demonstrated the 
need to select and construct a set of temporal and sta- 
tistical features in order to build accurate classification 
models to detect network intrusions [LSM98]. For ex- 
ample, since a large number of “rejected” network con- 
nections in a very short time span is strong evidence 
of some intrusions, we need to include a feature that 
measures this indicator. 

We proposed to use the frequent sequential patterns 
mined from audit data as guidelines for feature con- 
struction [LSM98]. The process of using data mining 
approaches to build intrusion detection models is shown 
in Figure 1. Here raw (binary) audit data is first pro- 
cessed into ASCII network packet (or host event data), 
which is in turn summarized into connection records 
(or host session records) containing a number of within- 
connection features, e.g., service, duration, Jag (indicat- 
ing the normal or error status according to the proto- 
cols), etc. Data mining programs are then applied to the 
connection records to compute the frequent sequential 
patterns, which are in turn analyzed to construct addi- 
tional features for the connection records. Classification 
programs, for example, RIPPER [Coh95], are then used 
to inductively learn the detection models. This process 
is of course iterative. For example, poor performance 
of the classification models often indicates that more 
pattern mining and feature construction is needed. 

2.1 Mining Audit Data 

It is important to incorporate domain knowledge to 
direct data mining algorithms to find “relevant” pat- 
terns efficiently. We described in detail several ex- 
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Figure 1: The Data Mining Process of Building ID Models 

tensions to the basic association rules and frequent 
episodes algorithms that utilize the schema-level infor- 
mation about connection records in mining frequent 
patterns [LSM98, LSM99]. We briefly describe the main 
ideas here. 

Observe that a network connection can be uniquely 
identified by the combination of its time (start time), 
src-host (source host), src-port (source port), dst-host 
(destination host), and service (destination port), which 
are the “essential” attributes of network data. We 
argue that “relevant” association rules should describe 
patterns related to the essential attributes. Depending 
on the objective of the data mining task, we can 
designate one (or several) essential attribute(s) as the 
uzis attribute(s) [LSM98], which is used as a form of 
item constraint in association rule mining. During 
candidate generation, an itemset must contain value(s) 
of the axis attribute(s). When axis attributes are 
used, the frequent episodes algorithm first finds the 
frequent associations about the axis attributes, and 
then computes the frequent sequential patterns from 
these associations. Thus, the associations among 
attributes and the sequential patterns among the 
records are combined into a single rule. 

Some essential attributes can be the references of 
other attributes. These reference attributes normally 
carry information about some “subject”, and other 
attributes describe the “actions” that refer to the 
same “subject”. For example, if we want to study 
the sequential patterns of connections to the same 
destination host, then dst-host is the “subject” and 
service is the action. When reference attribute [LSM99] 
is used, the frequent episodes algorithm ensures that, 

within each episode’s minimal occurrences, the records 
covered by its constituent itemsets have the same 
reference attribute value. An example frequent episode 
derived from the connection records in Table 1, with 
service as the axis attribute and dst-host as the reference 
attribute, is shown in Table 2. This is a pattern of the 
“syn flood” attack, where the attacker sends a lot of 
‘Lhalf-opened” connections (i.e., flag is “SO”) to a port 
(e.g., “http”) of a victim host in order to over-run (i.e., 
quickly use up) its buffer and thus achieve “denial of 
service”. 

3 Feature Construct ion from Mined 
Patterns 

When packet data is summarized into the connection 
records (see Figure 1) using commonly available packet 
processing engines, each record contains a set of 
“intrinsic” features that are for general network traffic 
analysis purposes. These features are: service, src-host, 
src-port, dst-host, dur (duration of the connection), 
flag, and src-bytes and dst-bytes (number of data bytes 
from each direction). The frequent sequential patterns 
from these initial connection records can be viewed 
as statistical summaries of the network activities. 
Therefore, by comparing the patterns from a “normal” 
dataset (e.g., collected from normal network traffic 
over an extended period of time) and an “intrusion 
dataset” (e.g., from recorded simulation runs of attack 
programs), we can identify and utilize the “intrusion 
only” patterns for feature construction. 

Our experience showed that the choice of axis and 
reference attributes is very important in computing 
the intrusion patterns. For example, ‘Lport-scan” 
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time duration service src-host dst-host src-bytes dst-bytes flag . . . 
1.1 0 http spoofed-l victim 0 0 so . . . 
1.1 0 http spoofed-2 victim 0 0 so . . . 
1.1 0 http spoofed-3 victim 0 0 so . . . 
1.1 0 http spoofed-4 victim 0 0 so . . . 
1.1 0 http spoofed-5 victim 0 0 so . . . 
. . . . . . . . . 

ftP i B ... 

. . . . . . . . . 
10.1 2 200 300 SF . . . 
13.4 60 telnet A D 200 2100 SF . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 1: Network Connection Records 

Frequent episode Meaning 
(service = http, flag = SO), 93% of the time, after two http connections with SO flag are 
(service = http, flag = SO) made (to a host victim), within 2 seconds from the first of 
--+ (service = htt p, flag = SO) these two, the third similar connection is made, and this 
[0.93,0.03,2] pattern occurs in 3% of the data 

Table 2: Example Frequent Episode Rule 

is an intrusion where the attacker typically makes 
connections to many ports (i.e., using many different 
services) of a host in a short period of time. A lot of 
such connections will be “rejected” since many ports 
are normally closed. Using d&-host as both the axis 
and reference attribute produces very distinct intrusion 
patterns, for example, (flag = REJ, dst-host = hostA) 
--+ (f Zag = REJ, dst-host = hostA). But no intrusion 
pattern is found when using the service as the axis 
attribute and dst-host as the reference attribute since 
a large number of different services are attempted in a 
short period time, and as a result, for each service the 
“same destination host connection rejected” sequential 
patterns are not frequent. 

We need to alleviate the user from the burden 
of “guessing” these choices. An iterative procedure 
that involves pattern mining and comparison, feature 
construction from patterns, and model building and 
evaluation is thus employed. In each iteration, a 
different combination of axis attribute and reference 
attribute is selected. The choices are limited among the 
essential attributes, that is, service, dst-host, src-dst, or 
src-port. Note that the exact time is never frequent 
and is thus omitted. Since intrusions are generally 
targeted to some victim host(s) in the network, we 
start with service as the axis attribute and dst-host as 
the reference attribute. For each iteration, the set of 
features along with the performance of the resulting 
classifier, in both TP (true positive) and FP (false 
positive) is recorded. The set of features that results in 
the best model is selected at the end of this procedure. 
We focus our discussion on pattern comparison and 
feature construction here. 

3.1 Pattern Comparison 

In order to create “baseline” normal patterns to com- 
pare against frequent patterns from intrusion datasets, 
we mine patterns from each subset (e.g., each day) 
of normal network connection records, and incremen- 
tally merge the patterns to form an aggregate pattern 
set [LSM98]. This is done for each possible combination 
of axis and reference attributes. 

The aggregate normal pattern set is usually very 
large, in the range of several thousands to tens of 
thousands of patterns. We have developed an encoding 
scheme to convert each frequent pattern to a number so 
that we can easily visualize (and thus understand) and 
efficiently compare the patterns. We first encode the 
associations because they are the constituent itemsets 
of frequent episodes (due to the use of axis attribute, 
see Section 2). 

The goal of our encoding scheme is to map asso- 
ciations that are structurally and syntactically more 
“similar” to closer numbers. We also seek an encod- 
ing scheme that is simple to compute and manipulate. 
To define the “similarity” measure precisely, we first 
define a partial order on all the discovered associations. 
Assuming the records have n attributes, we call an as- 
sociation (Al = wl,Az = 212, . . ..AI. = wk) “complete 
and ordered” if k = n and attributes Al, AZ, . . . . Ah are 
in some user-defined decreasing “order of importance” 
(e.g., in the simplest form, this can be the alphabetical 
order of the attribute names). A discovered associa- 
tion can always be converted to its “complete and or- 
dered” form by first inserting Ai = null for each “miss- 
ing” attribute Ai, and then sorting the attributes in 
the order of importance. For two “complete and or- 
dered” associations, we say (Al = WI, A2 = 712, . . . . A, = 
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v,) < (Al = ~1, AZ = ~2, . . . . A, = u,), if vj = uj, for 
j = 1,2, ‘..) i - 1, and vi < ui. We say association Xi is 
more “similar” to Xj than t0 Xk if Xi < Xj < XI, (or 
XI, < Xj < Xi) holds. 

Given a set of associations, we use the following 
algorithm to compute the encodings: 

Convert each association to its “complete and order” 
form. 

The encoding of an association (Al = ~11, A2 = 

v2, “‘, A, = v,) is a number e,,,evz . . . e,,, , where 
the order of the digits, from most to least significant, 
corresponds to the decreasing “order of importance” 
of the attributes. 

Each e,; is: 

- 0 if vi is null, i.e., attribute Ai is missing from the 
original association; 

- the order of appearance of vi among all the values 
of Ai seen (processed) thus far in the encoding 
process (other forms of ordering can be trivially 
incorporated). 

When encoding associations from network records, 
we use the following decreasing “order of importance”: 
flag, axis attribute, reference attribute, the rest of “es- 
sential” attributes in alphabetical order, and the re- 
maining attributes in alphabetical order. The attribute 
flag is most important (i.e., interesting) in an associa- 
tion since its value is a summary of how the connection 
has behaved according to the network protocols. Any 
value other than “SF” (i.e., normal connection estab- 
lishment and termination) is of great interest for intru- 
sion detection. Table 3 shows some examples of encod- 
ings. Here service is the axis attribute, and dst-host is 
the reference attribute. The associations are encoded 
(processed) in the order of their positions in the table 
(i.e., first row first). 

An advantage of our encoding scheme is that we can 
use simple arithmetic operations to very easily control 
the “level of detail” required for analysis or comparison 
of the associations. For example, if we choose to 
“ignore” sxbytes, we can simply do an integer division 
of 10 on the encodings. 

With the encodings of associations, we can now map 
an episode rule, X,Y + 2, where X, Y, and 2 are 
associations (itemsets), to a 3-d data point ( encodingx, 
encodingy, encodingz) for pattern visualization. Due to 
the difficulties of manipulating n-dimensional (n > 3) 
displays, for a ‘longer” episode rule Lr , Lz, . . . . Li -+ 

RI, R2, . . . . Rj (i, j >_ l), we use its general (subsuming) 
form Ll,L2 + Rj. If L2 is missing, we simply set 
encodingL, = 0. 

For pattern comparison, we first convert the 3-d 
encoding of an episode into a l-d value. Assume 

encodingx = XIX~...X,, encodingy = y1y2...yn, and 
encodingz = z~z~...z,, then the l-d representation is 
~l~lYlX2~2Y2~~~ ~n~,Yn. This presentation preserves 
the “order of importance” of attributes (in association 
encoding) and considers the rule structure of an episode. 
Here two episodes that have similar first “body” 
(i.e., X) and ‘<head” (i.e., 2) will be mapped to 
closer numbers. As an example, using the association 
encodings in Table 3 (and “ignoring” dst-host, src-host, 
and src-bytes), the “syn flood” pattern in Table 2 is 
encoded as 222111. Similarly, a “normal” pattern, 
(flag = SF, service = http), (flag = SF, service = 
icmp-echo) + (f lug = SF, service = http), is encoded 
as 111112. 

When comparing two episodes using their l-d num- 
bers, a simple digit-wise comparison is performed. That 
is, in the resulting difl score, 

dddddd I1 21 Yl 22 22 YZ *. * &n&ndy, 

each digit, e.g., d,;, is the absolute value difference in 
the corresponding digit, e.g., xi, of the two episodes. 
For example, when comparing the “syn flood” pattern 
with the “normal” pattern, the diff score is 111001. 

Given the normal patterns and patterns from an 
intrusion dataset that are computed using the same 
choices of axis attribute(s), reference attribute(s), sup- 
port, confidence, and window requirements, we can 
identify the “intrusion only” patterns using the follow- 
ing procedure: 

Encode all the patterns; 

For each pattern from the intrusion dataset, calcu- 
late its diff score with each normal pattern; keep 
the lowest diff score as the ‘?ntrusion” score for this 
pattern; 

Output all patterns that have non-zero ‘?ntrusion” 
scores, or a user-specified top percentage of patterns 
with the highest “intrusion” scores. For example, 
since there is no normal pattern with flag = SO in 
all its itemsets, the dig score for the Qyn flood” 
pattern, e.g., 111001, is very high, and thus the 
pattern will be selected. 

This procedure considers a pattern from the intrusion 
dataset as “normal” as long as it has a match with one 
of the normal patterns. For simplicity, we omit the 
comparisons on the support and confidence values (once 
the heads and bodies of the rules match). We have 
not seen a case where two matched rules have values 
that are more than 5% apart from each other, which is 
considered an acceptable threshold. 

3.2 Feature Construction 

Each of the intrusion only patterns (e.g., the “syn 
flood” pattern shown in table 2) is used for constructing 
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association encoding 
(f lug = SF, service = http, src-bytes = 200) 11001 
(service = icmp-echo, d&host = ho&g) 02100 
(f Zag = SO, service = http, src-host = hostA) 21010 
(service = user-app, src-host = hostA) 03010 
(flag = SF, service = icmp-echo, dst-host = hostg, src-host = hostc) 12120 
. . . . . . 

Table 3: Encodings of Associations 

Input: a frequent episode, and the set of existing features in connection records, 3 
Output: the updated 3 
Begin 

[ii 
Let Fo (e.g., dst-host) be the reference attribute used to mine the episode; 
Let w, in seconds, be the minimum width of the episode; 
/* all the following features consider only the connections in past w 
* seconds that share the same value in Fo as the current connection 

*I 

ii; 
Let Count-same& be the number of these connections; 
3 = 3 U { count-sameF,}; 

ii; 
for each “essential attribute” FL other than Fo do begin 

if the same Fl value is in all the itemsets then begin 

(7) Let percent-sameFl be the percentage of connections that share the same Fl value 
as the current connection; 

(8) 3 = 3 u {percent.dameFl}; 
end else 

/* there are different Fl or no Fl values at all */ 

(9) Let percent-diffFl be the percentage of different FI values in the connections; 

(10) 3 = 3 U {percent-diflFl}; 
end 

end 
(11) for each value Vz of an “non-essential” attribute Fz do begin 

(12) if VZ is in all the itemsets then begin 

(13) Let percent-samev, be the percentage of connections that share the same Vz value 
as the current connection; 

(14) 3 = 3 U {percent-samev,}; 

iti; 
end else if F2 is a numerical attribute then begin 

Let averageFz be the average of the Fz values of the connections; 

(17) 3 = 3 U {averageF,}; 

end 
end 

end 

Figure 2: Constructing Features from Frequent Episode 

additional features into the connection records, using 
the algorithm in Figure 2. This procedure parses 
a frequent episode and uses three operators, count, 
percent, and average, to construct statistical features. 
These features are also temporal since they measure 
only the connections that are within a time window 
w and share the same reference attribute value. The 
intuition behind the feature construction algorithm 

comes from the straightforward interpretation of a 
frequent episode. For example, if the same attribute 
value appears in all the itemsets of an episode, then 
there is a large percentage of records (i.e., the original 
data) that have the same value. We treat the 
“essential” and “non-essential” attributes differently. 
The “essential” attributes describe the anatomy of 
an intrusion, for example, “the same service (i.e., 
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port) is targeted”. The actual values, e.g., “http”, is 
often not important because the same attack method 
can be applied to different targets, e.g., Ytp”. On 
the other hand, the actual “non-essential” attribute 
values, e.g., flag = SO, often indicate the invariant 
of an intrusion because they summarize the connection 
behavior according to the network protocols. 

Based on the above observations, we can postprocess 
the patterns to eliminate the exact host names and 
service names before the encoding and comparison 
steps. Briefly, for each pattern, we use STCO, srcr, 
etc., &to, dstr, etc., and STVO, s~zlr, etc., to replace 
the source hosts, destination hosts, and services in the 
current pattern. 

As an example of feature construction, the %yn 
flood” pattern results in the following additional fea- 
tures: a count of connections to the same dst-host in 
the past 2 seconds, and among these connections, the 
percentage of those that have the same service as the 
current, and the percentage of those that have the “SO” 

%w 
An open problem here is how to decide the right time 

window value w. Our experience shows that when we 
plot the number of patterns generated using different 
w values, the plot tends to stabilize after the initial 
sharp jump. We call the smallest w in the stable region 
we. Our experiments showed that the plot of accuracies 
of the classifiers that use the temporal and statistical 
features calculated with different 20, also stabilizes 
after w 2 wc and tend to taper off. Intuitively, a 
requirement for a good window size is that its set of 
sequential patterns is stable, that is, sufficient patterns 
are captured and noise is small. We therefore use wc 
for adding temporal and statistical features. 

3.3 Experiments with DARPA data 

We participated in the 1998 DARPA Intrusion Detec- 
tion Evaluation Program, prepared and managed by 
MIT Lincoln Labs. The objective of this program is to 
survey and evaluate research in intrusion detection. A 
standard set of extensively gathered audit data, which 
includes a wide variety of intrusions simulated in a mil- 
itary network environment, was provided by DARPA. 
Each participating site was required to build intrusion 
detection models or tweak their existing system param- 
eters using the training data, and send the results (i.e., 
detected intrusions) on the test data back to DARPA 
for performance evaluation. We summarize our experi- 
ence here’. 

We were provided with about 4 gigabytes of com- 
pressed raw (binary) tcpdump data of 7 weeks of net- 
work traffic, which can be processed into about 5 million 

‘Full detail about features constructed for the DARPA data 
set appear in a companion paper [LSM99]. We summarize our 
experiments here so that the paper is self-contained. 

connection records, each with about 100 bytes. The 
two weeks of test data have around 2 million connec- 
tion records. Four main categories of attacks were sim- 
ulated: DOS, denial-of-service, e.g., syn flood; R2L, 
unauthorized access from a remote machine, e.g., guess- 
ing password; U2R, unauthorized access to local su- 
peruser (root) privileges, e.g., various of “buffer over- 
flow” attacks; and PROBING, information gathering, 
e.g., port-scan. 

Using the procedures discussed in Section 3, we 
compared the aggregate normal pattern set with the 
patterns from each dataset that contains an attack type. 
The following features were constructed according to 
the intrusion only patterns: 

o The “same host” features which include the count 
of the connections in the past 2 seconds that have 
the same destination host as the current connection, 
and among these connections, the percentage with 
the same service as the current one, the percentage 
of different services, the percentage of the SO flag, 
and the percentage of the REJ flag; 

l The similar set of “same service” features which in- 
clude the count of the connections in the past 2 sec- 
onds that have the same service as the current con- 
nection, and among these connections, the percent- 
age with the same destination host as the current 
one, the percentage of different destination hosts, 
the percentage of the SO flag, and the percentage of 
the REJ flag. 

We call these the (time-based) “traffic” features 
of the connection records. There are several “slow” 
PROBING attacks that scan the hosts (or ports) using 
a much larger time interval than 2 seconds, for example, 
one in every minute. As a result, these attacks did not 
produce intrusion only patterns with a time window of 
2 seconds. We sorted these connection records by the 
destination hosts, and applied the same pattern mining 
and feature construction process. Rather than using a 
time window of 2 seconds, we now used a “connection” 
window of 100 connections, and constructed a mirror 
set of “host-based traffic” features as the (time-based) 
‘%raffic” features. 

We discovered that unlike most of the DOS and 
PROBING attacks, the R2L and U2R attacks don’t 
have any “intrusion only” frequent sequential patterns. 
This is because the DOS and PROBING attacks involve 
many connections to some host(s) in a very short period 
of time, whereas the R2L and PROBING attacks are 
embedded in the data portions of the packets, and 
normally involves only a single connection. Algorithms 
for mining the unstructured data portions of packets 
are still under development. Presently, we use domain 
knowledge to add features that look for suspicious 
behavior in the data portion, e.g., number of failed login 
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Model Feature set Intrusion # of features # of rules # of features 
categories in records used in rules 

content “intrinsic” + U2R, R2L 22 55 11 
“content” 

traffic “intrinsic” + DOS, PROBING 20 26 4+9 
“traffic” 

host traffic “intrinsic” + Slow PROBING 14 8 1+5 
“host traffic” 

Table 4: Model Complexities 

attempts, the behavior of suid programs, etc. We call 
these features the “content” features. 

We then built three specialized models, using RIP- 
PER, that each has a different set of features and de- 
tects different categories of intrusions. For example, for 
the “content” model, each connection record contains 
the “intrinsic” features and “content” features, and the 
resultant RIPPER rules detect U2R and R2L attacks. 
A meta-classifier was used to combine the predictions 
of the three base models when making a final predic- 
tion to a connection record. Table 4 summarizes these 
models. The numbers in bold, for example, 9, indicate 
the number of automatically constructed temporal and 
statistical features being used in the RIPPER rules. We 
see that for both the ?raffic” and host-based “traffic” 
models, our feature construction process contributes the 
majority of the features actually used in the rules. 

We report here the performance of our detection 
models as evaluated by MIT Lincoln Labs. We trained 
our intrusion detection models, i.e., the base models 
and the meta-level classifier, using the 7 weeks of labeled 
data, and used them to make predictions on the 2 weeks 
of unlabeled test data. The test data contains a total 
of 38 attack types, with 14 types in the test data only 
(i.e., they are “new” to our models). 

Figure 3 shows the ROC curves of the detection 
models by attack categories as well as on all intrusions. 
In each of these ROC plots, the x-axis is the false 
alarm rate, calculated as the percentage of normal 
connections classified as an intrusion; the y-axis is the 
detection rate, calculated as the percentage of intrusions 
detected (since the models produced binary outputs, 
the ROC curves are not continuous). We compare here 
our models with other participants (denoted as Group 
1 to 3) in the DARPA evaluation program2. These 
groups used knowledge engineering approaches to build 
their intrusion detection systems. We can see from the 
figure that our detection models have the best overall 
performance, and in all but one attack category, our 
model is one of the best two. 

2These plots are duplicated from the presentation slides of 
a report given by Lincoln Labs in a DARPA PI meeting. The 
slides can be viewed on line via http://www. cs.columbia.edu/ 
-sal/JAM/PROJECT/MIT/mit-index.html. 

We discussed the Evaluation results with some re- 
searchers of other participating groups. It is agreed 
that the (manual) knowledge engineering approach suf- 
fers from the difficulties of dealing with large amount 
of data, and the inabilities to generalize the (often 
too-specific) hand-coded models. Our procedures for 
automatic construction features from mined patterns 
worked well with the large dataset. Using inductive 
classification rules also provides better performance on 
the “new” attacks. However, as the results on R2L 
shows, all models performed poorly when there are very 
large varieties of attack methods (of the same intrusion 
category). Much research is still needed in network in- 
trusion detection. 

4 Efficient Execution of Learned 
Rules 

Our intrusion detection models are produced off-line. 
Effective intrusion detection should be in real-time to 
minimize security compromises. We therefore need 
to study how our models perform in a real-time 
environment. We are working on translating RIPPER 
rules into real-time detection modules in NFR (Network 
Flight Recorder) [NFR] , a system that includes a packet 
capturing engine and N-code programming support for 
specifying packet “filtering” logic. 

In our first implementation, we essentially tried 
to follow the off-line analysis steps in a real-time 
environment. A connection is not inspected (classified 
using the rules) until its connection record is completely 
formulated, that is, all packets of the connection 
have arrived and summarized, and all the temporal 
and statistical features are computed. This scheme 
failed miserably. When there is a large volume of 
network traffic, the amount of time taken to process 
the connection records within the past 2 seconds and 
calculate the statistics is also very large. Many ensuing 
connections may have terminated (and thus completed 
with attack actions) when the current connection is 
finally inspected by the RIPPER rules. That is, the 
detection of intrusions is severely delayed. Ironically, 
DOS attacks, which typically generate a large amount 
of traffic in a very short period time, are often used by 
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Figure 3: ROC Curves on Detection Rates and False Alarm Rates 

intruders to first overload an IDS, and use the detection 
delay as a window of opportunity to quickly perform 
their malicious intent. For example, they can seize 
control of the operating system and “kill” the IDS. 

We need to examine the time delay associated with 
each feature in order to speed up the model execution. 
In a “data-flow” environment such as real-time intrusion 
detection, the time delay of a feature includes not 
only the time of its computation, but also the time 
of its readiness (i.e., when it can be computed). For 
example, the flag of a connection can only be computed 
(summarized) after the last packet of the connection 
has arrived, whereas the service of a connection can be 
obtained by checking the header of the first packet. 

We partition the features into 3 “cost” (time delay) 
levels: level 1 features can be computed from the first 
packet; level 2 features can be computed at the end of 
the connection, using only information of the current 
connection; level 3 can be computed at the end of the 
connection, but require access to data of (many) other 

prior connections. As a datum arrives early in the 
“data-flow”, shown in Figure 1, the cost will be lower 
to calculate the feature that depends upon that datum. 
In order to conveniently estimate the cost of a rule, we 
assign a cost of 1 to the level 1 features , 10 to level 2, 
and 100 to level 3. That is, the different levels have an 
order of magnitude difference in cost. For the feature 
set derived from the DARPA dataset, service is a level 1 
feature, all the other “intrinsic” and “content” features 
are in level 2, and all “traffic” features are in level 3. 

Note that we cannot simply order the rules by 
their costs for real-time execution for the following 
reasons. First, the rules output by RIPPER are in 
a strict sequential order (e.g., “if rule 1 else rule 2 
else . ..“). and h ence reordering the rules may result in 
unintended classification errors. Furthermore, even if 
the rules can be tested in strictly cost order without 
introducing classification errors, many rules will still 
be tested (and fail to match) before a classification 
is made. That is, ordering the rules by their costs 
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alone is not necessarily the optimal solution for fast 
model evaluation. We thus seek to compute an “efficient 
schedule” for feature computation and rule testing to 
minimize model evaluation costs, and to increase the 
response rate for real-time detection. 

4.1 Low Cost “Necessary” Conditions 

Ideally, we can have a few tests involving the low 
cost (i.e., level 1 and level 2) features to eliminate the 
majority of the rules that need to be checked, and thus 
eliminating the needs to compute some of the high cost 
features. 

In order to eliminate a rule for intrusion I, we need a 
test of the form of F 4 -I, which can be derived from 
I + 7F. We can compute the association rules that 
have the intrusion labels on the LHS and the low cost 
features on the RHS, and with a confidence of 100%. 

We discovered several such associations for the RIP- 
PER rules, for example, ping-of-death + service = 
icmp-echo [c = 1.01, phf + service = http [c = 1.01, 
port-scan + src-bytes = 0 [c = 1.01, and syn-flood -+ 
flag = SO [c = 1.01, etc. Note that most of these fea- 
ture values, for example, src-bytes = 0, are not in the 
RIPPER rules because they are prevalent in the normal 
data. That is, they don’t have predictive power. How- 
ever, these associations are the “necessary” conditions 
for the intrusions, for example, “this connection is a 
port-scan attack only if src-bytes is O”, which is equiv- 
alent to “if the src-bytes is not 0, then this connection 
is not a port-scan attack”. 

Note that when the RHS of such associations has 
n feature value pairs (regarding to different features), 
there are a corresponding n independent necessary 
conditions. We can always select the one with the lowest 
cost. We can also merge associations, I + Ai = v1 [cl], 
I -+ Ai = v2 [c2], . . . . and I -+ Ai = v, [c,], where 
cyzl ci = 1.0, t in o a single association, I + Ai = v1 
vu2 . . . v 21, [c = 1.01. For example, we have from 
the DARPA data, buffer-overflow -+ service = telnet 

u er over t” 1 ;;4 and b ff - % ow + service = rlogin 
which are merged to buffer..overflow 4 

Lrvice = tklnet V rlogin [c = 1.01. 
When a RIPPER rule for an intrusion is excluded 

because of the failure of its necessary condition, the 
features of the rule need not be computed, unless they 
are needed for other candidate (remaining) rules. We 
next discuss how to do efficient bookkeeping on the 
candidate rules and features to determine a schedule 
for feature computation and rule condition testing. 

4.2 Real-time Rule Filtering 

Suppose that we have n RIPPER rules. We use a n-bit 
vector, with the bit order corresponding to the order of 
the rules output by RIPPER, as the remaining vector to 
indicate which rules still need to be checked. Initially, 

all bits are 1’s. Each rule has a invalidating n-bit vector, 
where only the bit corresponding to the rule is 0 and all 
other bits are 1’s. Each of the high cost features, i.e., the 
level 3 temporal and statistical feature, has a computing 
n-bit vector, where only the bits corresponding to the 
rules that require this feature are 1’s. 

For each intrusion type, we record its “lowest cost 
necessary condition” (if there are such conditions), 
according to the costs of the features involved. We sort 
all these necessary conditions according to the costs to 
produce the order for real-time condition checking. 

When examining a packet, or a (just completed) 
connection, if a necessary condition of an intrusion is 
violated, the corresponding invalidating bit vectors of 
the RIPPER rules of the intrusion are used to AND the 
remaining vector and all the computing vectors for the 
high cost features. After all the necessary conditions are 
checked, we get all the features with non-zero computing 
vectors. These features are potentially useful because 
of the remaining rules that need to be checked. A single 
function call is made to N-code modules to compute all 
these features at once. This execution strategy reduces 
memory or disk access since these features compute 
statistical information on the past (stored) connections 
records. The remaining vector is then used to check the 
remaining rules one by one. 

We are currently fine tuning our implementation of 
this scheme and need to perform an extensive set of 
experiments, simulating a wide variety of intrusions, 
to establish the empirical speed-up we may attain. 
However, our analysis on the necessary conditions for 
DOS and PROBING attacks, and the set of features 
used by their RIPPER rules, suggest that one or two 
simple low cost tests (e.g., service and/or flag) can 
reduce the number of high cost feature tests from 9 (see 
Table 4) to at most 3. Our preliminary experiments 
have thus far confirmed this result. 

5 Related Work 

Our feature construction approach is similar to the 
work in [JH94]. Our “operators” are also based on 
extracted patterns of existing sets of features, and we 
as well consider the syntactic form of the patterns. 
We can use fewer and simpler operators, however, 
since the patterns carry “stronger” information (e.g., 
the invariant behavior of an intrusion). We also use 
automatic pattern encoding and comparison algorithms 
to produce input patterns for the feature construction 
program. 

Our work is related to cost-sensitive learning, for 
example [Tur95], where both the cost of tests (and 
features) and accuracy are crucial criteria when building 
models. The cost of model evaluation adds a significant 
twist to this approach. We plan further study and 
comparison of these approaches. 
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In DC-l (Detector Constructor) [FP97], a sequence 
of operations for constructing features (indicators) 
is needed before a cellular phone fraud detector (a 
classifier) is constructed. We have a harder problem 
here because there is no standard record format for 
connection records (we had to invent our own). We also 
need to construct temporal and statistical features not 
just for “individual accounts”, but also over different 
connections and services. That is, we are modeling 
different logical entities that take on different roles and 
whose behavior is recorded in great detail. Extracting 
these from a fast and overwhelming stream of packet 
data adds considerable complexity to the problem. 

6 Conclusions and Future Work 

We described the challenges as well as opportunities 
for KDD in a “data-flow” environment. Using network 
intrusion detection as a concrete case study, we showed 
that the “expert-intensive” feature construction process 
(which is part of data preprocessing) can be guided and 
supported by data mining programs. Our approach is to 
encode and compare the frequent patterns mined from 
the normal and intrusion datasets, and automatically 
construct statistical and temporal features that describe 
the anatomy and invariant behavior of the attacks. 
The results from the DARPA evaluation show that the 
intrusion detection models produced using our method 
outperformed other “knowledge-engineered” systems. 
We also pointed out that it is critical to consider the 
cost (time delay) of real-time execution of a model. We 
devised a simple scheme that aims to use a few low cost 
tests to filter out a large portion of the high cost feature 
computations. 

As for future work, we will continue our research on 
optimizing learned rules for real-time execution. We 
will also study the issues of network anomaly detection, 
which is the only possible means to detect new attacks 
that are completely different in nature than any of the 
known intrusions. 
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