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Abstract

We present a methodology to automatically construct
robust signatures whose accuracy is based on formal
reasoning so it can be systematically evaluated.

Our methodology is based on two formal languages
that describe different properties of a given attack. The
first language, called a session signature, describes tem-
poral relations between the attack events. The second,
called an attack invariant, describes semantic properties
that hold in any instance of the attack. For example, an
invariant may state that a given FTP attack must include
a successful FTP login and can be launched only after
the FTP representation mode has been set to ASCII. We
iteratively eliminate false positives and negatives from
an initial session signature by comparing the signature
language to the language of the invariant.

We developed GARD, a tool for session-signature
construction, and used it to construct session signatures
for multi-step attacks. We show that a session signature
is more accurate than existing signatures.

1 Introduction
A misuse Network Intrusion Detection System

(NIDS) defines an attack via anattack signature: typ-
ically, a regular expression that matches a pattern of the
attack [21, 26]. Ideally, each time an ongoing activity
matches an attack signature, the NIDS raises an alarm.
Ultimately, the security that a NIDS provides depends
primarily on the accuracy of its signatures.

Conceptually, a signature represents a single attack, a
set of events that exploit a given vulnerability. In prac-
tice, however, a single attack appears in many forms, or
attack instances. For example, thepro-ftpd attack re-
quires four FTP commands that can be ordered in differ-
ent ways (CAN-2003-0831 [4, 17]). Thus, a signature
is essentially a concise representation of a large set of
attack instances.

Construction of an accurate signature is a daunting
task. Usually, security analysts inspect a few exem-
plary attack instances, hypothesize the properties that
must hold in any attack instance, and write down an ex-
pression that seems to match these properties. The ana-
lysts have no systematic way to either identify false pos-
itives, cases in which the signature over-approximates
the set of attack instances, or false negatives, cases in
which the signature under-approximates this set. Fur-
thermore, there is no systematic way to evaluate the im-
pact of changes that the analysts perform to improve the
signature’s accuracy. While a single change might fix
a false positive, it might uncover a false negative. The
end result is an ad-hoc, time consuming, and error prone
process. It is not surprising that current signatures are
inaccurate, producing many false positives [7, 31] and
negatives [10, 25, 35].

In this paper we develop a systematic method to con-
struct accurate signatures. The main idea is simple.
First, we construct an initial signature for the given at-
tack. Second, we build another, independent represen-
tation of the set of attack instances that the signature
should match. Third, we compare the signature to this
independent representation. This comparison usually re-
veals false positives and negatives, so we manually re-
fine the signature. We repeat this process until we are
satisfied with the signature accuracy.

The signature we develop in this paper is called ases-
sion signature. Like existing signatures, it is based on a
regular language that models the attack events (e.g., FTP
messages). However, a session signature models the en-
tire attack, from the attacker’s initiation of the connec-
tion to the victim’s indication of whether the attack suc-
ceeded. So, compared to current signatures, it enables
precise definition of the temporal relations between all
of the events of the attack. As a result, a session signa-
ture is potentially more accurate than current signatures
(Section 5.1).



To refine the accuracy of a session signature, we
develop the notion of anattack invariant, an over-
approximation of the set of attack instances. The in-
variant describes semantic properties that are necessary
conditions for the attack. For example, the property
“successful FTP login is required before launching the
attack” is an invariant of thepro-ftpd attack mentioned
above. Semantic properties enable us to express knowl-
edge about the protocol the attack uses. Usually, these
properties are not easily expressed using the signature.

To bridge between a session signature, which repre-
sents the attack’s syntactic features, and an attack in-
variant, which represents semantic features, we develop
a semantic model of a protocol. It is a finite state ma-
chine that specifies how a protocol command changes a
set of variables whose values define theprotocol state.
For example, our FTP model contains atype variable
that tracks the representation mode of an FTP session
(either ASCII or BINARY) and describes how theTYPE
command affects this variable.

This semantic model serves two goals. First, we use it
to define the invariant as a set of machine states. For ex-
ample, since thepro-ftpdattack only succeeds in ASCII
mode, apro-ftpd invariant is the set of states in which
type is set to ASCII. Second, we use the model to
compute the protocol state for a given sequence of com-
mands, so we can determine whether the invariant holds
for that sequence.

Essentially, a session signature and an attack invari-
ant are two independent representations of a set of attack
instances. Formally, each of them represents a set of se-
quences of events. To find false positives and negatives,
we compare the set of sequences represented by the sig-
nature to the set represented by the invariant. To find
a false positive, we search for a sequence that matches
the signature but does not satisfy the invariant. Analo-
gously, to find a false negative we search for a sequence
that does not match the signature but satisfies the invari-
ant (Figure 1).

Since the invariant over-approximates the set of real
attack instances, each sequence that is part of the signa-
ture but is not part of the invariant must be false positive.
When we find such a false positive we refine the signa-
ture. Unfortunately, for the same reason, a sequence that
does not match the signature but satisfies the invariant is
not necessarily a false negative. It might be aspurious
sequence: a sequence that does not match the signature,
satisfies the invariant, but does not really implement the
attack. Hence, we manually distinguish between false
negatives and spurious sequences. When we find a false
negative, we refine the signature; when we find a spu-
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Figure 1. Searching for false positives and
negatives.

rious sequence, we refine the invariant. We repeat the
search for false positives and negatives until we can no
longer refine the signature or the invariant, or we are sat-
isfied with the signature’s accuracy.

Obviously, finding false positives and negatives im-
proves our signature accuracy; furthermore, we discov-
ered that spurious sequences also contribute to the accu-
racy. Since they force us to refine the invariant, we better
understand the necessary conditions for identifying the
attack. This understanding is the key for building highly
accurate signatures.

However, we like to find more false negatives than
spurious sequences. To do so, we develop a novel
searching strategy. Our search for false negatives starts
with sequences of events that do not match the signa-
ture but are similar (in terms of string matching) to the
sequences that do match it. Research shows that such
sequences are likely to be real attacks [15, 27, 35], and
thus likely to be false negatives of a signature. Indeed,
we show (Section 5.2.3) that this searching strategy is
effective for finding false negatives.

To carry out this search, we implement GARD: a tool
for Generation, Analysis, Refinement, and Deployment
of NIDS signatures. GARD uses the semantic model to
formalize the notion of an attack invariant and then com-
pares the signature’s regular language to the invariant.

We empirically evaluated GARD’s capabilities. We
show that a session signature of a simple attack is more
accurate than its Snort [26] and contextual [31] coun-
terparts. We show that, with respect to our attack invari-
ants, our signature produces the least false alarms (none)
and that it does not miss any attack instance that the
other signatures recognize. We show that GARD is ca-
pable of generating a signature for a complex attack [4],
an attack that requires multiple steps to succeed. We il-
lustrate an iterative process in which we use GARD to
systematically uncover a signature’s inaccuracies.

GARD doesnot guarantee discovery ofall false pos-
itives and negatives. It finds false positives and nega-
tive with respect to the attack invariant we use. Defin-
ing meaningful invariants is an art based on human ex-
pertise. Our experience shows, however, that even with
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simple invariants, GARD is capable of finding false pos-
itives and negatives that we did not anticipate. Further-
more, we believe that the majority of semantic properties
required by an invariant can be formally specified using
the notion of our semantic model.

Even when we cannot overcome all signature limita-
tions, for example for signatures that require non-regular
languages, a priori knowledge of signature limitations is
as important as the ability to generate a robust signature.
Based on this knowledge, a signature user can make ra-
tional decisions about the risks that their system faces. If
necessary, the user might address these risks using other
security means.

In summary, this paper makes the following contri-
butions.

1. A session signaturethat models the entire attack as
a regular language. We show that the accuracy of a
session signature can be systematically improved. We
show that a session signature, at least for the attacks
we analyzed, is more accurate than current signatures.

2. An attack invariant , another representation of the at-
tack that is used to evaluate a session signature. It is
based on a novel semantic model of the attack proto-
col.

3. GARD, a tool for automatic evaluation and genera-
tion of session signatures. We show, based on empiri-
cal evaluation, that the signatures GARD produces are
superior to current signatures.

2 Related Work
GARD is centered around a combination of capabili-

ties: modeling the entire attack, a signature-specification
language based on language operators, a formal repre-
sentation of the protocol semantics, and a methodology
to evaluate a signature accuracy. We review other re-
search and tools with respect to those capabilities.

Signature specification languages.Snort, a widely-
used NIDS [3, 28], represents a signature using a set
of attributes: packet attributes, like a packet length, and
pattern attributes, like a regular expression defined over
the attack bytes. A Snort signature corresponds to a sin-
gle attack event; it does not (and probably cannot) model
the entire attack since Snort does not facilitate composi-
tion of rules (except for the ability to dynamically invoke
rules for logging purposes).

Bro [21] bases its detection onpolicy scriptsrather
than signatures. A policy script determines the actions
(e.g., alerts) that should be taken based on the events
Bro identifies (e.g., a sequence of FTP commands). In
general, such a script can model the entire attack as a
regular language; however, this requires programming

in an imperative language similar to C, a fact that im-
pairs the ability to easily define a signature and to ana-
lyze a signature’s accuracy. Recently, Sommer and Pax-
son used Bro to implement acontextual signature[31]
that enables sequencing of events in a declarative way.
However, a contextual signature does not model the en-
tire attack and supports only sequencing operators. As
our results show (Section 5.1), sequencing alone is not
enough for constructing tight signatures.

STATL [8] is a signature specification language for
NetSTAT [34]; it represents a signature as a state di-
agram that describes the sequence of events in the at-
tack. STATL does not support forming regular expres-
sions over events, construction of a state diagram from
a signature specification, or evaluation of the signature’s
accuracy. Since GARD uses a state machine as an in-
termediate signature representation, it should be easy to
translate a GARD signature into STATL; in this work,
however, we do not pursue this issue.

Sekar et al. [29, 30] developed a signature specifica-
tion language based on regular expression over events.
However, they did not specify the entire attack, a prop-
erty that is important for comparing signature accura-
cies (Section 5.1). While their focus is network-level
attacks (e.g., TCP SYN-flood) and ours is application-
level, their language and GARD’s language can be used
to specify both attack types. They do not address the
question of signature accuracy and do not suggest any
means to evaluate it. Since they also translate their sig-
natures into a finite state machine, we believe that their
work can benefit from our evaluation methodology.

Pauzol and Ducassé [23, 24] proposed a language
called Sutekh. While their focus was host-based in-
trusion detection, their language has features similar to
ours. They model the attack using sequencing operators
and represent a signature using a finite state machine.

LAMBDA [6] and ADeLe [16] also provide abstrac-
tion over events. These languages are more expres-
sive than our session-signature language, mainly be-
cause they are general enough to express both network
and host-based attacks. For example, they provide the
ability to define parallel execution of events, something
that is usually not required in network-based attacks.
These languages, like our language, provide the ability
to define the attack preconditions and post-conditions.
We believe that translating signatures between our lan-
guage and these languages should be an easy task. Like
the research mentioned above, this work does not pro-
vide means to evaluate signature accuracy.

Currently, GARD does not support some features
found in other tools: signatures that require detection
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based on properties of network packets, timers for event
scheduling, or explicit event counters (one can count
events using regular expression, but this is inefficient).
In this work, we focused on the foundational concept
behind GARD, using formal language tools for signa-
ture specification and evaluation. We believe that the
missing features can be integrated into GARD and we
plan to do so in the future.

Signature evaluation methodologies.Current tech-
niques for signature evaluation are based on testing
(e.g., [19, 25, 35]) and benchmarking (e.g., [14, 33]).
To the best of our knowledge, we are the first to ap-
ply formal verification techniques for signature evalu-
ation. Fundamentally, verification and testing comple-
ment each other. Our verification process strives to un-
cover signature vulnerabilities or to show their absence
with respect to an abstract model of the protocol seman-
tics. Testing, on the other hand, aims to uncover bugs by
exercising a signature, usually with real network traffic.

Wagner and Soto [36] applied formal methods to find
vulnerabilities in signatures for host-based IDS. They in-
tersect the language that a signature accepts with a lan-
guage that models the attack and manually construct an
instance that evades the signature (false negative). How-
ever, they do not provide automatic methods for con-
structing either false positives or negatives. On the other
hand, GARD uses techniques like an attack invariant to
automatically perform these tasks.

3 GARD Overview
We illustrate how to use GARD to construct and eval-

uate a session signature. For these purposes, we chose a
simple example attack, calledftp-cwd. In Section 5, we
show how GARD handles more complex attacks.

The ftp-cwd attack (CAN-2002-0126 [17])exploits
a vulnerability in the BlackMoon FTP server for Win-
dows [5]. The attack requires two steps: the attacker
logs into the FTP server (e.g., using anonymous lo-
gin) and then causes a buffer overflow by providing an
overly-long argument for the FTPCWD(change direc-
tory) command. The attacker gains root privileges on
the host and communicates with the compromised host
through the FTP control port (i.e., port 21).

To define a signature forftp-cwd we perform the fol-
lowing steps:

1. Signature specification. We construct a pattern that
matches the sequence of events required for the attack
detection. This sequence contains the events that oc-
cur during the entire attack, from the attacker’s initi-
ation of the connection to the victim’s indication of
whether the attack succeeded.

2. Signature evaluation. We search for signature loop-
holes: a sequence of FTP events that is either a false
positive or false negative. To do so, we first construct
an ftp-cwd invariant and then use GARD to automat-
ically compare the signature’s language to the invari-
ant’s language. This is an iterative process that con-
tinues until we decide that the signature accuracy is
satisfactory or until we can no longer refine the signa-
ture or the invariant.

To define a session signature, it is important to under-
stand how the signature is matched in practice.

Matching a session signature requires two compo-
nents. Thelexical scannertranslates the raw network
traffic into a stream of events. For example, the scanner
identifiesCWDcommands required by theftp-cwdsigna-
ture. Thematching enginematches the stream of events
it gets from the scanner against the pattern in the signa-
ture specification. To keep the signature specification as
simple as possible, we assume that the lexical scanner
does not pass to the matching engine any event that is
not part of the signature specification. For example, the
FTP STOREcommand is irrelevant to the detection of
ftp-cwd, so the scanner does not pass its token to the
matching engine. We also assume that network-level
protocols (e.g., IP, TCP) are handled by the NIDS and
not by the matching process. For example, we assume
that when a TCP connection is aborted, the matching
engine halts.

3.1 Signature Specification

A session signature is based on a three-phased ab-
straction:preparation, in which the attacker sets up the
attack preconditions;exploitation, in which the attacker
launches the attack; andconfirmation, in which the at-
tacker determines whether the attack succeeded or not.

To construct a session signature, we define the events
in each phase (i.e., the FTP commands and their argu-
ments) and use them to form a regular expression, the
phase language. A session signature is a concatenation
of the three phase languages.

ftp-cwd events. Intuitively, an event corresponds to
a protocol message or a part of it. More formally, an
event is an observable sequence of bytes that is part of
the attack; it contains bytes sent by either the attacker
or the victim (but not both). GARD represents an event
using a lexeme, a regular expression that matches the
sequence of bytes, and a token that uniquely identifies
the event (as done in lexical scanners, e.g., Flex [20]).

We identified five events inftp-cwd. In the prepara-
tion phase, we identified theL event, which corresponds
to a response of an FTP server confirming a successful
login, andQ, which corresponds to an attacker attempt
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(d) Mmain machine: concatenation of the three phases offtp-cwd. (e) SSftp-cwd machine: an HSM for theftp-cwd attack (superstate not
fully detailed). Note that the alphabet of a superstate (bytes) is different
than the one of the main machine (events).

aWe use “/bin/sh ” as an example. In reality, the attacker may not necessarilytarget “/bin/sh ”. GARD’s libraries contain other expressions
that an analyst can use to build theftp-cwdexplotation phase.

Figure 2. From an ftp-cwdspecification to an operational ftp-cwdsession signature.

to logout from an FTP session. The exploitation phase
contains theC event, which corresponds to an FTPCWD
command, and theA event, which corresponds to an ar-
gument of aCWDcommand. Finally, to confirm the in-
trusion, we identified theIR event; it corresponds to an
Invalid Responsefrom an FTP server: a message that
cannot be part of a legal FTP response.IR indicates
a compromised server because it cannot be sent by a
well-behaved FTP server.IR matches, for example, a
response to aUNIX id command, which the attacker
uses inftp-cwdto check whether the attack succeeded.

In most cases, there is no need to define new events;
GARD contains a library of predefined events for com-
mon protocols (e.g., FTP, HTTP). For example, based
on the FTP specification [22], our FTP library (Table 6)
contains an event definition for every event in theftp-
cwdspecification.

ftp-cwd phase languages.To explain the process of
signature specification and the underlying compilation
method of GARD, we present a phase language using a
finite state machine. The expression for the languages
are given in Section 4.1.

The ftp-cwdpreparation language, denotedLpre, en-
sures that an attacker logged into the server before
launching the attack. To do so, it imposes two conditions
(Figure 2a): (i) the attacker has successfully completed
a login procedure, and (ii) the attacker has not yet exe-

cuted a logout procedure. As we show in Section 5.1,
signatures that do not ensure both condition (e.g., Snort
ftp-cwd’s signature) generate false positives. Since this
language (Figure 2a) is common to many FTP attacks,
we added it to GARD’s library of FTP patterns.

The ftp-cwd exploitation language, denotedLexp,
concatenates theA event to theC event. However, the
concatenation ofC andA matches anyCWDcommand,
even benign ones. Hence, we further restrict the content
of a maliciousA by specifying that the maliciousCWD
is followed by an argument that is longer than 100 bytes
and contains the string “/bin/sh ” (Figure 2b). GARD
supports restrictions on the eventlength, using relational
operators (e.g.,>,≤), and on the eventdata, using reg-
ular expressions. So, it is a straightforward matter to
translate an event restriction into a regular language.

The ftp-cwdconfirmation phase, denoted,Lconf, con-
tains a singleInvalid Responseevent (Figure 2c).

Generating a working signature.Defining a regular
language for each phase completes the signature specifi-
cation. GARD compiles this specification into an inter-
mediate representation. To better explain the signature
evaluation process described next, we provide a short
summary of this process and the intermediate represen-
tation GARD uses. Section 4.2 presents the detailed
compilation process.

GARD’s compilation process contains two steps.
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(a) The main concepts of signature evaluation illustrated
through theftp-cwdattack.

(b) Using the semantic model of a protocol to implement
and define the search for false positives and negatives.

Language Definition
L(MP) Σ⋆

P
: the set of possible sequences of events from protocolP .

UA Sequences that implementA (the set we try to unambiguously define).
L(SSA) Sequences that the session signature ofA accepts.
L(IA) Sequences that satisfyA’s invariant.
EDk(L(SSA)) Sequences that arek-edit distance fromL(SSA).
False positive fp ∈ {L(SSA) ∩ ¬UA}
False negative fn ∈ {¬L(SSA) ∩ UA}
Spurious sequencesp∈ {¬L(SSA) ∩ (L(IA) \ UA)}

(c) Formalizing signature evaluation as a comparison between regular languages.

Figure 3. The fundamentals of language-based generation of session signatures.

First, GARD concatenates the phase languages into a
main machine(Figure 2d). Second, GARD embeds the
restrictions on events into the main machine as separate
finite state machines (restrictions are regular languages,
so each restriction can be represented as an FSM). To
do so, GARD builds a (non-recursive) Hierarchical State
Machine (HSM), a machine whose states are either ordi-
nary states orsuperstatesthat are FSM themselves [2].
In the ftp-cwd case, the superstate imposes the restric-
tions onA’s data and length: in state2, if the superstate
accepts the restrictions, the main machine moves to the
attackstate, else it moves to state1 (Figure 2e).

It is a straightforward matter to translate an HSM into
a working signature. For example, it is possible to trans-
late an HSM into a Snort [26] plugin or Bro’s contex-
tual signature [31]. Furthermore, for signature evalua-
tion purposes, it is also easy to translate an into a Spin
model (Section 4.4).

3.2 Signature Evaluation

Ultimately, our task is to construct a signature that
matches every FTP session that implements theftp-cwd
attack. Formally, we denote the set of FTP sessions that
implementftp-cwdasUftp-cwd, called theultimate setof
ftp-cwd. We denote the set of sessions that matches our
session signature (Figure 2e) asL(SSftp-cwd). An ideal
signature is a signature such thatL(SSftp-cwd) = Uftp-cwd.
A non-ideal signature generates false positives and neg-

atives. A false positive, denotedfp, is a sequence in
{L(SSftp-cwd) ∩ ¬Uftp-cwd} and a false negative, denoted
fn, is a sequence in{¬L(SSftp-cwd)∩Uftp-cwd} (Figure 3a).

When the ultimate set is easy to define, for example
by a regular language, we can use it as a signature. Un-
fortunately, in most cases, the ultimate set is difficult to
define. For example, we thought that it would be easy
to construct a session signature that matchesUftp-cwd, but
GARD found a false positive. The ultimate set for more
complex attacks is even more difficult to define (Sec-
tion 5.2.1).

To systematically find false positives and negatives,
we approximate the ultimate set by using an attack in-
variant, a predicate that must hold in every instance of
the attack. For example, we define theftp-cwdinvariant
as “a login procedure must be completed before the at-
tacker sends the maliciousCWDcommand”; such an in-
variant can be expressed as a regular language, denoted
L(Iftp-cwd). Our evaluation methodology assumes that
an invariant over-approximates the ultimate set, that is,
L(Iftp-cwd) ⊇ Uftp-cwd. We discuss the reasons for such
an over-approximation in Section 4.3.

GivenL(Iftp-cwd), we find a false positive by search-
ing for a sequence in{L(SSftp-cwd) ∩ ¬L(Iftp-cwd)}.
Since L(Iftp-cwd) ⊇ Uftp-cwd, if fp ∈ {L(SSftp-cwd) ∩
¬L(Iftp-cwd)}, thenfp ∈ {L(SSftp-cwd) ∩ ¬Uftp-cwd}, that
is, fp is a false positive (Figure 3a).
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To find a false negative we search for a sequence in
the set{¬L(SSftp-cwd) ∩ L(Iftp-cwd)}. However, since
L(Iftp-cwd)⊇Uftp-cwd, our search may yield aspuriousse-
quence which satisfies the invariant but does not imple-
mentftp-cwd; formally, a sequence in{¬L(SSftp-cwd) ∩
(L(Iftp-cwd) \ Uftp-cwd} (Figure 3a). Hence, each time we
find a sequence in{¬L(SSftp-cwd)∩L(Iftp-cwd)}, we man-
ually check whether this is a spurious instance.1 If it
is, we refine the invariant and continue searching. We
discuss techniques of guiding the search toward false
negatives rather than spurious sequences in Section 4.3;
we illustrate the invariant refinement process in Sec-
tion 5.2.3.

A false positive in SSftp-cwd. We formally define
L(Iftp-cwd) using our FTP semantic model (Appendix A).
GARD comparedL(Iftp-cwd) to L(SSftp-cwd) and found
a false positive: a sequence of FTP commands that
matches the signature but in which the maliciousCWD
appears before a completed login procedure.

Our ftp-cwdspecification ignores a victim (the FTP
server) that voluntarily terminates the connection (event
VQUIT in Table 6). The false positive includes such
an event injected before the maliciousCWD. An attacker
that intentionally ignores this terminating message can
continue to send the maliciousCWD, causing a false
alarm. It is an open question whether to include this
event in theftp-cwdsignature; it is unclear whether at-
tackers can exploit this weakness. In any case, GARD
can generate two versions of the signature, one that in-
corporates the event and one that ignores it. Signature
users can choose the version that fits their needs.

The important lesson from theftp-cwdexample is not
the weakness we revealed in theftp-cwdsignature, but
the systematic way in which we found the weakness. We
illustrated that formal methods and tools can help us sys-
tematically construct NIDS signatures, signatures whose
quality can be evaluated and understood. We further dis-
cuss GARD’s advantages and disadvantages in the next
section.

4 GARD’s Foundations
We discuss GARD’s signature-specification lan-

guage, the algorithm it uses to translate a signature
specification into an hierarchical state machine, and its
methodology for finding false positives and negatives.

4.1 Signature Specification Language

The goal of GARD’s specification language is to pro-
vide a clean separation between event representation and
the ability to construct regular languages over events. To

1We can automate this process by launching the instance on a vul-
nerable host [35]. We leave this implementation issue for future work.

achieve this goal, we use one language for event repre-
sentation and one for constructing regular expressions.

We represent events using regular expressions over
raw network bytes. In practice, we use the Flex lan-
guage [20] to form the expressions. Since an attack
might contain events from multiple streams (e.g., one
stream for the messages sent by the attacker and one
for the victim responses), we annotate each event with
its corresponding stream. To identify streams, we use
the common convention of IP addresses and port num-
bers [26, 21]. For brevity, in our FTP model (Ap-
pendix A) we specify the stream of an event by using
only the sender: a subscripta to denote the attacker and
v to denote the victim.

To form a regular expression over events, GARD uses
standard operators for language manipulation (Table 7).
The only non-standard operator is thesuch that op-
erator; it is used to restrict the data or length of an event
(as in Figure 2b).

Table 1 presents a complete signature specification
for ftp-cwd. The languages for the three phases,Lpre,
Lexp, andLconf, correspond to the state machines pre-
sented in Figure 2a to Figure 2c.

4.2 Compilation Process

Compiling a signature specification (e.g., Table 1)
into its corresponding HSM (e.g., Figure 2e) is based on
a standard algorithm for translating a regular expression
into a finite state machine [12]. The compilation process
contains three steps:

1. We use the standard algorithm to translate each
such that expression into an FSM, called asu-
perstate. For example, we translate thesuch that
expression in theftp-cwd specification into a ma-
chine that identifies a string that contains the pattern
“ /bin/sh ” and is longer than 100 bytes.

2. We use the standard algorithm to buildMmain (Fig-
ure 2d). Formally, we build anMmain that accepts the
languageLpre · Lexp · Lconf.

3. We embed the superstates intoMmain, obtaining a ses-
sion signature, an HSM denotedSSattack-name(e.g., Fig-
ure 2e).

While we buildMmain using the standard algorithm,
recall that this algorithm does not handle the non-
standardsuch that operator. Hence, we perform
restricted-event renaming. We replace each restricted
event, a token restricted with thesuch that opera-
tor (Table 7), with a unique identifier. For example, we
convertLexp in Table 1 fromC · (A suchthat data∈
shell && length>100) into the expressionC · Â.
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Phase Signature Description
Preparation
(Lpre)

loginftp A macro denoting a regular expression that matches any FTP session after a successful login.
The macro defines a regular expression using tokensL andQ: ((¬L)⋆ · L · (¬Q)⋆)+

Exploitation
(Lexp)

C · (A suchthat
data∈ (.)⋆bin/sh (.)⋆

&& length>100)

A maliciousCWDcommand whose argument is longer than 100 bytes and containsthe pattern
bin/sh . bin/sh is an example; in practice, other patterns from the exploit code can be used.

Confirmation
(Lconf)

IR The Invalid Responseevent indicates that the connection is no longer used as an FTP connec-
tion.

Table 1. A signature specification for fpd-cwd.

Renaming a restricted event is not just syntactic
sugar; it actually preserves the signature semantics. Es-
sentially, a restricted event represents a unique sequence
of bytes: the restricted event “A suchthat data ∈
shell && length > 100” represents a different se-
quence of bytes than the event “A” (Table 6). Hence,
renaming enables the standard algorithm to distinguish
between restricted events and their unrestricted versions
(e.g.,A andÂ) in the same way it distinguishes between
any other two events (e.g.,A andC).

Renaming also enables us to identify the places in
the main machine in which we need to embed the super-
states. After step 2 above, each edge in a main machine
that is labeled with a renamed event should be replaced
with its corresponding superstate.

4.3 Signature Evaluation Algorithms

LetSSA be the session signature of an attackA, such
asSSftp-cwd in Figure 2e. We evaluate a session signature
by comparing its language, denotedL(SSA), to the lan-
guage ofA’s invariant, denotedL(IA).

To define an invariant for an attack that uses protocol
P , we represent the protocol semantics using theseman-
tic model ofP : a finite state machine, denotedMP . A
state inMP is a valuation of variables that are called the
protocol’sstate variables. A transition describes how an
event, usually corresponding to a protocol message, af-
fects the variable values.MP is defined overΣP , a set
of protocol events. Essentially, the language thatMP

represents isΣ⋆
P

. An example model for FTP is given in
Appendix A.

An attack invariantIA is a logical formula over the
state variables ofMP . The languageL(IA) is the lan-
guage accepted by anMP whose accepting states are the
states in whichIA holds.

As mentioned in Section 3.2, our goal is to construct
a signature that is as close as possible toUA, the ultimate
set ofA. Unfortunately, in most cases, there is no clear
definition of UA. Therefore, we evaluate the accuracy
of L(SSA) usingL(IA). Even though bothL(SSA) and
L(IA) are only approximations ofUA, our results show
that such a comparison is an effective way to improve

the accuracy ofL(SSA).

We require thatL(IA) ⊇ UA, that is, an attack in-
variant should be a necessary condition for the attack to
occur (Figure 3b). We require this for two reasons. First,
necessary conditions are usually easy to define, facilitat-
ing fast signature construction. For example, it is easy to
see that a successful FTP login is a necessary condition
for the ftp-cwdattack. Second, since false negatives are
considered more harmful than false positives, by over-
approximatingUA we ensure that, theoretically at least,
we will never miss a false negative.

To find a false positive, we search for a sequence in
{L(SSA)∩¬L(IA)}. As mentioned in Section 3.2, since
L(IA)⊇ UA, such a sequence must be a false positive.
Analogously, to find a false negative we search for a se-
quence in the set{¬L(SSA) ∩ L(IA)}. However, since
L(IA)⊇UA, our search may yield aspurioussequence,
a sequence that satisfies the invariant but does not im-
plementA. Hence, each time we find a sequence in
{¬L(SSA) ∩ L(IA)}, we check whether this is a spuri-
ous instance. If it is, we refine the invariant and continue
searching.

Since the search for false negatives involves human
intervention, we would like to avoid spurious sequences.
The problem becomes even more serious whenL(IA)
is much larger thanUA, yielding many spurious se-
quences. For example,L(Iftp-cwd) (Figure 3a) contains
all sequences of FTP commands in which FTP login has
been completed. This set is much larger thanUftp-cwd,
the set of sequences that implementftp-cwd.

To reduce the probability of hitting a spurious se-
quence, we search the set{¬L(SSA) ∩ L(IA)} for se-
quences that are similar, in terms of string matching, to
sequences inL(SSA). This strategy is based on the ob-
servation that new attack instances can be generated by
introducing small changes to already-known instances
of the attack and that a signature represents such known
instances. This observation forms the basis for many
NIDS testing tools [10, 15, 19, 25, 35].

We formalize similarity using the notion ofedit dis-
tance[1]. The edit distance between stringss1 ands2,
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denoteded(s1, s2), is the number of insertions, dele-
tions, or substitutions required to transforms1 into s2.
For a languageL we define itsk-edit-distancelanguage,
denotedEDk(L), as the set of strings such that their edit
distance from a string inL is less thank. Formally,
EDk(L)= {x|∃y ∈L such that ed(x, y) < k}. It is well
known that ifL is a regular language, thenEDk(L) is
also regular [9, 13, 32]. Hence,EDk(L(SSA)) forms an-
other regular language, a superset ofL(SSA).

4.4 GARD: Summary and Pitfalls.

To find false positives, GARD checks whether the set
{L(SSA) ∩ ¬L(IA)} is empty. To find false negatives,
GARD checks whether the set{¬L(SSA) ∩ L(IA) ∩
EDk(L(SSA))}, for some constantk, is empty.

To check the emptiness of the above sets, GARD uses
Spin [11], a publicly available model checker. Since
all of these sets are regular, it is straightforward to use
Promela, the input language for Spin, to represent the
sets as finite state machines. We use Spin because it
is capable of not only checking for emptiness, but also
of providing a sequence in these sets when they are not
empty. This ability greatly simplifies the evaluation pro-
cess.

When GARD asserts that{L(SSA) ∩ ¬L(IA)} = ∅,
it means that, if we interpret events according to our
semantic model, then we cannot use the events in the
model to construct a false positive that matches the sig-
nature but violates the attack invariant.

For example, consider ourftp-cwd signature (Fig-
ure 2e), our FTP model (Appendix A), and theftp-
cwd invariant from Section 3.2. GARD asserted that
{L(SSftp-cwd) ∩ ¬L(Iftp-cwd)}=∅ (after addingQ3 to the
signature). This means that we cannot construct a se-
quence of events from the events in Table 6 that matches
our signature but in which an attacker is not logged in.
If one believes, as we believe, that our model accurately
describes all possible ways to login and logout from an
FTP server, then an attacker cannot cause a false positive
for our ftp-cwdsignature without completing an FTP lo-
gin procedure. Such a guarantee does not exist in current
ftp-cwdsignatures (Section 5.1).

GARD doesnot guarantee discovery ofall false pos-
itives. GARD will not find a false positive that uses an
event that is not part of the model, that is,fp /∈L(MP);
in such a case, the semantics model should be refined.
GARD will not find a false positive that satisfies the at-
tack invariant, that is,fp ∈ {L(SSA) ∩ (L(IA) \ UA)}
(Figure 3b); when such a sequence surfaces, the invari-
ant should be refined.

When GARD asserts that{¬L(SSA) ∩ L(IA) ∩
EDk(L(SSA))} = ∅, it means that, if we interpret events

according to our semantic model, then there is no se-
quence of events, from our model, that implementsA
and isk-edit distance from a sequence that matches our
signature.

GARD doesnotguarantee discovery ofall false neg-
atives. GARD will not find a false negative that is more
thank-edits away from our signature. Also, GARD will
miss a false negative that uses an event that is not part of
the model, that is,fn /∈L(MP). In such a case, Figure 3b
is inaccurate becauseUA 6⊆ L(MP). There is nothing
surprising here, because the vague nature ofUA is the
motivation for our work. When such a false negative
surfaces, the semantic model should be refined.

Implementation notes.To constructEDk(Lsig(A))
we used a recent methodology proposed by Kari et
al. [13]. Their methodology enables us to define the er-
rors that are permitted. In other words, it permits us to
restrict the transformations attackers can perform. This
feature is useful if we understand that not all transforma-
tions really preserve the attack semantics. For example,
in the ftp-cwd attack one cannot delete or replace the
CWDcommand with a different FTP command.

During signature evaluation we use the HSM with-
out its superstates (theMmain machine rather than the
SSftp-cwd machine from Figure 2). We assume that if a
false negative or positive exists inMmain, there is also
a sequence inMsig. After all, if an attacker finds such
a sequence for theMmain, they can construct it in a
way that satisfies the restrictions imposed by the supern-
odes. Also recall that the lexical scanner drops any event
that does not explicitly appear in the signature specifica-
tion (Section 3). Since these dropped events appear as
self-loops inMmain, during signature evaluation, we add
these self loops toMmain.

5 GARD Evaluation
We evaluate the accuracy of a session signature and

GARD’s ability to find false positives and negatives in
complex attacks. We prove that ourftp-cwd signature
(Table 1) is more accurate than current signatures: not
only it is not vulnerable to false positives (with respect
to our invariant), but it does not miss any attack instance
that the other signatures recognize. We also show that
GARD is able to model complex attacks and to find false
positives and negatives that we did not anticipate.

5.1 Session Signature Evaluation

Our initial study used GARD to identify known vul-
nerabilities in theftp-cwdsignatures that current NIDS
use: a recent contextual signature developed by Sommer
and Paxson [31] and a Snort [26] signature.

To compare the two signatures to ours, we first de-
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Sig. L(SSsig-name) HSM sizea false Operational Comments
name For brevity we writeLsig-name Alphabet states edges positive false positive
Snort (Σftp)

⋆(CA)(IR) {C, A} 2 4 CA yes
CS ((¬L)⋆L(Σftp)

⋆)(CA)(IR) {C, A, L} 4 9 LQ1CA yes
cwd1 ((¬L)⋆L(¬Q)⋆)+(CA)(IR) {C, A, L, Q1,2} 4 12 LQ3CA no Q={Q1, Q2}
cwd2 ((¬L)⋆L(¬Q)⋆)+(CA)(IR) {C, A, L, Q1,2,3} 4 15 - - Q={Q1, Q2, Q3}

aThe size of a deterministic HSM without states and edges of superstates.

Table 2. Comparison of signatures and their weaknesses. Σftp is the set of events from Table 6.

fined the Snort and contextual signatures as session sig-
natures, denotedSnortandCS, respectively. Since the
Snort signature does not include a confirmation phase,
we added theIR event (Section 3.1) as the confirma-
tion phase for all signatures. Then, we used our FTP
model (Appendix A) to define the invariant “a login pro-
cedure must be completed before the attacker sends the
maliciousCWDcommand”. Last, we used GARD to find
false positives in each of the three signatures. GARD re-
vealed false positives with which we were familiar and
one with which we were not. We then refined our initial
ftp-cwdsignature and verified that, with respect to our
invariant, it does not have any false positives.

ftp-cwd Snort signature (signature 1919 revision
19 [26]). Essentially, this is the exploitation phase of
our session signature (Figure 2b). We knew that this
signature is not tight: attackers can cause a false posi-
tive by sending the maliciousCWDcommand before they
have logged into the FTP server. Since this signature ig-
nores events that precede the maliciousCWD, we model
its preparation phase as(Σftp)

⋆, whereΣftp is the set of
FTP events in our model (Table 6).

ftp-cwd contextual signature [31]. This signature
ensures that a login event appears before the malicious
CWD. We knew that this signature is not tight because
an attacker can cause a false positive by sending an
FTPQUIT command immediately before the malicious
CWDbut after they have completed the FTP login pro-
cedure. We defined the preparation-phase language as
(¬L)⋆L(Σftp)

⋆, whereL is a successful-login event (Ta-
ble 6). This means that after observing a single login
event the signature moves to the exploitation phase.

ftp-cwd session signature.We used the signature we
defined in Table 1, denotedcwd1.

Evaluation summary. Table 2 presents a summary
of the experiment results. Each row in the table presents
one signature: Snort,CS, cwd1, andcwd2, which we
constructed after GARD had revealed a weakness in
cwd1. For each signature, we show the language it ac-
cepts, the alphabet for the signature’s HSM, the number
of nodes and edges in the HSM, the false positive GARD

found, and whether we were able to create an operational
false positive from the sequence GARD provided. A few
observations should be noted:

1. We can order the signatures by their accuracy: Snort
is the least accurate signature andcwd2 is the most
accurate one. It is easy to prove thatLSnort⊃ LCS⊃
Lcwd1 ⊃ Lcwd2 . This means that a less accurate sig-
nature always generates more false positives than a
more accurate signature. It is also possible to prove
that there is no sequence that implementsftp-cwd in
{LSnort\LCS}, {LCS\Lcwd1}, and{Lcwd1\Lcwd2}. This
means that a more accurate signature never misses an
attack instance that a less accurate signature matches.
The formal proofs of these claims is beyond the scope
of this paper.

2. The operational overhead of all signatures is low. All
signatures require less than 20 edges, indicating in-
significant memory footprints of their HSMs.

3. Using the ProFTPD server [18] and Bro, we could
not generate an operational false positive with the se-
quence GARD provided forcwd1. In this sequence,
the server voluntarily terminates the FTP and TCP
connections, using theQ3 event. Since Bro stops
monitoring an FTP session immediately after observ-
ing the terminating TCP sequence, it ignores theC
and A events and does not generate a false alarm.
Since the additional overhead ofcwd2, in terms of
memory consumption, is insignificant, we believe that
cwd2 is preferable because it prevents this potential
false positive incwd1.

5.2 Constructing Complex Signatures with GARD

In our pilot study we examined a relatively simple
attack. Given its success there, we wanted to challenge
GARD’s capabilities with a much more complex attack.
To do so, we chose the multi-steppro-ftpdattack.

The pro-ftpd attack (CAN-2003-0831 [4, 17]).
The pro-ftpd attack exploits a buffer overflow in the
ProFTPD [18] server. This vulnerability occurs when
the attacker transfers a file in ASCII mode. During such
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Phase Signature Description
Lpre (loginftp ∩ typeA) · S loginftp ≡ ((¬L)⋆L(¬Q)⋆)+ whereL is a SLOGIN event andQ is a QUIT event (Q ≡ {Q1 ∪ Q2 ∪ Q3},,

see Table 6). We also used this pattern in theftp-cwdsignature (Figure 2a).
Lexp R · R typeA ≡ ((¬Ta)⋆Ta(¬Tb)

⋆)⋆ whereTa is a TYPE Aevent andTb is a TYPE Bevent (Table 6). The
intuition is that an ASCII mode requires aTa event that is not followed by aTb event.

Lconf W W ≡ ((.)⋆)x::y→FTP::4660. This is an event that identifies an opening of aUNIX shell on port 4660 of the FTP
server. The pattern(.)⋆ matches any traffic that traverses this TCP session.x is the IP address of all events sent
by the attacker.y is an arbitrary port number.

Table 3. Our initial signature of the pro-ftpdattack. This signature is susceptible to false positives
and negatives which we fix in Section 5.2.2 and Section 5.2.3, respectively. Event definitions
are given in Table 6.

a transfer, the ProFTPD server stores data in 1024 byte
chunks to check for newline characters. Due to incor-
rect handling of these characters, a buffer overflow oc-
curs when ProFTPD parses a specially crafted file. This
attack requires four steps: The attacker (i) logs into
the FTP server, (ii) changes the representation mode to
ASCII, (iii) uploads, to the FTP server, a file that con-
tains their shell code, and (iv) downloads the same file;
during this download a buffer overflow occurs. In this
attack, the attacker gains root privileges on the host, and
then communicates with the compromised host through
a new TCP connection opened by the shell code.

5.2.1 Initial pro-ftpd specification

The attack requires three preconditions: an FTP session
both in the login and ASCII states, and aSTOREcom-
mand that uploads the attacker’s file. To simultaneously
impose login and ASCII states, we intersected the lan-
guages forloginftp andtypeA (Table 3). To the resulting
pattern, we concatenated theSTOREevent.

We modeled the two retrieval, or download, op-
erations as thepro-ftpd exploitation phase (Table 3).
The boundary between the preparation and exploitation
phases can be set arbitrarily because it does not have
any operational meaning. However, the boundary be-
tween the exploitation and confirmation phases signals
the NIDS to raise theattackalert, so it is important to
set it according to our interpretation of the attack. In the
case ofpro-ftpd, it seems clear that the second retrieval
operation marks the end of the attack.

The confirmation phase ofpro-ftpdconsists of a sin-
gle event, opening aUNIX shell. Unlike the case offtp-
cwd, the shell is opened on a new TCP connection us-
ing the server’s port 4660. To identify this activity, we
defined an event that matches any communication that
occurs on this port.

5.2.2 pro-ftpd False Positives

Ourpro-ftpdinvariant states that any successfulpro-ftpd
attack must end in the login and ASCII states. We for-
mally defined it using theFTPtype andFTPlogin variables
in our FTP model (Table 5).

To search for false positives and negatives, we must
initialize the variableFTPtype to the default value used
by the ProFTPD server. Since the ProFTPD enables
an administrator to determine the default mode, we per-
formed the search twice: once with ASCII as the default
and once with BINARY.

When the default representation mode is ASCII,
GARD verified that ourpro-ftpd specification has no
false positives with respect to the given invariant. How-
ever, when the default is BINARY, GARD found a
false positive: the sequence〈TYPE A, LOGIN, STORE,
RETV, RETV〉. This sequence matches the signature but
ends in BINARY mode, so it does not implement the
attack; theTYPE Ahas no effect because it appears be-
fore a login procedure. The sequence matches the sig-
nature because the intersection between the languages
loginftp andtype

A
does not enforce the required order be-

tween the eventsLOGINandTYPE A(see Figure 4a).
The problem is thetypeA pattern. This pattern in-

tends to ensure that aTYPE Aevent is not followed be
a TYPE Bone, that isTa(¬Tb)

⋆. However, GARD in-
stantiates¬Tb as the set{L, Q, S, R, Ta}. When BI-
NARY is the default mode, performing a logout and
then login (using theQUIT andLOGINevents) behaves
like Tb: it switches the mode back to BINARY. Hence,
we modified typeA into ((¬Ta)⋆Ta((¬Tb) ∪ (¬Q) ∪
(¬L))⋆)⋆. After this change, GARD verified that no
false positive exists when the default mode is BINARY.

5.2.3 pro-ftpd False Negatives

We illustrate an iterative process in which we found false
negatives in our initialpro-ftpd signature. In each iter-
ation, GARD provided a sequence that does not match
the signature but satisfies our invariant. We manually
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Round Sequence Type
(Figure 3b)

Attack Invariants Invariant/Model Refinement Signature Fix

1 original:
false neg:

〈Ta, L, S, R, R〉
〈R, L, S, R, R〉

FTPlogin=true
FTPtype = A

— Fix (loginftp ∩ typeA). Compare old (Fig-
ure 4a) to new pattern (Figure 4b).

2 original:
spurious:

〈L, S, R, R〉
〈L, C, R, R〉

FTPlogin=true
FTPtype=A

OneSTOREcommand must ap-
pear in any instance of the attack.

—

3 original:
spurious:

〈L, S, R, R〉
〈L, S, C, R〉

FTPlogin=true, st=1
FTPtype=A

Two RETV command must ap-
pear in any instance of the attack.

—

4 original:
false neg:

〈L, AP, S, R, R〉
〈L, AP, C, R, R〉

FTPlogin=true, st=1
FTPtype=A, rt=2

— Replace(loginftp∩typeA)S with (loginftp∩
typeA)(S ∪ A).

5 original:
spurious:

〈L, R, AP, R, R〉
〈L, R, AP, R, C〉

FTPlogin=true, st=1
FTPtype=A, rt=2

Limit length of attacks. Limit at-
tacker transformations.

—

6+ — FTPlogin=true, st=1
FTPtype=A, rt=2,
length<k, . . .

— —

Table 4. A search for false negatives with 1-edit distance. An original sequence matches the
pro-ftpd signature in Table 3. Event definitions are given in Table 6. I n Round i we applied the
Invariant Refinements or Signature Fixes we performed after Round i−1.

determined whether this sequence was a false negative
or a spurious sequence. In the first case, we refined the
signature; in the second, we refined the invariant. We
repeated these steps until we were satisfied with the sig-
nature accuracy.

We searched for false negatives that are1-edit dis-
tance from our session signature. We assumed that the
default representation mode is ASCII. During the pro-
cess, we found two false negatives. The whole process
took less than 3 hours for an experienced GARD user.

In the first false negative we found that GARD re-
placed aTYPE Awith a RETVcommand (Round 1 in
Table 4). Essentially, GARD showed us that when the
default representation mode is ASCII, aTYPE Acom-
mand is not required for a successfulpro-ftpdattack; a
successful login puts the FTP session into ASCII mode
(Figure 4a). We changed thepro-ftpdpreparation phase
into the expression represented by Figure 4b and re-
moved this type of false negatives.

In the next sequence, GARD replaced aSTOREcom-
mand with aCWD(Round 2 in Table 4). Since the
STOREis a necessary condition forpro-ftpd, this se-
quence is not a false negative but a spurious sequence.
To avoid this type of sequences, we added to our seman-
tic model a variable, denotedst, that counts the number
of STOREs in a sequence. We usedst to ensure that one
STOREcommand appears in any sequence GARD pro-
vides. Not surprisingly, in the next sequence, GARD
replaced aRETVwith a CWD(Round 3 in Table 4); this
sequence also does not implement the attack. Hence,
we added thert variable that countsRETVcommands
and used it to ensure that a sequence contains twoRETV
commands.

Next, GARD added anAPPENDcommand and re-
placed theSTOREwith a CWD(Round 4 in Table 4).
This is a false negative, as thepro-ftpdattack can be im-
plemented using anAPPENDinstead of aSTORE. Since
we modeled anAPPENDin the same way we modeled
a STORE, both incrementst (Table 6), we anticipated
this false negative; to prevent it, we added anAPPEND
command to thepro-ftpdpreparation phase.

The question of whetherSTOREand APPENDare
equivalent in general is beyond the scope of this paper.
We believe that the answer is attack-dependent; a secu-
rity analyst should address it in every FTP attack they
define. GARD affords an analyst the ability to investi-
gate the implications of their decision. We defined the
two commands in an equivalent way, so GARD can warn
an analyst of an unforeseen false negative. If this behav-
ior is undesired, an analyst can disable it easily.

In the next sequence, GARD replaced aRETVcom-
mand with aCWDand increased the length of the se-
quence to include twoRETVcommands as required by
the attack invariants (Round 5 in Table 4). Again, this
is a spurious sequence. At this point we used our edit-
distance mechanism to limit the transformations attack-
ers can perform (Section 4.4). For example, in thepro-
ftpdattack the lastRETVcannot be replaced with aCWD,
so we forbade this replacement. Based on the restric-
tions we imposed, we did not find other false negatives.

5.3 Summary of GARD Evaluation

We analytically showed that ourftp-cwdsession sig-
nature is more accurate than its Snort and contextual
counterparts. To the best of our knowledge, we are the
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(a) Original loginftp ∩ typeA pattern. This machine should accept all
and only FTP sessions after login and with representation mode set
to ASCII. However, when the default mode is BINARY, the sequence
〈Ta, L〉 results in a false positive (Section 5.2.2). When the default is
ASCII, the sequence〈L〉 results in a false negative (Section 5.2.3).
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(b) Theloginftp∩ typeA pattern after false negative fix (Section 5.2.3).
This pattern ensures that after login the session is in ASCIImode,
given a default ASCII mode.

Figure 4. Two versions of the loginftp∩ typeA
pattern.

first to provide such an evidence of signature accuracy.
GARD taught us that we need to tune thepro-ftpd

signature according to the ProFTPD server configura-
tion. We did not anticipate this outcome when we be-
gan our experiment. Our experience shows that con-
structing an accurate regular expression is a delicate is-
sue. Even in simple cases, using inaccurate expressions
might lead to unforeseen false positives and negatives.
We also learned the effectiveness of formal methods to
reveal these inaccuracies.

We must remember that GARD does not guarantee
that our signature lacks all false positives and negatives.
GARD only guarantees that there are no false positives
and negatives with respect to our invariant and its under-
lying semantic model. For example, it is possible to split
thepro-ftpdattack into two FTP sessions so that it is no
longer detected by our signature. The refinement of the
signature to handle such cases is left for future work.

6 Conclusion and Future Work

We believe signatures that are based on formal rea-
soning and verifiable accuracy is a worthy cause. In this

paper, we took the first step toward this goal. We present
a methodology to construct, evaluate, and improve sig-
natures.

We intend to continue this work as follows. First,
although our initial results indicate that the operational
cost of session signature is comparable to current signa-
tures (Table 2), we intend to perform a thorough inves-
tigation of this issue. Second, since session signatures
use HSMs, it seems possible to share machines between
signatures and improve the ability of a NIDS to handle
many signatures simultaneously. Last, it is necessary to
develop semantic models for other protocols.
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A FTP Semantic Model
The state of FTP is defined using 8 variables (Ta-

ble 5). The alphabet of the model (Section 4.3), denoted
Σftp, is the set of tokens defined in Table 6. We modeled
only the most common FTP commands; others can be
modeled in a similar way. For brevity, we define lex-
emes using upper case letters. However, the FTP speci-
fication allows any combination of upper and lower case
letters [22]. The events from Table 6 form the event li-
brary for FTP. The model is complete: for every event
that is not defined in Table 6, the state does not change.

14



Var. Values Semantic Comments
x1 {0, 1} A USERcommand was issued.
x2 {0, 1} A PASScommand was issued.
x3 {0, 1} Victim has indicated a successful login. Alias to FTPlogin (Section 3.2)
x4 {U = 0, A = 0, B =

1, E=2}
Holds session representation type (i.e.,TYPE) Alias to FTPtype (Section 5.2.2). A=ASCII,

B=BINARY, E=EBCDIC, U=undefined.
x5 {U = 0, S = 0, B =

1, C=2}
Holds session transmission mode (i.e.,MODE) S=STREAM,B=BLOCK, C=COMPRESSED,

U=undefined.
x6 {0, 1} A session is in passive mode.
x7 {0, . . . , MAX} Counts number of files uploaded in this session.
x8 {0, . . . , MAX} Counts number of files downloaded in this session.

Table 5. State variables for the FTP semantic model.

Event Token Lexemea Flow Description PreconditionPostcondition
USER U (ˆ “USER”)a A→V Specifying a user trying to login. x1 = 0 x1 =1
PASS P (ˆ “PASS”)a A→V Specifying a user’s password. x1 = 1 x2 = 1
CWD C (ˆ “CWD” )a A→V Change directory. - -
CQUIT Q1 (ˆ “QUIT” \n)a A→V Client terminates the session. - ∀xi = 0
REIN Q2 (ˆ “REIN” \n)a A→V User logged out, session can be restarted. - ∀xi = 0
PASV V (ˆ “PASV”\n)a A→V Enter passive mode. x3 = 1 x6 = 1
(TYPE)a Ta (ˆ “TYPE” [SP]“A” \n)a A→V Change representation type to ASCII. x3 = 1 x4 = A

(TYPE)i Tb (ˆ “TYPE” [SP]“B” \n)a A→V Change representation type to BINARY. x3 = 1 x4 = B

(TYPE)e Te (ˆ “TYPE” [SP]“E” \n)a A→V Change representation type toEBCDIC. x3 = 1 x4 = E

(MODE)s Ms (ˆ “MODE” [SP]“S” \n)a A→V Change transmission mode toSTREAM. x3 = 1 x5 = S
(MODE)b Mb (ˆ “MODE” [SP]“B” \n)a A→V Change transmission mode toBLOCK. x3 = 1 x5 = B
(MODE)c Mc (ˆ “MODE” [SP]“C” \n)a A→V Change transmission mode toCOMPRESSED. x3 = 1 x5 = C
RETR R (ˆ “RETR”)a A→V Retrieve a file from the server. x3 = 1 x8 = x8 + 1
STOR S (ˆ “STOR”)a A→V Store a file on the server. x3 = 1 x7 = x7 + 1
APPE A (ˆ “APPE” )a AP→V Append a file on the server. x3 = 1 x7 = x7 + 1
DELE D (ˆ “DELE” )a A→V Delete a file from the server. x3 = 1 x7 = x7 − 1
LIST LS (ˆ “LIST” )a A→V List files on the server. - -
SLOGIN L (ˆ “ 230” (\w)⋆\n)v V →A User has successfully logged in. - x3 = 1
VQUIT Q3 (ˆ [2|4]“21”(\w)⋆\n)v V →A Victim voluntarily terminates session - ∀xi = 0
ARG A ([SP] < str > \n)a A→V An argument of an FTP command. -b -
INVALID RE-
SPONSE

IR (ˆ [ ˆ 1-5])a V →A A non-FTP response (any valid response must start
with a digit between 1 to 5).

- -

astr denotes a string according to the FTP specification [22],ˆ denotes match only at the beginning of a line.\w denotes alphanumeric plus “”.
bMust be precede with a command that requires an argument. Forbrevity, we do not add the state variables required to track the type of the last

command.

Table 6. Events and their transitions for the FTP semantic mo del.

Rule Description
1 E → token A single token is a valid expression.
2 E → (E)⋆ | (E)+ Closure of a valid expression is a valid expression.
3 E → ¬(E) Negation of a valid expression is a valid expression.
4 E → (E op1 E) Concatenation, intersection, and union of two valid expressions is a valid expression.
5 op1 → ·| ∩ |∪
6 E → (token suchthat R) A restricted event: a valid expression restricted withR is a valid expression.
7 R→ (data∈ raw expr) A regular restriction imposed on thedata attribute of a of an token.
8 R→ (lengthop2 INT) A regular restriction imposed on thelength attribute of a of an token.
9 op2→< |> |= | 6=
10 R→ (R op3 R) A logical combination of two restrictions is a valid restriction.
11 op3→∨|∧

Table 7. Grammar for construction regular expressions over events.
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