
Mining in a Data-flow Environment: Experience in Network Intrusion
Detection

Wenke Lee Salvatore J. Stolfo Kui W. Mok
Computer Science Department

Columbia University
{wenke,sal,mok}@cs.columbia.edu

Abstract

We discuss the KDD process in “data-flow” environments,
where unstructured and time dependent data can be
processed into various levels of structured and semantically-
rich forms for analysis tasks. Using network intrusion
detection as a concrete application example, we describe
how to construct models that are both acczLrate in describing
the underlying concepts, and efficient when used to analyze
data in real-time. We present procedures for analyzing
frequent patterns from lower level data and constructing
appropriate features to formulate higher level data. The
features generated from various levels of data have different
computational costs (in time and space). We show that
in order to minimize the time required in using the
classification models in a real-time environment, we can
exploit the “necessary conditions” associated with the low-
cost features to determine whether some high-cost features
need to be computed and the corresponding classification
rules need to be checked. We have applied our tools to
the problem of building network intrusion detection models.
We report our experiments using the network data provided
as part of the 1998 DARPA Intrusion Detection Evaluation
program. We also discuss our experience in using the mined
models in NFR, a real-time network intrusion detection
system.

1 Introduction

In many business and engineering applications, raw
data collected from fielded systems needs to be pro-
cessed into various forms of structured and semantically-
rich records before data analysis tasks can produce ac-
curate, useful, and understandable results. Consider
the problem of credit card fraud detection. Each credit
card purchase transmits a stream of data containing the
credit card number, amount, and the type of merchan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom USC is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to rcdistribule lo lists.
requires prior specific permission andior a fee.
KDD-99 San Diego CA USA
Copyright ACM 1999 l-581 13-143-7/99/08...$5.00

dise, etc., to the credit card company’s data server. The
data is then processed into a “transaction record” that
contains additional computed features (fields) measur-
ing the short and long term activity behavior of the
account. In network intrusion detection, a packet “snif-
fer” such as tcpdump [JLM89] can be used to record each
passing network packet. The data then needs to be pro-
cessed into “connection records” that contains for each
connection its hosts, service (e.g., telnet, ftp, etc.), and
number of bytes, etc., that describe the network states.
We refer to such applications that involve real-time data
collection, processing, and analysis as “data-flow” envi-
ronments.

The accuracy of data \analysis depends not only on
the algorithms employed, but to a very large degree,
on the quality of the processed data. For example, if
the activity history of the account, e.g., “number of
X type of purchases in the past n hours”, which is
very useful in predicting certain frauds, is missing from
the credit card transaction records, the accuracy of the
fraud detection system will suffer. However, defining
such features, that is, determining the constituent
attributes of records, have traditionally been based on
deep domain knowledge.

In a real-time environment, the efficiency of data
analysis is critical. For example, on-line fraud detection
systems need to respond, with an approval or rejection
on the transaction, within a few seconds. A trade-
off between model accuracy and model evaluation
efficiency needs to be considered.

Researchers have recognized that KDD is not a
single plan of well-defined operations, rather, it is a
sequence of iterative steps that include (but not limited
to) data cleaning and preprocessing, feature extraction
and data mining, and consolidating and utilizing the
discovered knowledge [FPSS96]. However, most of the
research in KDD focuses on the data mining step, which
assumes the availability of preprocessed data. Since
KDD is about finding useful knowledge, it would be
interesting to see whether and how we can apply KDD
techniques to automate some of the knowledge-intensive
data preprocessing tasks.

114

Many data mining techniques consider only accuracy
and/or complexity measures as evaluation criteria when
extracting models from data. The problem of efficiency,
i.e., the cost, in time and space, of model execution in
real-time has not been adequately studied.

To address these important and challenging problems
adequately, one needs to have access to the “data-flow”
in its entirety. This is sometimes impossible because
of legal or organizational constraints. Our research
is in a somewhat different and advantageous context
since, in applying data mining techniques to build
network intrusion detection models [LSM98, LSM99],
data is abundant nearly everywhere (all one needs is a
computer on a network).

In this paper, we focus our discussion on the auto-
matic techniques of comparing frequent patterns mined
from normal and intrusion data, and constructing ap-
propriate features for building classification models. We
report the results of the 1998 DARPA Intrusion Detec-
tion Evaluation, which showed that the detection mod-
els produced using our data mining programs performed
better than or equivalent to the knowledge engineered
intrusion detection systems. We also discuss techniques
for deriving the low cost “necessary” conditions of each
learned rule, which are used to filter out “unnecessary”
(i.e., wasteful) real-time rule checking.

Our contributions to KDD are: new techniques for
feature construction based on frequent patterns mined
from the data with a “minimum” preprocessing; a
simple yet useful pattern encoding and comparison
technique to assist model construction; strategies for
minimizing the cost of model execution in real-time;
and most importantly, the demonstration (i.e., through
objective evaluation) of the feasibility and advantage
of applying these more systematic and semi-automatic
data mining approaches to network intrusion detection,
an important, challenging, and traditionally knowledge
engineering application area.

This rest of the paper is organized as follows. We
first give a brief overview of the problem of network
intrusion detection, and summarize the extentions we
made to the basic association rules [AIS93] and frequent
episodes [MTV95] algorithms, that are based on the
characteristics of network audit data. We then discuss
the feature construction steps, which include mining
and comparing two sets of patterns to identify the
“intrusion only” frequent patterns, and parsing each
such pattern to construct temporal and statistical
features. We report the experiments of using our
techniques on the DARPA data. We then describe how
to utilize the associations between low cost features and
the class labels as the “necessary” conditions for rules
to be checked in real-time execution.

2 Data Mining and Intrusion
Detection

Intrusions are actions that aim to compromise the secu-
rity goals of a computer system, namely, confidential-
ity, integrity, and availability. Intrusion detection (ID)
is considered an integral part of critical infrastructure
protection mechanisms. Traditionally, intrusion detec-
tion systems (IDSs) have been built using purely knowl-
edge engineering approaches, that is, system builders
encode their security knowledge into detection ,models.
The manual and ad hoc nature of the development pro-
cess impinges upon the effectiveness and adaptability
of IDSs (in the face of new attack methods or changed
network configurations).

We aim to automate the process of building IDSs
as much as possible. We are developing a framework,
MADAM ID (d escribed in detail in [LSM99]), for
Mining Audit Data for Automated Models for Intrusion
Detection. This framework consists of classification and
meta-classification [CS93] programs, association rules
and frequent episodes programs, as well as a feature
construction system. The end product is concise and
intuitive classification rules that can detect intrusions.

We had previously discussed and demonstrated the
need to select and construct a set of temporal and sta-
tistical features in order to build accurate classification
models to detect network intrusions [LSM98]. For ex-
ample, since a large number of “rejected” network con-
nections in a very short time span is strong evidence
of some intrusions, we need to include a feature that
measures this indicator.

We proposed to use the frequent sequential patterns
mined from audit data as guidelines for feature con-
struction [LSM98]. The process of using data mining
approaches to build intrusion detection models is shown
in Figure 1. Here raw (binary) audit data is first pro-
cessed into ASCII network packet (or host event data),
which is in turn summarized into connection records
(or host session records) containing a number of within-
connection features, e.g., service, duration, Jag (indicat-
ing the normal or error status according to the proto-
cols), etc. Data mining programs are then applied to the
connection records to compute the frequent sequential
patterns, which are in turn analyzed to construct addi-
tional features for the connection records. Classification
programs, for example, RIPPER [Coh95], are then used
to inductively learn the detection models. This process
is of course iterative. For example, poor performance
of the classification models often indicates that more
pattern mining and feature construction is needed.

2.1 Mining Audit Data

It is important to incorporate domain knowledge to
direct data mining algorithms to find “relevant” pat-
terns efficiently. We described in detail several ex-

115

Figure 1: The Data Mining Process of Building ID Models

tensions to the basic association rules and frequent
episodes algorithms that utilize the schema-level infor-
mation about connection records in mining frequent
patterns [LSM98, LSM99]. We briefly describe the main
ideas here.

Observe that a network connection can be uniquely
identified by the combination of its time (start time),
src-host (source host), src-port (source port), dst-host
(destination host), and service (destination port), which
are the “essential” attributes of network data. We
argue that “relevant” association rules should describe
patterns related to the essential attributes. Depending
on the objective of the data mining task, we can
designate one (or several) essential attribute(s) as the
uzis attribute(s) [LSM98], which is used as a form of
item constraint in association rule mining. During
candidate generation, an itemset must contain value(s)
of the axis attribute(s). When axis attributes are
used, the frequent episodes algorithm first finds the
frequent associations about the axis attributes, and
then computes the frequent sequential patterns from
these associations. Thus, the associations among
attributes and the sequential patterns among the
records are combined into a single rule.

Some essential attributes can be the references of
other attributes. These reference attributes normally
carry information about some “subject”, and other
attributes describe the “actions” that refer to the
same “subject”. For example, if we want to study
the sequential patterns of connections to the same
destination host, then dst-host is the “subject” and
service is the action. When reference attribute [LSM99]
is used, the frequent episodes algorithm ensures that,

within each episode’s minimal occurrences, the records
covered by its constituent itemsets have the same
reference attribute value. An example frequent episode
derived from the connection records in Table 1, with
service as the axis attribute and dst-host as the reference
attribute, is shown in Table 2. This is a pattern of the
“syn flood” attack, where the attacker sends a lot of
‘Lhalf-opened” connections (i.e., flag is “SO”) to a port
(e.g., “http”) of a victim host in order to over-run (i.e.,
quickly use up) its buffer and thus achieve “denial of
service”.

3 Feature Construct ion from Mined
Patterns

When packet data is summarized into the connection
records (see Figure 1) using commonly available packet
processing engines, each record contains a set of
“intrinsic” features that are for general network traffic
analysis purposes. These features are: service, src-host,
src-port, dst-host, dur (duration of the connection),
flag, and src-bytes and dst-bytes (number of data bytes
from each direction). The frequent sequential patterns
from these initial connection records can be viewed
as statistical summaries of the network activities.
Therefore, by comparing the patterns from a “normal”
dataset (e.g., collected from normal network traffic
over an extended period of time) and an “intrusion
dataset” (e.g., from recorded simulation runs of attack
programs), we can identify and utilize the “intrusion
only” patterns for feature construction.

Our experience showed that the choice of axis and
reference attributes is very important in computing
the intrusion patterns. For example, ‘Lport-scan”

116

time duration service src-host dst-host src-bytes dst-bytes flag . . .
1.1 0 http spoofed-l victim 0 0 so . . .
1.1 0 http spoofed-2 victim 0 0 so . . .
1.1 0 http spoofed-3 victim 0 0 so . . .
1.1 0 http spoofed-4 victim 0 0 so . . .
1.1 0 http spoofed-5 victim 0 0 so . . .
.

ftP i B ...

.
10.1 2 200 300 SF . . .
13.4 60 telnet A D 200 2100 SF . . .
.

Table 1: Network Connection Records

Frequent episode Meaning
(service = http, flag = SO), 93% of the time, after two http connections with SO flag are
(service = http, flag = SO) made (to a host victim), within 2 seconds from the first of
--+ (service = htt p, flag = SO) these two, the third similar connection is made, and this
[0.93,0.03,2] pattern occurs in 3% of the data

Table 2: Example Frequent Episode Rule

is an intrusion where the attacker typically makes
connections to many ports (i.e., using many different
services) of a host in a short period of time. A lot of
such connections will be “rejected” since many ports
are normally closed. Using d&-host as both the axis
and reference attribute produces very distinct intrusion
patterns, for example, (flag = REJ, dst-host = hostA)
--+ (f Zag = REJ, dst-host = hostA). But no intrusion
pattern is found when using the service as the axis
attribute and dst-host as the reference attribute since
a large number of different services are attempted in a
short period time, and as a result, for each service the
“same destination host connection rejected” sequential
patterns are not frequent.

We need to alleviate the user from the burden
of “guessing” these choices. An iterative procedure
that involves pattern mining and comparison, feature
construction from patterns, and model building and
evaluation is thus employed. In each iteration, a
different combination of axis attribute and reference
attribute is selected. The choices are limited among the
essential attributes, that is, service, dst-host, src-dst, or
src-port. Note that the exact time is never frequent
and is thus omitted. Since intrusions are generally
targeted to some victim host(s) in the network, we
start with service as the axis attribute and dst-host as
the reference attribute. For each iteration, the set of
features along with the performance of the resulting
classifier, in both TP (true positive) and FP (false
positive) is recorded. The set of features that results in
the best model is selected at the end of this procedure.
We focus our discussion on pattern comparison and
feature construction here.

3.1 Pattern Comparison

In order to create “baseline” normal patterns to com-
pare against frequent patterns from intrusion datasets,
we mine patterns from each subset (e.g., each day)
of normal network connection records, and incremen-
tally merge the patterns to form an aggregate pattern
set [LSM98]. This is done for each possible combination
of axis and reference attributes.

The aggregate normal pattern set is usually very
large, in the range of several thousands to tens of
thousands of patterns. We have developed an encoding
scheme to convert each frequent pattern to a number so
that we can easily visualize (and thus understand) and
efficiently compare the patterns. We first encode the
associations because they are the constituent itemsets
of frequent episodes (due to the use of axis attribute,
see Section 2).

The goal of our encoding scheme is to map asso-
ciations that are structurally and syntactically more
“similar” to closer numbers. We also seek an encod-
ing scheme that is simple to compute and manipulate.
To define the “similarity” measure precisely, we first
define a partial order on all the discovered associations.
Assuming the records have n attributes, we call an as-
sociation (Al = wl,Az = 212,AI. = wk) “complete
and ordered” if k = n and attributes Al, AZ, Ah are
in some user-defined decreasing “order of importance”
(e.g., in the simplest form, this can be the alphabetical
order of the attribute names). A discovered associa-
tion can always be converted to its “complete and or-
dered” form by first inserting Ai = null for each “miss-
ing” attribute Ai, and then sorting the attributes in
the order of importance. For two “complete and or-
dered” associations, we say (Al = WI, A2 = 712, A, =

117

v,) < (Al = ~1, AZ = ~2, A, = u,), if vj = uj, for
j = 1,2, ‘..) i - 1, and vi < ui. We say association Xi is
more “similar” to Xj than t0 Xk if Xi < Xj < XI, (or
XI, < Xj < Xi) holds.

Given a set of associations, we use the following
algorithm to compute the encodings:

Convert each association to its “complete and order”
form.

The encoding of an association (Al = ~11, A2 =

v2, “‘, A, = v,) is a number e,,,evz . . . e,,, , where
the order of the digits, from most to least significant,
corresponds to the decreasing “order of importance”
of the attributes.

Each e,; is:

- 0 if vi is null, i.e., attribute Ai is missing from the
original association;

- the order of appearance of vi among all the values
of Ai seen (processed) thus far in the encoding
process (other forms of ordering can be trivially
incorporated).

When encoding associations from network records,
we use the following decreasing “order of importance”:
flag, axis attribute, reference attribute, the rest of “es-
sential” attributes in alphabetical order, and the re-
maining attributes in alphabetical order. The attribute
flag is most important (i.e., interesting) in an associa-
tion since its value is a summary of how the connection
has behaved according to the network protocols. Any
value other than “SF” (i.e., normal connection estab-
lishment and termination) is of great interest for intru-
sion detection. Table 3 shows some examples of encod-
ings. Here service is the axis attribute, and dst-host is
the reference attribute. The associations are encoded
(processed) in the order of their positions in the table
(i.e., first row first).

An advantage of our encoding scheme is that we can
use simple arithmetic operations to very easily control
the “level of detail” required for analysis or comparison
of the associations. For example, if we choose to
“ignore” sxbytes, we can simply do an integer division
of 10 on the encodings.

With the encodings of associations, we can now map
an episode rule, X,Y + 2, where X, Y, and 2 are
associations (itemsets), to a 3-d data point (encodingx,
encodingy, encodingz) for pattern visualization. Due to
the difficulties of manipulating n-dimensional (n > 3)
displays, for a ‘longer” episode rule Lr , Lz, Li -+

RI, R2, Rj (i, j >_ l), we use its general (subsuming)
form Ll,L2 + Rj. If L2 is missing, we simply set
encodingL, = 0.

For pattern comparison, we first convert the 3-d
encoding of an episode into a l-d value. Assume

encodingx = XIX~...X,, encodingy = y1y2...yn, and
encodingz = z~z~...z,, then the l-d representation is
~l~lYlX2~2Y2~~~ ~n~,Yn. This presentation preserves
the “order of importance” of attributes (in association
encoding) and considers the rule structure of an episode.
Here two episodes that have similar first “body”
(i.e., X) and ‘<head” (i.e., 2) will be mapped to
closer numbers. As an example, using the association
encodings in Table 3 (and “ignoring” dst-host, src-host,
and src-bytes), the “syn flood” pattern in Table 2 is
encoded as 222111. Similarly, a “normal” pattern,
(flag = SF, service = http), (flag = SF, service =
icmp-echo) + (f lug = SF, service = http), is encoded
as 111112.

When comparing two episodes using their l-d num-
bers, a simple digit-wise comparison is performed. That
is, in the resulting difl score,

dddddd I1 21 Yl 22 22 YZ *. * &n&ndy,

each digit, e.g., d,;, is the absolute value difference in
the corresponding digit, e.g., xi, of the two episodes.
For example, when comparing the “syn flood” pattern
with the “normal” pattern, the diff score is 111001.

Given the normal patterns and patterns from an
intrusion dataset that are computed using the same
choices of axis attribute(s), reference attribute(s), sup-
port, confidence, and window requirements, we can
identify the “intrusion only” patterns using the follow-
ing procedure:

Encode all the patterns;

For each pattern from the intrusion dataset, calcu-
late its diff score with each normal pattern; keep
the lowest diff score as the ‘?ntrusion” score for this
pattern;

Output all patterns that have non-zero ‘?ntrusion”
scores, or a user-specified top percentage of patterns
with the highest “intrusion” scores. For example,
since there is no normal pattern with flag = SO in
all its itemsets, the dig score for the Qyn flood”
pattern, e.g., 111001, is very high, and thus the
pattern will be selected.

This procedure considers a pattern from the intrusion
dataset as “normal” as long as it has a match with one
of the normal patterns. For simplicity, we omit the
comparisons on the support and confidence values (once
the heads and bodies of the rules match). We have
not seen a case where two matched rules have values
that are more than 5% apart from each other, which is
considered an acceptable threshold.

3.2 Feature Construction

Each of the intrusion only patterns (e.g., the “syn
flood” pattern shown in table 2) is used for constructing

118

association encoding
(f lug = SF, service = http, src-bytes = 200) 11001
(service = icmp-echo, d&host = ho&g) 02100
(f Zag = SO, service = http, src-host = hostA) 21010
(service = user-app, src-host = hostA) 03010
(flag = SF, service = icmp-echo, dst-host = hostg, src-host = hostc) 12120
.

Table 3: Encodings of Associations

Input: a frequent episode, and the set of existing features in connection records, 3
Output: the updated 3
Begin

[ii
Let Fo (e.g., dst-host) be the reference attribute used to mine the episode;
Let w, in seconds, be the minimum width of the episode;
/* all the following features consider only the connections in past w
* seconds that share the same value in Fo as the current connection

*I

ii;
Let Count-same& be the number of these connections;
3 = 3 U { count-sameF,};

ii;
for each “essential attribute” FL other than Fo do begin

if the same Fl value is in all the itemsets then begin

(7) Let percent-sameFl be the percentage of connections that share the same Fl value
as the current connection;

(8) 3 = 3 u {percent.dameFl};
end else

/* there are different Fl or no Fl values at all */

(9) Let percent-diffFl be the percentage of different FI values in the connections;

(10) 3 = 3 U {percent-diflFl};
end

end
(11) for each value Vz of an “non-essential” attribute Fz do begin

(12) if VZ is in all the itemsets then begin

(13) Let percent-samev, be the percentage of connections that share the same Vz value
as the current connection;

(14) 3 = 3 U {percent-samev,};

iti;
end else if F2 is a numerical attribute then begin

Let averageFz be the average of the Fz values of the connections;

(17) 3 = 3 U {averageF,};

end
end

end

Figure 2: Constructing Features from Frequent Episode

additional features into the connection records, using
the algorithm in Figure 2. This procedure parses
a frequent episode and uses three operators, count,
percent, and average, to construct statistical features.
These features are also temporal since they measure
only the connections that are within a time window
w and share the same reference attribute value. The
intuition behind the feature construction algorithm

comes from the straightforward interpretation of a
frequent episode. For example, if the same attribute
value appears in all the itemsets of an episode, then
there is a large percentage of records (i.e., the original
data) that have the same value. We treat the
“essential” and “non-essential” attributes differently.
The “essential” attributes describe the anatomy of
an intrusion, for example, “the same service (i.e.,

119

port) is targeted”. The actual values, e.g., “http”, is
often not important because the same attack method
can be applied to different targets, e.g., Ytp”. On
the other hand, the actual “non-essential” attribute
values, e.g., flag = SO, often indicate the invariant
of an intrusion because they summarize the connection
behavior according to the network protocols.

Based on the above observations, we can postprocess
the patterns to eliminate the exact host names and
service names before the encoding and comparison
steps. Briefly, for each pattern, we use STCO, srcr,
etc., &to, dstr, etc., and STVO, s~zlr, etc., to replace
the source hosts, destination hosts, and services in the
current pattern.

As an example of feature construction, the %yn
flood” pattern results in the following additional fea-
tures: a count of connections to the same dst-host in
the past 2 seconds, and among these connections, the
percentage of those that have the same service as the
current, and the percentage of those that have the “SO”

%w
An open problem here is how to decide the right time

window value w. Our experience shows that when we
plot the number of patterns generated using different
w values, the plot tends to stabilize after the initial
sharp jump. We call the smallest w in the stable region
we. Our experiments showed that the plot of accuracies
of the classifiers that use the temporal and statistical
features calculated with different 20, also stabilizes
after w 2 wc and tend to taper off. Intuitively, a
requirement for a good window size is that its set of
sequential patterns is stable, that is, sufficient patterns
are captured and noise is small. We therefore use wc
for adding temporal and statistical features.

3.3 Experiments with DARPA data

We participated in the 1998 DARPA Intrusion Detec-
tion Evaluation Program, prepared and managed by
MIT Lincoln Labs. The objective of this program is to
survey and evaluate research in intrusion detection. A
standard set of extensively gathered audit data, which
includes a wide variety of intrusions simulated in a mil-
itary network environment, was provided by DARPA.
Each participating site was required to build intrusion
detection models or tweak their existing system param-
eters using the training data, and send the results (i.e.,
detected intrusions) on the test data back to DARPA
for performance evaluation. We summarize our experi-
ence here’.

We were provided with about 4 gigabytes of com-
pressed raw (binary) tcpdump data of 7 weeks of net-
work traffic, which can be processed into about 5 million

‘Full detail about features constructed for the DARPA data
set appear in a companion paper [LSM99]. We summarize our
experiments here so that the paper is self-contained.

connection records, each with about 100 bytes. The
two weeks of test data have around 2 million connec-
tion records. Four main categories of attacks were sim-
ulated: DOS, denial-of-service, e.g., syn flood; R2L,
unauthorized access from a remote machine, e.g., guess-
ing password; U2R, unauthorized access to local su-
peruser (root) privileges, e.g., various of “buffer over-
flow” attacks; and PROBING, information gathering,
e.g., port-scan.

Using the procedures discussed in Section 3, we
compared the aggregate normal pattern set with the
patterns from each dataset that contains an attack type.
The following features were constructed according to
the intrusion only patterns:

o The “same host” features which include the count
of the connections in the past 2 seconds that have
the same destination host as the current connection,
and among these connections, the percentage with
the same service as the current one, the percentage
of different services, the percentage of the SO flag,
and the percentage of the REJ flag;

l The similar set of “same service” features which in-
clude the count of the connections in the past 2 sec-
onds that have the same service as the current con-
nection, and among these connections, the percent-
age with the same destination host as the current
one, the percentage of different destination hosts,
the percentage of the SO flag, and the percentage of
the REJ flag.

We call these the (time-based) “traffic” features
of the connection records. There are several “slow”
PROBING attacks that scan the hosts (or ports) using
a much larger time interval than 2 seconds, for example,
one in every minute. As a result, these attacks did not
produce intrusion only patterns with a time window of
2 seconds. We sorted these connection records by the
destination hosts, and applied the same pattern mining
and feature construction process. Rather than using a
time window of 2 seconds, we now used a “connection”
window of 100 connections, and constructed a mirror
set of “host-based traffic” features as the (time-based)
‘%raffic” features.

We discovered that unlike most of the DOS and
PROBING attacks, the R2L and U2R attacks don’t
have any “intrusion only” frequent sequential patterns.
This is because the DOS and PROBING attacks involve
many connections to some host(s) in a very short period
of time, whereas the R2L and PROBING attacks are
embedded in the data portions of the packets, and
normally involves only a single connection. Algorithms
for mining the unstructured data portions of packets
are still under development. Presently, we use domain
knowledge to add features that look for suspicious
behavior in the data portion, e.g., number of failed login

120

Model Feature set Intrusion # of features # of rules # of features
categories in records used in rules

content “intrinsic” + U2R, R2L 22 55 11
“content”

traffic “intrinsic” + DOS, PROBING 20 26 4+9
“traffic”

host traffic “intrinsic” + Slow PROBING 14 8 1+5
“host traffic”

Table 4: Model Complexities

attempts, the behavior of suid programs, etc. We call
these features the “content” features.

We then built three specialized models, using RIP-
PER, that each has a different set of features and de-
tects different categories of intrusions. For example, for
the “content” model, each connection record contains
the “intrinsic” features and “content” features, and the
resultant RIPPER rules detect U2R and R2L attacks.
A meta-classifier was used to combine the predictions
of the three base models when making a final predic-
tion to a connection record. Table 4 summarizes these
models. The numbers in bold, for example, 9, indicate
the number of automatically constructed temporal and
statistical features being used in the RIPPER rules. We
see that for both the ?raffic” and host-based “traffic”
models, our feature construction process contributes the
majority of the features actually used in the rules.

We report here the performance of our detection
models as evaluated by MIT Lincoln Labs. We trained
our intrusion detection models, i.e., the base models
and the meta-level classifier, using the 7 weeks of labeled
data, and used them to make predictions on the 2 weeks
of unlabeled test data. The test data contains a total
of 38 attack types, with 14 types in the test data only
(i.e., they are “new” to our models).

Figure 3 shows the ROC curves of the detection
models by attack categories as well as on all intrusions.
In each of these ROC plots, the x-axis is the false
alarm rate, calculated as the percentage of normal
connections classified as an intrusion; the y-axis is the
detection rate, calculated as the percentage of intrusions
detected (since the models produced binary outputs,
the ROC curves are not continuous). We compare here
our models with other participants (denoted as Group
1 to 3) in the DARPA evaluation program2. These
groups used knowledge engineering approaches to build
their intrusion detection systems. We can see from the
figure that our detection models have the best overall
performance, and in all but one attack category, our
model is one of the best two.

2These plots are duplicated from the presentation slides of
a report given by Lincoln Labs in a DARPA PI meeting. The
slides can be viewed on line via http://www. cs.columbia.edu/
-sal/JAM/PROJECT/MIT/mit-index.html.

We discussed the Evaluation results with some re-
searchers of other participating groups. It is agreed
that the (manual) knowledge engineering approach suf-
fers from the difficulties of dealing with large amount
of data, and the inabilities to generalize the (often
too-specific) hand-coded models. Our procedures for
automatic construction features from mined patterns
worked well with the large dataset. Using inductive
classification rules also provides better performance on
the “new” attacks. However, as the results on R2L
shows, all models performed poorly when there are very
large varieties of attack methods (of the same intrusion
category). Much research is still needed in network in-
trusion detection.

4 Efficient Execution of Learned
Rules

Our intrusion detection models are produced off-line.
Effective intrusion detection should be in real-time to
minimize security compromises. We therefore need
to study how our models perform in a real-time
environment. We are working on translating RIPPER
rules into real-time detection modules in NFR (Network
Flight Recorder) [NFR] , a system that includes a packet
capturing engine and N-code programming support for
specifying packet “filtering” logic.

In our first implementation, we essentially tried
to follow the off-line analysis steps in a real-time
environment. A connection is not inspected (classified
using the rules) until its connection record is completely
formulated, that is, all packets of the connection
have arrived and summarized, and all the temporal
and statistical features are computed. This scheme
failed miserably. When there is a large volume of
network traffic, the amount of time taken to process
the connection records within the past 2 seconds and
calculate the statistics is also very large. Many ensuing
connections may have terminated (and thus completed
with attack actions) when the current connection is
finally inspected by the RIPPER rules. That is, the
detection of intrusions is severely delayed. Ironically,
DOS attacks, which typically generate a large amount
of traffic in a very short period time, are often used by

121

60

(a) DOS

4

0.05
Fake ,@&I Rate

(c) U2R and R2L

0.15 0.2

I
0.05

False d&n Rate “15
0.2

(b) PROBING

:i_,:--
y... -+ .__....._.._....._ + __._........._............................----.. +_.__....__..

q . ..a 0

0 ;.’

2 40;
,:’

6 ;

,:’
,:

‘Z
P 30

,:
,:’

0”)
.:

,:’

4 ,/

,:’
“@$j g

j
: i’

,:’

10 ,./’
,:’

.:
o :’

0.05
False &km Rate “15

(d) Overall

Figure 3: ROC Curves on Detection Rates and False Alarm Rates

intruders to first overload an IDS, and use the detection
delay as a window of opportunity to quickly perform
their malicious intent. For example, they can seize
control of the operating system and “kill” the IDS.

We need to examine the time delay associated with
each feature in order to speed up the model execution.
In a “data-flow” environment such as real-time intrusion
detection, the time delay of a feature includes not
only the time of its computation, but also the time
of its readiness (i.e., when it can be computed). For
example, the flag of a connection can only be computed
(summarized) after the last packet of the connection
has arrived, whereas the service of a connection can be
obtained by checking the header of the first packet.

We partition the features into 3 “cost” (time delay)
levels: level 1 features can be computed from the first
packet; level 2 features can be computed at the end of
the connection, using only information of the current
connection; level 3 can be computed at the end of the
connection, but require access to data of (many) other

prior connections. As a datum arrives early in the
“data-flow”, shown in Figure 1, the cost will be lower
to calculate the feature that depends upon that datum.
In order to conveniently estimate the cost of a rule, we
assign a cost of 1 to the level 1 features , 10 to level 2,
and 100 to level 3. That is, the different levels have an
order of magnitude difference in cost. For the feature
set derived from the DARPA dataset, service is a level 1
feature, all the other “intrinsic” and “content” features
are in level 2, and all “traffic” features are in level 3.

Note that we cannot simply order the rules by
their costs for real-time execution for the following
reasons. First, the rules output by RIPPER are in
a strict sequential order (e.g., “if rule 1 else rule 2
else . ..“). and h ence reordering the rules may result in
unintended classification errors. Furthermore, even if
the rules can be tested in strictly cost order without
introducing classification errors, many rules will still
be tested (and fail to match) before a classification
is made. That is, ordering the rules by their costs

122

alone is not necessarily the optimal solution for fast
model evaluation. We thus seek to compute an “efficient
schedule” for feature computation and rule testing to
minimize model evaluation costs, and to increase the
response rate for real-time detection.

4.1 Low Cost “Necessary” Conditions

Ideally, we can have a few tests involving the low
cost (i.e., level 1 and level 2) features to eliminate the
majority of the rules that need to be checked, and thus
eliminating the needs to compute some of the high cost
features.

In order to eliminate a rule for intrusion I, we need a
test of the form of F 4 -I, which can be derived from
I + 7F. We can compute the association rules that
have the intrusion labels on the LHS and the low cost
features on the RHS, and with a confidence of 100%.

We discovered several such associations for the RIP-
PER rules, for example, ping-of-death + service =
icmp-echo [c = 1.01, phf + service = http [c = 1.01,
port-scan + src-bytes = 0 [c = 1.01, and syn-flood -+
flag = SO [c = 1.01, etc. Note that most of these fea-
ture values, for example, src-bytes = 0, are not in the
RIPPER rules because they are prevalent in the normal
data. That is, they don’t have predictive power. How-
ever, these associations are the “necessary” conditions
for the intrusions, for example, “this connection is a
port-scan attack only if src-bytes is O”, which is equiv-
alent to “if the src-bytes is not 0, then this connection
is not a port-scan attack”.

Note that when the RHS of such associations has
n feature value pairs (regarding to different features),
there are a corresponding n independent necessary
conditions. We can always select the one with the lowest
cost. We can also merge associations, I + Ai = v1 [cl],
I -+ Ai = v2 [c2], and I -+ Ai = v, [c,], where
cyzl ci = 1.0, t in o a single association, I + Ai = v1
vu2 . . . v 21, [c = 1.01. For example, we have from
the DARPA data, buffer-overflow -+ service = telnet

u er over t” 1 ;;4 and b ff - % ow + service = rlogin
which are merged to buffer..overflow 4

Lrvice = tklnet V rlogin [c = 1.01.
When a RIPPER rule for an intrusion is excluded

because of the failure of its necessary condition, the
features of the rule need not be computed, unless they
are needed for other candidate (remaining) rules. We
next discuss how to do efficient bookkeeping on the
candidate rules and features to determine a schedule
for feature computation and rule condition testing.

4.2 Real-time Rule Filtering

Suppose that we have n RIPPER rules. We use a n-bit
vector, with the bit order corresponding to the order of
the rules output by RIPPER, as the remaining vector to
indicate which rules still need to be checked. Initially,

all bits are 1’s. Each rule has a invalidating n-bit vector,
where only the bit corresponding to the rule is 0 and all
other bits are 1’s. Each of the high cost features, i.e., the
level 3 temporal and statistical feature, has a computing
n-bit vector, where only the bits corresponding to the
rules that require this feature are 1’s.

For each intrusion type, we record its “lowest cost
necessary condition” (if there are such conditions),
according to the costs of the features involved. We sort
all these necessary conditions according to the costs to
produce the order for real-time condition checking.

When examining a packet, or a (just completed)
connection, if a necessary condition of an intrusion is
violated, the corresponding invalidating bit vectors of
the RIPPER rules of the intrusion are used to AND the
remaining vector and all the computing vectors for the
high cost features. After all the necessary conditions are
checked, we get all the features with non-zero computing
vectors. These features are potentially useful because
of the remaining rules that need to be checked. A single
function call is made to N-code modules to compute all
these features at once. This execution strategy reduces
memory or disk access since these features compute
statistical information on the past (stored) connections
records. The remaining vector is then used to check the
remaining rules one by one.

We are currently fine tuning our implementation of
this scheme and need to perform an extensive set of
experiments, simulating a wide variety of intrusions,
to establish the empirical speed-up we may attain.
However, our analysis on the necessary conditions for
DOS and PROBING attacks, and the set of features
used by their RIPPER rules, suggest that one or two
simple low cost tests (e.g., service and/or flag) can
reduce the number of high cost feature tests from 9 (see
Table 4) to at most 3. Our preliminary experiments
have thus far confirmed this result.

5 Related Work

Our feature construction approach is similar to the
work in [JH94]. Our “operators” are also based on
extracted patterns of existing sets of features, and we
as well consider the syntactic form of the patterns.
We can use fewer and simpler operators, however,
since the patterns carry “stronger” information (e.g.,
the invariant behavior of an intrusion). We also use
automatic pattern encoding and comparison algorithms
to produce input patterns for the feature construction
program.

Our work is related to cost-sensitive learning, for
example [Tur95], where both the cost of tests (and
features) and accuracy are crucial criteria when building
models. The cost of model evaluation adds a significant
twist to this approach. We plan further study and
comparison of these approaches.

123

In DC-l (Detector Constructor) [FP97], a sequence
of operations for constructing features (indicators)
is needed before a cellular phone fraud detector (a
classifier) is constructed. We have a harder problem
here because there is no standard record format for
connection records (we had to invent our own). We also
need to construct temporal and statistical features not
just for “individual accounts”, but also over different
connections and services. That is, we are modeling
different logical entities that take on different roles and
whose behavior is recorded in great detail. Extracting
these from a fast and overwhelming stream of packet
data adds considerable complexity to the problem.

6 Conclusions and Future Work

We described the challenges as well as opportunities
for KDD in a “data-flow” environment. Using network
intrusion detection as a concrete case study, we showed
that the “expert-intensive” feature construction process
(which is part of data preprocessing) can be guided and
supported by data mining programs. Our approach is to
encode and compare the frequent patterns mined from
the normal and intrusion datasets, and automatically
construct statistical and temporal features that describe
the anatomy and invariant behavior of the attacks.
The results from the DARPA evaluation show that the
intrusion detection models produced using our method
outperformed other “knowledge-engineered” systems.
We also pointed out that it is critical to consider the
cost (time delay) of real-time execution of a model. We
devised a simple scheme that aims to use a few low cost
tests to filter out a large portion of the high cost feature
computations.

As for future work, we will continue our research on
optimizing learned rules for real-time execution. We
will also study the issues of network anomaly detection,
which is the only possible means to detect new attacks
that are completely different in nature than any of the
known intrusions.

7 Acknowledgment

This research is supported in part by grants from
DARPA (F30602-96-1-0311) and NSF (IRI-96-32225
and CDA-96-25374). We would like to thank Forster
Provost of Bell Atlantic, and William Cohen of AT&T
for helpful discussion.

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami.
Mining association rules between sets of
items in large databases. In Proceedings of the
ACM SIGMOD Conference on Management
of Data, pages 207-216, 1993.

[Coh95] W. W. C h o en. Fast effective rule induction.
In Machine Learning: the 12th International
Conference, Lake Taho, CA, 1995. Morgan
Kaufmann.

[CS93] P. K. Chan and S. J. Stolfo. Toward parallel
and distributed learning by meta-learning. In
AAAI Workshop in Knowledge Discovery in
Databases, pages 227-240, 1993.

[FP97] T. Fawcett and F. Provost. Adaptive fraud
detection. Data Mining and Knowledge
Discovery, 1:291-316, 1997.

[FPSS96] U. Fayyad, G. Piatetsky-Shapiro, and
P. Smvth. The KDD process of extract-

[JH94]

[JLM89]

[LSM98]

[LSM99]

ing useful knowledge from volumes of data.
Communications of the ACM, 39(11):27-34,
November 1996.

N. Japkowicz and H. Hirsh. Towards a boot-
strapping approach to constructive induc-
tion. In Working Notes of the Workshop on
Constructive Induction and Change of Rep-
resentation, 1994.

V. Jacobson, C. Leres, and S. McCanne.
tcpdump. available via anonymous ftp to
ftp.ee.lbl.gov, June 1989.

W. Lee, S. J. Stolfo, and K. W. Mok. Min-
ing audit data to build intrusion detection
models. In Proceedings of the 4th Interna-
tional Conference on Knowledge Discovery
and Data Mining, New York, NY, August
1998. AAAI Press.

W. Lee, S. J. Stolfo, and K. W. Mok. A
data mining framework for building intrusion
detection models. In Proceedings of the 1999
IEEE Symposium on Security and Privacy,
May 1999.

[MTV95] H. M annila, H. Toivonen, and A. I. Verkamo.
Discovering frequent episodes in sequences.
In Proceedings of the 1st International Con-
ference on Knowledge Discovery in Databases
and Data Mining, Montreal, Canada, August
1995.

[NW Network Flight Recorder Inc. Network flight
recorder. http:// www.nfr.com, 1997.

[Tur95] P. D. Turney. Cost-sensitive classification:
Empirical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of
Artificial Intelligence Research, 2(1995):369-
409, 1995.

124

