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Abstract Construction of an accurate signature is a daunting
task. Usually, security analysts inspect a few exem-
We present a methodology to automatically construct plary attack instances, hypothesize the properties that
robust signatures whose accuracy is based on formal must hold in any attack instance, and write down an ex-
reasoning so it can be systematically evaluated. pression that seems to match these properties. The ana-
Our methodology is based on two formal languages lysts have no systematic way to either identify false pos-
that describe different properties of a given attack. The itives, cases in which the signature over-approximates
first language, called a session signature, describes tem-the set of attack instances, or false negatives, cases in
poral relations between the attack events. The secondwhich the signature under-approximates this set. Fur-
called an attack invariant, describes semantic properties thermore, there is no systematic way to evaluate the im-
that hold in any instance of the attack. For example, an pact of changes that the analysts perform to improve the
invariant may state that a given FTP attack must include signature’s accuracy. While a single change might fix
a successful FTP login and can be launched only after a false positive, it might uncover a false negative. The
the FTP representation mode has been set to ASCII. Weend result is an ad-hoc, time consuming, and error prone
iteratively eliminate false positives and negatives from process. It is not surprising that current signatures are
an initial session signature by comparing the signature inaccurate, producing many false positives [7, 31] and
language to the language of the invariant. negatives [10, 25, 35].

We developed GARD, a tool for session-signature - this paper we develop a systematic method to con-
construction, and used it to construct session signaturesgy et accurate signatures. The main idea is simple.

for multi-step attacks. \We show that a session signaturér;rs; e construct an initial signature for the given at-

is more accurate than existing signatures. tack. Second, we build another, independent represen-
. tation of the set of attack instances that the signature
1 Introduction should match. Third, we compare the signature to this

independent representation. This comparison usually re-
veals false positives and negatives, so we manually re-
fine the signature. We repeat this process until we are
satisfied with the signature accuracy.

A misuse Network Intrusion Detection System
(NIDS) defines an attack via aattack signature typ-
ically, a regular expression that matches a pattern of the
attack [21, 26]. Ideally, each time an ongoing activity
matches an attack signature, the NIDS raises an alarm. The signature we develop in this paper is callsgs
Ultimately, the security that a NIDS provides depends sion signature Like existing signatures, it is based on a
primarily on the accuracy of its signatures. regular language that models the attack events (e.g., FTP

Conceptually, a signature represents a single attack, anessages). However, a session signature models the en-
set of events that exploit a given vulnerability. In prac- tire attack, from the attacker’s initiation of the connec-
tice, however, a single attack appears in many forms, ortion to the victim’s indication of whether the attack suc-
attack instances For example, thero-ftpd attack re- ceeded. So, compared to current signatures, it enables
quires four FTP commands that can be ordered in differ- precise definition of the temporal relations between all
ent ways €CAN-2003-0831 [4, 17]). Thus, a signature of the events of the attack. As a result, a session sigha-
is essentially a concise representation of a large set ofture is potentially more accurate than current signatures
attack instances. (Section 5.1).



fp = false positive

To refine the accuracy of a session signature, we
develop the notion of arattack invariant an over-
approximation of the set of attack instances. The in-
variant describes semantic properties that are necessan
conditions for the attack. For example, the property
“successful FTP login is required before launching the  Figyre 1. Searching for false positives and
attack” is an invariant of thero-ftpd attack mentioned negatives.
above. Semantic properties enable us to express knowl-
edge about the protocol the attack uses. Usually, these

properties are not easily expressed using the signature. ) ) )
rious sequence, we refine the invariant. We repeat the

To bridge between a session signature, which repre- h for fal i d i il
sents the attack’s syntactic features, and an attack jn->carch forfaise positives and negatives untif we can no

variant, which represents semantic features, we develodor.'ger rgfine thg signature or the invariant, or we are sat-
a semantic model of a protocolt is a finite state ma- |sf|(e)(?3vx_/|th tlh € fS |%r_1atufrels accurta_cy. d i .
chine that specifies how a protocol command changes a Viously, Tinding faise pos.| IVes and hegatives im-
set of variables whose values define fitetocol state proves our signature accuracy; furthermore, we discov-
For example, our FTP model containgype variable ered that spurious sequences also contribute to the accu-

that tracks the representation mode of an FTP sessiorf@cy- Since they force us to refine the invariant, we better
(either ASCII or BINARY) and describes how tii&' PE understand the necessary conditions for identifying the
command affects this variable attack. This understanding is the key for building highly

hi . del s, i _ accurate signatures.
T IS sema_nuc modelserves two goals. First, we use it However, we like to find more false negatives than
to define the invariant as a set of machine states. For ex-

e si hero-find K onl ds in ASCI] spurious sequences. To do so, we develop a novel
ample, since t pro- tp att_ac only succeeds In ; searching strategy. Our search for false negatives starts
mode, apro-ftpd invariant is the set of states in which

) with sequences of events that do not match the signa-
type is set to ASCIIl. Second, we use the model to

: ture but are similar (in terms of string matching) to the
compute the protocol state for a given sequence of COm'sequences that do match it. Research shows that such

mands, so we can determine whether the invariant holdsSequences are likely to be real attacks [15, 27, 35], and
for that sequence. thus likely to be false negatives of a signature. Indeed,
Essentially, a session signature and an attack invari-we show (Section 5.2.3) that this searching strategy is
ant are two independent representations of a set of attackeffective for finding false negatives.
instances. Formally, each of them represents a set of se-  To carry out this search, we implement GARD: a tool
guences of events. To find false positives and negativesfor Generation, Aalysis, Rfinement, and Bployment
we compare the set of sequences represented by the sighf NIDS signatures. GARD uses the semantic model to
nature to the set represented by the invariant. To find formalize the notion of an attack invariant and then com-
a false positive, we search for a sequence that matchegares the signature’s regular language to the invariant.
the signature but does not satisfy the invariant. Analo- e empirically evaluated GARD's capabilities. We
gously, to find a false negative we search for a sequenceshow that a session signature of a simple attack is more
that does not match the signature but satisfies the invari-yccurate than its Snort [26] and contextual [31] coun-
ant (Figure 1). terparts. We show that, with respect to our attack invari-
Since the invariant over-approximates the set of real ants, our signature produces the least false alarms (none)
attack instances, each sequence that is part of the signaand that it does not miss any attack instance that the
ture but is not part of the invariant must be false positive. other signatures recognize. We show that GARD is ca-
When we find such a false positive we refine the signa- pable of generating a signature for a complex attack [4],
ture. Unfortunately, for the same reason, a sequence thatin attack that requires multiple steps to succeed. We il-
does not match the signature but satisfies the invariant islustrate an iterative process in which we use GARD to
not necessarily a false negative. It might bsparrious systematically uncover a signature’s inaccuracies.
sequencea sequence that does not match the signature, GARD doesotguarantee discovery @il false pos-
satisfies the invariant, but does not really implement the itives and negatives. It finds false positives and nega-
attack. Hence, we manually distinguish between false tive with respect to the attack invariant we use. Defin-
negatives and spurious sequences. When we find a falséng meaningful invariants is an art based on human ex-
negative, we refine the signature; when we find a spu-pertise. Our experience shows, however, that even with

Session | fn = false negative

Signature’(

fpe Sp= spurious sequence



simple invariants, GARD is capable of finding false pos- in an imperative language similar to C, a fact that im-
itives and negatives that we did not anticipate. Further- pairs the ability to easily define a signature and to ana-
more, we believe that the majority of semantic properties lyze a signature’s accuracy. Recently, Sommer and Pax-
required by an invariant can be formally specified using son used Bro to implement@ntextual signatur¢31]
the notion of our semantic model. that enables sequencing of events in a declarative way.
Even when we cannot overcome all signature limita- However, a contextual signature does not model the en-
tions, for example for signatures that require non-regular tire attack and supports only sequencing operators. As
languages, a priori knowledge of signature limitations is our results show (Section 5.1), sequencing alone is not
as important as the ability to generate a robust signature enough for constructing tight signatures.
Based on this knowledge, a signature user can make ra- STATL [8] is a signature specification language for
tional decisions about the risks that their system faces. If NetSTAT [34]; it represents a signature as a state di-
necessary, the user might address these risks using othefgram that describes the sequence of events in the at-

security means. _ _ ~ tack. STATL does not support forming regular expres-
In summary, this paper makes the following contri- sjons over events, construction of a state diagram from
butions. a signature specification, or evaluation of the signature’s

1. A session signaturethat models the entire attack as accuracy. Since GARD uses a state machine as an in-
a regular language. We show that the accuracy of atermediate signature representation, it should be easy to
session signature can be systematically improved. Wetranslate a GARD signature into STATL; in this work,
show that a session signature, at least for the attackdiowever, we do not pursue this issue.
we analyzed, is more accurate than current signatures. Sekar et al. [29, 30] developed a signature specifica-

2. An attack invariant , another representation of the at- 110N language based on regular expression over events.
tack that is used to evaluate a session signature. It isHOWeVver, they did not specify the entire attack, a prop-

based on a novel semantic model of the attack proto-erty that is important for comparing signature accura-
col. cies (Section 5.1). While their focus is network-level

) ) attacks (e.g., TCP SYN-flood) and ours is application-
3. GARD, a tool for automatic evaluation and genera- |eyg|, their language and GARD's language can be used
tion of session signatures. We show, based on empiri-;, specify both attack types. They do not address the
cal evgluation, that the signatures GARD produces arequestion of signature accuracy and do not suggest any
superior to current signatures. means to evaluate it. Since they also translate their sig-

2 Related Work natures into a finite state machine, we believe that their

GARD is centered around a combination of capabili- work can benefit from our evaluation methodology.

ties: modeling the entire attack, a signature-specifinatio Pauzol and Ducassé [23, 24] proposed a language
language based on language operators, a formal repre-ca”?d Sutekh.. Whllg their focus was host-ba.se.d in-
sentation of the protocol semantics, and a methodologytrus'on detection, their Ianguag_e has featur_es similar to
to evaluate a signature accuracy. We review other re-OUrs: They model the attack using sequencing operators
search and tools with respect to those capabilities. and represent a signature using a finite state machine.
Signature specification languagesSnort, a widely- LAMBDA [6] and ADeLe [16] also provide abstrac-
used NIDS [3, 28], represents a signature using a settion over events. These languages are more expres-
of attributes: packet attributes, like a packet length, and sive than our session-signature language, mainly be-
pattern attributes, like a regular expression defined overcause they are general enough to express both network
the attack bytes. A Snort signature corresponds to a sin-and host-based attacks. For example, they provide the
g|e attack event; it does not (and probab|y Cannot) mode|abi|ity to define paraIIeI execution of events, Something
the entire attack since Snort does not facilitate composi-that is usually not required in network-based attacks.
tion of rules (except for the ability to dynamically invoke These languages, like our language, provide the ability
rules for logging purposes). to define the attack preconditions and post-conditions.
Bro [21] bases its detection golicy scriptsrather We believe that translating signatures between our lan-
than signatures. A policy script determines the actions guage and these languages should be an easy task. Like
(e.g., alerts) that should be taken based on the event$he research mentioned above, this work does not pro-
Bro identifies (e.g., a sequence of FTP commands). InVvide means to evaluate signature accuracy.
general, such a script can model the entire attack as a Currently, GARD does not support some features
regular language; however, this requires programmingfound in other tools: signatures that require detection



based on properties of network packets, timers for eveng.
scheduling, or explicit event counters (one can count
events using regular expression, but this is inefficient).

Signature evaluation. We search for signature loop-
holes: a sequence of FTP events that is either a false
positive or false negative. To do so, we first construct

In this work, we focused on the foundational concept

behind GARD, using formal language tools for signa-

ture specification and evaluation. We believe that the

missing features can be integrated into GARD and we

plan to do so in the future. satisfactory or until we can no longer refine the signa-
Signature evaluation methodologiesCurrent tech- ture or the invariant.

niques for signature evaluation are based on testing To define a session signature, it is important to under-
(e.g., [19, 25, 35]) and benchmarking (e.g., [14, 33]). stand how the signature is matched in practice.
To the best of our knowledge, we are the first to ap-  Matching a session signature requires two compo-
ply formal verification techniques for signature evalu- nents. Theexical scannettranslates the raw network
ation. Fundamentally, verification and testing comple- traffic into a stream of events. For example, the scanner
ment each other. Our verification process strives to un-identifiesCWzommands required by thigp-cwdsigna-
cover signature vulnerabilities or to show their absence ture. Thematching enginenatches the stream of events
with respect to an abstract model of the protocol seman-it gets from the scanner against the pattern in the signa-
tics. Testing, on the other hand, aims to uncover bugs byture specification. To keep the signature specification as
exercising a signature, usually with real network traffic. simple as possible, we assume that the lexical scanner
Wagner and Soto [36] applied formal methods to find does not pass to the matching engine any event that is
vulnerabilities in signatures for host-based IDS. They in- not part of the signature specification. For example, the
tersect the language that a signature accepts with a lanFTP STOREcommand is irrelevant to the detection of
guage that models the attack and manually construct anftp-cwd so the scanner does not pass its token to the
instance that evades the signature (false negative). How-matching engine. We also assume that network-level
ever, they do not provide automatic methods for con- protocols (e.g., IP, TCP) are handled by the NIDS and
structing either false positives or negatives. On the othernot by the matching process. For example, we assume
hand, GARD uses techniques like an attack invariant to that when a TCP connection is aborted, the matching
automatically perform these tasks. engine halts.

3 GARD Overview

We illustrate how to use GARD to constructand eval- A Session signature is based on a three-phased ab-
uate a session signature. For these purposes, we choseSraction:preparation in which the attacker sets up the
simple example attack, calldtp-cwd In Section 5, we attack preconditiongxploitation in which the attacker

show how GARD handles more complex attacks. launches the attack; ar@mnfirmation in which the at-
The ftp-cwd attack (CAN-2002-0126 [17]xploits tacker determines whether the attack succeeded or not.

a vulnerability in the BlackMoon FTP server for Win- To construct a session signature, we define the events
dows [5]. The attack requires two steps: the attacker " €ach phase (i.e., the FTP commands and their argu-
logs into the FTP server (e.g., using anonymous lo- ments) and use them 'Fo for_m a regl_JIar expression, the
gin) and then causes a buffer overflow by providing an phase languageA session signature is a concatenation

overly-long argument for the FTRWD(change direc- of the three phase 'a”QPages-
tory) command. The attacker gains root privileges on ftp-cwd events. Intuitively, an event corresponds to

the host and communicates with the compromised host® Protocol message or a part of it. More formally, an
through the FTP control port (i.e., port 21). event is an observable sequence of bytes that is part of

To define a signature fdtp-cwd we perform the fol- the atta_ck_; it contains bytes sent by either the attacker

lowing steps: or.the victim (but not both). GARD represents an event
using a lexeme, a regular expression that matches the

1. Signature specification. We construct a pattern that sequence of bytes, and a token that uniquely identifies

matches the sequence of events required for the attackhe event (as done in lexical scanners, e.g., Flex [20]).

detection. This sequence contains the events that oc- We identified five events iftp-cwd In the prepara-

cur during the entire attack, from the attacker’s initi- tion phase, we identified thie event, which corresponds

ation of the connection to the victim’s indication of to a response of an FTP server confirming a successful

whether the attack succeeded. login, and@, which corresponds to an attacker attempt

anftp-cwdinvariant and then use GARD to automat-

ically compare the signature’s language to the invari-
ant’s language. This is an iterative process that con-
tinues until we decide that the signature accuracy is

3.1 Signature Specification



A such that
I (length>100 &&
data /{.)"/bin/sh(.))

(@) Lpre, the ftp-cwd preparation phaseQ is a  (b) Lexp, theftp-cwdexploitation phas® (€) Leons, theftp-cwdconfirmation phase.
disjunction of@Q; andQ2 events from Table 6.

AlgL

hthat
(A.length>100 &&
A.data/f.)"/bin/sh(.))

ACkQ c ACkQ c
Q Ordinary state @ Superstate
(d) Mmain machine: concatenation of the three phasetpetwd (€) SStp-cwd Machine: an HSM for thétp-cwd attack (superstate not

fully detailed). Note that the alphabet of a superstateedyis different
than the one of the main machine (events).

aWe use fbin/sh " as an example. In reality, the attacker may not necessangjet /bin/sh  ”. GARD’s libraries contain other expressions
that an analyst can use to build tfe-cwd explotation phase.

Figure 2. From an ftp-cwdspecification to an operational  ftp-cwdsession signature.

to logout from an FTP session. The exploitation phase cuted a logout procedure. As we show in Section 5.1,
contains the” event, which correspondsto an FCRVD  signatures that do not ensure both condition (e.g., Snort
command, and thd event, which corresponds to an ar- ftp-cwds signature) generate false positives. Since this
gument of aCWDrommand. Finally, to confirm the in- language (Figure 2a) is common to many FTP attacks,
trusion, we identified théy event; it corresponds to an we added it to GARD's library of FTP patterns.
Invalid Responsérom an FTP server: a message that ~ The ftp-cwd exploitation language, denoteHexy,
cannot be part of a legal FTP responsk; indicates concatenates tha event to theC' event. However, the
a compromised server because it cannot be sent by aoncatenation of’ and A matches angCWIrommand,
well-behaved FTP serverlr matches, for example, a even benign ones. Hence, we further restrict the content
response to &NIX id command, which the attacker of a maliciousA by specifying that the maliciou6 WD
uses inftp-cwdto check whether the attack succeeded. is followed by an argument that is longer than 100 bytes
In most cases, there is no need to define new eventsand contains the stringljin/sh ~ ” (Figure 2b). GARD
GARD contains a library of predefined events for com- supports restrictions on the evéength using relational
mon protocols (e.g., FTP, HTTP). For example, based operators (e.g>,<), and on the everdata, using reg-
on the FTP specification [22], our FTP library (Table 6) ular expressions. So, it is a straightforward matter to
contains an event definition for every event in fhe translate an event restriction into a regular language.
cwd specification. Theftp-cwdconfirmation phase, denotebl;ons, con-
ftp-cwd phase languagesTo explain the process of tains a singlénvalid Responsevent (Figure 2c).
signature specification and the underlying compilation  Generating a working signature. Defining a regular
method of GARD, we present a phase language using alanguage for each phase completes the signature specifi-
finite state machine. The expression for the languagescation. GARD compiles this specification into an inter-
are given in Section 4.1. mediate representation. To better explain the signature
Theftp-cwd preparation language, denotégle, en- evaluation process described next, we provide a short
sures that an attacker logged into the server beforesummary of this process and the intermediate represen-
launching the attack. To do so, itimposes two conditions tation GARD uses. Section 4.2 presents the detailed
(Figure 2a): (i) the attacker has successfully completed compilation process.
a login procedure, and (ii) the attacker has not yet exe- GARD’s compilation process contains two steps.



(a) The main concepts of signature evaluation illustratg) Using the semantic model of a protocol to implement

through theftp-cwdattack. and define the search for false positives and negatives.
Language Definition
L(Mp) Y% the set of possible sequences of events from protBcol
Ua Sequences that implemeAt(the set we try to unambiguously define).
L(S%) Sequences that the session signaturd atcepts.
L(I4) Sequences that satis#/s invariant.
EDy(L(SS1)) Sequences that akeedit distance froni.(SSy).

False positive fp e {L(SS1) N U}
False negative fne {-L(SSu) NUA}
Spurious sequencesp e {—L(SSy) N (L(I4) \Ua)}
(c) Formalizing signature evaluation as a comparison betwegular languages.

Figure 3. The fundamentals of language-based generation of session signatures.

First, GARD concatenates the phase languages into aatives. A false positive, denotdg, is a sequence in
main machingFigure 2d). Second, GARD embeds the {L(SSp-cwd) N ~Usp-cwd} @nd a false negative, denoted
restrictions on events into the main machine as separatehn, is a sequence it~ L(SSp-cwd) N\Utp-cwd} (Figure 3a).

finite state machines (restrictions are regular languages, \when the ultimate set is easy to define, for example
so each restricti_on can be repres_enteo_l as an FSM). TqJy a regular language, we can use it as a signature. Un-
do so, GARD builds a (non-recursive) Hierarchical State fotynately, in most cases, the ultimate set is difficult to
Machine (HSM), a machine whose states are either ordi- yefine. For example, we thought that it would be easy
nary states osuperstateshat are FSM themselves [2]. 4 construct a session signature that matdfigsue but

In the ftp-cwd case, the superstate imposes the restric- GARD found a false positive. The ultimate set for more

tions onA’s data and length: in statg if the superstate  complex attacks is even more difficult to define (Sec-
accepts the restrictions, the main machine moves to thejjgp, 5.2.1).

attackstate, else it moves to statgFigure 2e).

Itis a straightforward matter to translate an HSM into
a working signature. For example, it is possible to trans-
late an HSM into a Snort [26] plugin or Bro’s contex-
tual signature [31]. Furthermore, for signature evalua-

tion purposes, it is also easy to translate an into a Spmtacker sends the malicio@Vzommand”: such an in-
model (Section 4.4). .
variant can be expressed as a regular language, denoted

3.2 Signature Evaluation L(Iip-cwd). Our evaluation methodology assumes that

Ultimately, our task is to construct a signature that @n invariant over-approximates the ultimate set, that is,
matches every FTP session that implementdtipewd ~ L(/pcwd) 2 Unpcwa: We discuss the reasons for such
attack. Formally, we denote the set of FTP sessions thaf2" OVer-approximation in Section 4.3.
implementftp-cwd as Usp.cwa, Called theultimate setof Given L(Inp-cwd), We find a false positive by search-
ftp-cwd We denote the set of sessions that matches ouring for a sequence iI{L(SSp-cwd) N —L(Litp-cwd) }-
session signature (Figure 2e) B8SSp.cwd). An ideal Since L(Iip-cwd) 2 Uspcwar if P € {L(SSp-cwd) N
signature is a signature such tHatSSp-cwd) = Usip-cwd: —L(Iitp-cwd) }, thenfp € {L(SSp-cwd) N ~Ustp-cwa}, that
A non-ideal signature generates false positives and neg-s, fp is a false positive (Figure 3a).

To systematically find false positives and negatives,
we approximate the ultimate set by using an attack in-
variant, a predicate that must hold in every instance of
the attack. For example, we define fie-cwdinvariant
as “a login procedure must be completed before the at-



To find a false negative we search for a sequence inachieve this goal, we use one language for event repre-
the set{=L(SSp-cwd) N L(Iip-cwd)}. HoOwever, since  sentation and one for constructing regular expressions.

L(Iitp-cwd) 2 Ustp-cwa, OUr Search may yield spuriousse- We represent events using regular expressions over
guence which satisfies the invariant but does not imple- raw network bytes. In practice, we use the Flex lan-
mentftp-cwd formally, a sequence ifi—L(SSp-cwd) N guage [20] to form the expressions. Since an attack

(L(Iftp-cwd) \ Urp-cwa} (Figure 3a). Hence, each time we might contain events from multiple streams (e.g., one
find a sequence ii—L (SSp-cwd) N L (Litp-cwd) }, we man- stream for the messages sent by the attacker and one
ually check whether this is a spurious instahcé. it for the victim responses), we annotate each event with
is, we refine the invariant and continue searching. We its corresponding stream. To identify streams, we use
discuss techniques of guiding the search toward falsethe common convention of IP addresses and port num-
negatives rather than spurious sequences in Section 4.3pbers [26, 21]. For brevity, in our FTP model (Ap-
we illustrate the invariant refinement process in Sec- pendix A) we specify the stream of an event by using

tion 5.2.3. only the sender: a subscripto denote the attacker and
A false positive in SSip.ong. We formally define v to denote the victim.
L(Itp-cwd) Using our FTP semantic model (Appendix A). To form a regular expression over events, GARD uses

GARD comparedL (fip-cwd) 10 L(SSp-cwd) @and found  standard operators for language manipulation (Table 7).
a false positive: a sequence of FTP commands thatThe only non-standard operator is thech _that op-
matches the signature but in which the malici@\WD  erator; it is used to restrict the data or length of an event
appears before a completed login procedure. (as in Figure 2b).

Our ftp-cwd specification ignores a victim (the FTP Table 1 presents a complete signature specification
server) that voluntarily terminates the connection (event for ftp-cwd The languages for the three phasBge,
VQUIT in Table 6). The false positive includes such Le,, and Lcons, correspond to the state machines pre-
an event injected before the malicioO8VDAnN attacker ~ sented in Figure 2a to Figure 2c.
that intentionally ignores this terminating message can
continue to send the maliciouSWD causing a false
alarm. It is an open question whether to include this ~ Compiling a signature specification (e.g., Table 1)
event in theftp-cwd signature; it is unclear whether at-  into its corresponding HSM (e.g., Figure 2e) is based on
tackers can exploit this weakness. In any case, GARD & standard algorithm for translating a regular expression
can generate two versions of the signature, one that in-into a finite state machine [12]. The compilation process
corporates the event and one that ignores it. Signaturecontains three steps:

4.2 Compilation Process

users can choose the version that fits their needs. 1. We use the standard algorithm to translate each
The important Iessonfromtﬁm—cwdegample is not such that expression into an FSM, called su-
the weakness we revealed in tfip-cwd signature, but perstate For example, we translate tisech _that

the systematic way in which we found the weakness. We expression in theftp-cwd specification into a ma-
illustrated that formal methods and tools can help us sys- - chine that identifies a string that contains the pattern
tematically construct NIDS signatures, signatureswhose  «/pin/sh  ” and is longer than 100 bytes.

quality can be evaluated and understood. We further dis-

cuss GARD’s advantages and disadvantages in the next e use the standard algorithm to buildain (Fig-
section. ure 2d). Formally, we build ai/mai, that accepts the

: languag€.pre - Lexp: Leont.
4 GARD's Foundations guagelipre - Lexp- Leont

We discuss GARD'’s signature-specification lan-
guage, the algorithm it uses to translate a signature
specification into an hierarchical state machine, and its

methodology for finding false positives and negatives. While we build Mmain Using the standard algorithm,
recall that this algorithm does not handle the non-

o _ standardsuch _that operator. Hence, we perform
The goal of GARD’s specification language is to pro- restricted-event renamingWe replace each restricted
vide a clean separation between event representation angdvent, a token restricted with theuch _that opera-
the ability to construct regular languages over events. Totor (Table 7), with a unique identifier. For example, we
1We can automate this process by launching the instance oh a vu ConvertLeXP in Table 1 fr.omC ’ (A suchFhat d‘:ﬂae
nerable host [35]. We leave this implementation issue faréuwork. shell && length>100) into the expressiod’ - A.

3. We embed the superstates it Obtaining a ses-
sion signature, an HSM denot&&tack-namd€.9., Fig-
ure 2e).

4.1 Signature Specification Language




Phase Signature Description
Preparation Ioginftp A macro denoting a regular expression that matches any F3gtoseafter a successful login.
(Lpre) The macro defines a regular expression using tokeasdQ: ((—L)* - L - (-Q)*)*
Exploitation C - (A suchthat A maliciousCWxommand whose argument is longer than 100 bytes and conltenpattern
(Lexp) datac (.)*bin/sh (.)* | bin/sh .bin/sh is an example;in practice, other patterns from the exptmieccan be used

&& length>100)

Confirmation IR Thelnvalid Responsevent indicates that the connection is no longer used as BrcBiinec-
(Lcont) tion.

Table 1. A signature specification for  fpd-cwd

Renaming a restricted event is not just syntactic the accuracy of.(SSy).

sugar; it actually preserves the signature semantics. Es- e require thatl.(14) 2 U, that is, an attack in-
sentially, a restricted event represents a unique sequencgariant should be a necessary condition for the attack to
of bytes: the restricted eventd”suchthat data € occur (Figure 3b). We require this for two reasons. First,
shell  && length > 100" represents a different se- necessary conditions are usually easy to define, facilitat-
quence of bytes than the evet™ (Table 6). Hence, ing fast signature construction. For example, it is easy to
renaming enables the standard algorithm to distinguishsee that a successful FTP login is a necessary condition
between restricted events and their unrestricted versiongor theftp-cwdattack. Second, since false negatives are
(e.g.,A andA) in the same way it distinguishes between considered more harmful than false positives, by over-

any other two events (e.g4 andC). approximating/ 4 we ensure that, theoretically at least,
Renaming also enables us to identify the places in we will never miss a false negative.

the main machine in which we need to embed the super- 1, find a false positive, we search for a sequence in
states. After step 2 above, each edge in a main maching ; s, y\_.1,(7,,)}. As mentioned in Section 3.2, since
that is labeled with a renamed event should be replacedL(IA) > U4, such a sequence must be a false positive.
with its corresponding superstate. Analogously, to find a false negative we search for a se-
4.3 Signature Evaluation Algorithms quence in the set—L(SSy) N L(14)}. However, since
L(I4)2U,, our search may yield spurioussequence,

a sequence that satisfies the invariant but does not im-
plementA. Hence, each time we find a sequence in
{-L(SS4) N L(I4)}, we check whether this is a spuri-
ous instance. Ifitis, we refine the invariant and continue
searching.

Since the search for false negatives involves human
intervention, we would like to avoid spurious sequences.
The problem becomes even more serious whéh, )

fIs much larger tharl/ 4, yielding many spurious se-
quences. For examplé,(Iip-cwd) (Figure 3a) contains
all sequences of FTP commands in which FTP login has
represents i¥%. An example model for FTP is given in been completed. This set is much larger thi&g.cwg,
Appendix A. the set of sequences that implemgptcwd
An attack invariant/ 4 is a logical formula over the To reduce the probability of hitting a spurious se-
state variables of/». The languagéd.(I4) is the lan-  quence, we search the SetL(SSy) N L(14)} for se-

guage accepted by ai» whose accepting states are the quences that are similar, in terms of string matching, to
states in whicH 4 holds. sequences iL(SSy). This strategy is based on the ob-

As mentioned in Section 3.2, our goal is to construct servation that new attack instances can be generated by
a signature thatis as close as possiblgjothe ultimate  introducing small changes to already-known instances
set of A. Unfortunately, in most cases, there is no clear Of the attack and that a signature represents such known
definition of U 4. Therefore, we evaluate the accuracy instances. This observation forms the basis for many
of L(SSy) usingL(14). Even though bott,(SSy) and ~ NIDS testing tools [10, 15, 19, 25, 35].
L(I4) are only approximations df 4, our results show We formalize similarity using the notion @fdit dis-
that such a comparison is an effective way to improve tance[1]. The edit distance between stringsand s,

Let SS 4 be the session signature of an attatlsuch
asS Sip-cwdin Figure 2e. We evaluate a session signature
by comparing its language, denoté¢SS$,), to the lan-
guage ofA’s invariant, denoted. (1 4).

To define an invariant for an attack that uses protocol
P, we represent the protocol semantics usingsémaan-
tic model of P: a finite state machine, denotéddp. A
state inMp is a valuation of variables that are called the
protocol’sstate variablesA transition describes how an
event, usually corresponding to a protocol message, a
fects the variable values\/r is defined ovelkp, a set
of protocol events. Essentially, the language that



denoteded(s1, s2), is the number of insertions, dele- according to our semantic model, then there is no se-
tions, or substitutions required to transfoeminto ss. guence of events, from our model, that implements
For alanguagé we define itsc-edit-distancéanguage,  and isk-edit distance from a sequence that matches our
denotedED, (L), as the set of strings such that their edit signature.

distance from a string il is less thank. Formally, GARD doesnotguarantee discovery all false neg-

EDy (L) ={z|3y € L such that efl,y) < k}. Itis well atives. GARD will not find a false negative that is more
known that if L is a regular language, th&EDy, (L) is thank-edits away from our signature. Also, GARD will
also regular[9, 13, 32]. HencEDy (L(SSy)) forms an- miss a false negative that uses an event that is not part of
other regular language, a superseL¢8S;). the model, thatisn¢ L(Mp). In such a case, Figure 3b
4.4 GARD: Summary and Pitfalls. is inaccurate becausés ¢ L(Mp). There is nothing

. N surprising here, because the vague natur& gfis the

{L(SSy) N —L(L4)} is empty. To find false negatives, syrfaces, the semantic model should be refined.
GARD checks whether the s¢tL(SS) N L(14) N Implementation notes. To constructt Dy, ( Lsig(A))
EDy(L(S%))}, for some constark, is empty. we used a recent methodology proposed by Kari et
To check the emptiness of the above sets, GARD usesy|_ [13]. Their methodology enables us to define the er-
Spin [11], a publicly available model checker. Since rors that are permitted. In other words, it permits us to
all of these sets are regular, it is straightforward to USe restrict the transformations attackers can perform. This
Promela, the input language for Spin, to represent thefeature is useful if we understand that not all transforma-
sets as finite state machines. We use Spin because ifions really preserve the attack semantics. For example,
is capable of not only checking for emptiness, but also i the ftp-cwd attack one cannot delete or replace the
of providing a sequence in these sets when they are noic\wmommand with a different ETP command.
empty. This ability greatly simplifies the evaluation pro- During signature evaluation we use the HSM with-
cess. out its superstates (th&/man machine rather than the
When GARD asserts thqtZ.(SSy) N —~L(14)} = 0, SSp-cwd Machine from Figure 2). We assume that if a

it means that, if we interpret events according to our fajse negative or positive exists Wmain, there is also
semantic model, then we cannot use the events in they sequence i/, After all, if an attacker finds such

model to construct a false positive that matches the sig-5 sequence for th@/man, they can construct it in a

nature but violates the attack invariant. way that satisfies the restrictions imposed by the supern-
For example, consider odtp-cwd signature (Fig-  odes. Also recall that the lexical scanner drops any event

ure 2e), our FTP model (Appendix A), and thip-  that does not explicitly appear in the signature specifica-

cwd invariant from Section 3.2. GARD asserted that tjgn (Section 3). Since these dropped events appear as

{L(SSp-cwd) N ~L(Ip-cwd) } = (after addingls tothe  self-loops inMpmain, during signature evaluation, we add
signature). This means that we cannot construct a sehese self l00ps td/main-

guence of events from the events in Table 6 that matches .

our signature but in which an attacker is not logged in. © GARD Evaluation

If one believeS, as we believe, that our mOdel aCCUrater We evaluate the accuracy of a session Signature and

describes all possible ways to login and logout from an GARD’s ability to find false positives and negatives in

FTP server, then an attacker cannot cause a false positivgommex attacks. We prove that ofip-cwd signature

for ourftp-cwdsignature without completing an FTP lo-  (Taple 1) is more accurate than current signatures: not

gin procedure. Such a guarantee does not existin currenpnly it is not vulnerable to false positives (with respect

ftp-cwdsignatures (Section 5.1). to our invariant), but it does not miss any attack instance
GARD doesnotguarantee discovery all false pos-  that the other signatures recognize. We also show that

itives. GARD will not find a false pOSitive that uses an GARD is able to model Comp|ex attacks and to find false

event that is not part of the model, thatfis¢ L(M»);  positives and negatives that we did not anticipate.
in such a case, the semantics model should be refined.

GARD will not find a false positive that satisfies the at- >.1 Session Signature Evaluation

tack invariant, that isfp € {L(SS1) N (L(La) \ Ua)} Our initial study used GARD to identify known vul-
(Figure 3b); when such a sequence surfaces, the invari-nerabilities in thetp-cwd signatures that current NIDS
ant should be refined. use: a recent contextual signature developed by Sommer

When GARD asserts thaf—L(SSy) N L(14) N and Paxson [31] and a Snort [26] signature.
ED:(L(SS4))} = 0, it means that, if we interpret events To compare the two signatures to ours, we first de-



Sig. L (SSsg-name) HSM sizeé? false Operational Comments
name For brevity we writeLsig-name Alphabet states| edges| positive | false positive
Snort | (Xgp)*(CA)(IR) {C, A} 2 4 CA yes
CS (("L)*L(Eﬁp)*)(CA)(IR) {C,A, L} 4 9 LQ1CA yes
owdi | (CLP LT (CA(UR) [{CALQi2)| 4 12 | LQsCA no Q={Q1,Q2}
owdy | (CL)P LT (CAUR) {C AL, Qr2s) 4 15 - - Q={Q1,Q2,Q3}

aThe size of a deterministic HSM without states and edgesmérstates.

Table 2. Comparison of signatures and their weaknesses. Ynp is the set of events from Table 6.

fined the Snort and contextual signatures as session sigfound, and whether we were able to create an operational
natures, denote8nortandCS respectively. Since the false positive from the sequence GARD provided. A few
Snort signature does not include a confirmation phase,observations should be noted:
we added thedr event (Section 3.1) as the confirma-
tion phase for all signatures. Then, we used our FT
model (Appendix A) to define the invariant “a login pro-
cedure must be completed before the attacker sends the
maliciousCWzommand”. Last, we used GARD to find
false positives in each of the three signatures. GARD re-
vealed false positives with which we were familiar and
one with which we were not. We then refined our initial
ftp-cwd signature and verified that, with respect to our
invariant, it does not have any false positives.

ftp-cwd Snort signature (signature 1919 revision
19 [26]). Essentially, this is the exploitation phase of
our session signature (Figure 2b). We knew that this
signature is not tight: attackers can cause a false posi-
tive by sending the malicioulBWzommand before they
have logged into the FTP server. Since this signature ig-
nores events that precede the malici@WwDwe model 3
its preparation phase &Ep)*, whereXy, is the set of
FTP events in our model (Table 6).

ftp-cwd contextual signature [31]. This signature
ensures that a login event appears before the malicious
CWDWe knew that this signature is not tight because
an attacker can cause a false positive by sending an

Pl' We can order the signatures by their accuracy: Snort
is the least accurate signature aowld, is the most
accurate one. It is easy to prove tHafort O Les D

Lews, O Lewd,- This means that a less accurate sig-
nature always generates more false positives than a
more accurate signature. It is also possible to prove
that there is no sequence that implemdtgscwdin
{Lsnor\Lcs}, {Lcs\Lewd, }» and{ Lewg, \ Lewd, }- This
means that a more accurate signature never misses an
attack instance that a less accurate signature matches.
The formal proofs of these claims is beyond the scope
of this paper.

The operational overhead of all signatures is low. All
signatures require less than 20 edges, indicating in-
significant memory footprints of their HSMs.

Using the ProFTPD server [18] and Bro, we could
not generate an operational false positive with the se-
quence GARD provided focwd;. In this sequence,
the server voluntarily terminates the FTP and TCP
connections, using th€); event. Since Bro stops
monitoring an FTP session immediately after observ-
ing the terminating TCP sequence, it ignores the

FTP QUIT command immediately before the malicious
CWDbut after they have completed the FTP login pro-

cedure. We defined the preparation-phase language as

(=L)*L(Xap)*, whereL is a successful-login event (Ta-
ble 6). This means that after observing a single login
event the signature moves to the exploitation phase.

ftp-cwd session signatureWe used the signature we
defined in Table 1, denotexlvd; .

and A events and does not generate a false alarm.
Since the additional overhead ofvd,, in terms of
memory consumption, is insignificant, we believe that
cwd, is preferable because it prevents this potential
false positive ircwd, .

5.2 Constructing Complex Signatures with GARD

In our pilot study we examined a relatively simple

Evaluation summary. Table 2 presents a summary attack. Given its success there, we wanted to challenge
of the experiment results. Each row in the table presentsGARD'’s capabilities with a much more complex attack.

one signature: SnorCS cwd;, andcwd,, which we
constructed after GARD had revealed a weakness in

To do so, we chose the multi-stpm-ftpd attack.

The pro-ftpd attack (CaAN-2003-0831 [4, 17]).

cwd,. For each signature, we show the language it ac- The pro-ftpd attack exploits a buffer overflow in the
cepts, the alphabet for the signature’s HSM, the numberProFTPD [18] server. This vulnerability occurs when
of nodes and edges in the HSM, the false positive GARD the attacker transfers a file in ASCII mode. During such
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Phasg Signature Description
Lpre (Ioginftp Ntypey) - S Ioginftp = ((-L)*L(—Q)*)T whereL is a SLOGIN event an@ is a QUIT eventQ = {Q1 U Q2 U Q3},,
see Table 6). We also used this pattern inftheewd signature (Figure 2a).

Lexp R-R typey = ((—Ta)*Ta(—Ty)*)* whereT, is aTYPE Aevent andl} is aTYPE Bevent (Table 6). The|
intuition is that an ASCIl mode requiresTa, event that is not followed by @&, event.
Lconf w W = ((.)* )x:y—FTP::4660. This is an event that identifies an opening &ffdIX shell on port 4660 of the FTH

=3

server. The patteri)* matches any traffic that traverses this TCP sessiasthe IP address of all events sep
by the attackery is an arbitrary port number.

Table 3. Our initial signature ofthe  pro-ftpdattack. This signature is susceptible to false positives
and negatives which we fix in Section 5.2.2 and Section 5.2.3, respectively. Event definitions
are given in Table 6.

a transfer, the ProFTPD server stores data in 1024 byte5.2.2 pro-ftpd False Positives

chuan](s tgl,Cheka :]or nevr\:hne charactgrsﬁ Due t?l INCOT 5urpro-ftpdinvariant states that any successftd-ftpd
rect handling of these characters, a buffer overflow 0C- o0k must end in the login and ASCII states. We for-

curs \l/(vhen F?roF‘?PD parse§ a i»]peciallykcraft.edI file. This mally defined it using thETPype andFTPiogi variables
ar:taI(;TFr)equwes gurhsteps. 'L e attacker (|_) 0gs (|jnto in our FTP model (Table 5).
the server, (ii) changes the representation mode to To search for false positives and negatives, we must

A.SC”’ (iii) uploads, to the '.:TP server, a file that CON" initialize the variableF TPy to the default value used
tains their shell code, and (iv) downloads the same file; by the ProFTPD server. Since the ProFTPD enables

during this download a buffer oygrflow occurs. In this an administrator to determine the default mode, we per-
attack, the attacker gains root privileges on the host, andformed the search twice: once with ASCII as the default
then communicates with the compromised host throughand once with BINARY.

anew TCP connection opened by the shell code. When the default representation mode is ASCII,

GARD verified that ourpro-ftpd specification has no
false positives with respect to the given invariant. How-
ever, when the default is BINARY, GARD found a
. . . false positive: the sequen¢EYPE A LOGIN, STOR
The attack requires three preconditions: an FTP SeSSI()rhET\?REI-IrVV} This sggueﬁce mat?hes the signaturEe but
both in the login and ASCII sta’tes_, ancBa'_OREcom- ends in BINARY mode, so it does not implement the
mand that uploads the attacker’s file. To simultaneously attack; theTYPE Ahas no effect because it appears be-
impose Ioginland ASCII states, we intersected thg lan- fore a’login procedure. The sequence matches the sig-
guages fologing, andtypgA é;%’lfé)' To the resulting nature because the intersection between the languages
pattern, we concatenated t vent. loging, andtype, does not enforce the required order be-
We modeled the two retrieval, or download, op- tweenthe eventsSOGINandTYPE A(see Figure 4a).

erations as thepro-ftpd exploitation phase (Table 3). The problem is theype, pattern. This pattern in-
The boundary between the preparation and exp|oitationtends to ensure thatBYPE Aevent is not followed be
phases can be set arbitrarily because it does not havét TYPE Bone, that isli,(—7})*. However, GARD in-
any operational meaning. However, the boundary be- Stantiates-7}, as the se{ L, Q, S, R,T,}. When BI-
tween the exploitation and confirmation phases signalsNARY is the default mode, performing a logout and
the NIDS to raise thattackalert, so it is important to  then login (using thQUIT andLOGIN events) behaves
set it according to our interpretation of the attack. In the like 73! it switches the mode back to BINARY. Hence,

case ofpro-ftpd, it seems clear that the second retrieval We modifiedtype, into ((=7.)*Tu((—~T3) U (-Q) U
operation marks the end of the attack. (=L))*)*. After this change, GARD verified that no

false positive exists when the default mode is BINARY.

5.2.1 Initial pro-ftpd specification

The confirmation phase @iro-ftpd consists of a sin-
gle event, opening BINIX shell. Unlike the case dfp-
cwd, the shell is opened on a new TCP connection us- We illustrate an iterative process in which we found false
ing the server’s port 4660. To identify this activity, we negatives in our initiapro-ftpd signature. In each iter-
defined an event that matches any communication thatation, GARD provided a sequence that does not match
occurs on this port. the signature but satisfies our invariant. We manually

5.2.3 pro-ftpd False Negatives
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Round Sequence Type Attack Invariants Invariant/Model Refinement Signature Fix
(Figure 3b)
1 original: (T,,L,S, R, R)| FTPggin=true — Fix (Ioginftp N type,). Compare old (Fig-
false neg{R,L,S,R,R) | FTPype= A ure 4a) to new pattern (Figure 4b).
2 original:  (L,S, R, R) FTPiogin=true One STOREcommand must ap- —
spurious: (L,C, R, R) FTPype=A pear in any instance of the attack.
3 original:  (L,S, R, R) FTPiogin=true, st=1 | Two RETV command must ap- —
spurious: (L, S,C, R) FTPype=A pear in any instance of the attack.
4 original: (L,AP, S, R, R)| FTPggn=true, st=1 — Replace(loginﬁpﬁtypeA)S with (Ioginﬁpﬂ
false neg(L, AP, C, R, R)| FTPype=A, rt=2 type, ) (S U A).
5 original: (L, R,AP, R, R)| FTPqgin=true, st=1 | Limitlength of attacks. Limit at- —
spurious{L, R, AP, R, C)| FTPype=A, rt=2 tacker transformations.
6+ — FTPogin=true, st=1 — —
FTPypeA,  It=2,
length<k, . ..

Table 4. A search for false negatives with  1-edit distance. An original sequence matches the
pro-ftpd signature in Table 3. Event definitions are given in Table 6. | n Round i we applied the
Invariant Refinements or Signature Fixes we performed after Round i—1.

determined whether this sequence was a false negative Next, GARD added a®\PPENDcommand and re-
or a spurious sequence. In the first case, we refined theplaced theSTOREwith a CWDQ(Round 4 in Table 4).
signature; in the second, we refined the invariant. We This is a false negative, as theo-ftpdattack can be im-
repeated these steps until we were satisfied with the sig-plemented using aAPPENDOnstead of &STORE Since
nature accuracy. we modeled aPPENDN the same way we modeled
We searched for false negatives that aredit dis- @ STORE both incremenst (Table 6), we anticipated
tance from our session signature. We assumed that thdhis false negative; to prevent it, we addedAPPEND
default representation mode is ASCII. During the pro- command to th@ro-ftpd preparation phase.
cess, we found two false negatives. The whole process The question of whetheBTOREand APPENDare
took less than 3 hours for an experienced GARD user. equivalent in general is beyond the scope of this paper.
In the first false negative we found that GARD re- We believe that the answer is attack-dependent; a secu-
placed aTYPE Awith a RETVcommand (Round 1 in ity analyst should address it in every FTP attack they
Table 4). Essentially, GARD showed us that when the define. GARD affords an analyst the ability to investi-
default representation mode is ASCIIT¥PE Acom- gate the implications of their decision. We defined the
mand is not required for a successfub-ftpd attack; a ~ two commandsin an equivalentway, so GARD canwarn
successful login puts the FTP session into ASCII mode an analyst of an unforeseen false negative. If this behav-
(Figure 4a) We Changed ﬂmo_ftpd preparation phase joris undesired, an analyst can disable it eaSi|y.
into the expression represented by Figure 4b and re- In the next sequence, GARD replace®BETVcom-
moved this type of false negatives. mand with aCWDand increased the length of the se-
In the next sequence, GARD replaceS BOREcom- quence to include tw®ETVcommands as required by
mand with aCWD(Round 2 in Table 4). Since the the attack invariants (Round 5 in Table 4). Again, this
STOREIs a necessary condition fgro-ftpd, this se- IS @ spurious sequence. At this point we used our edit-
guence is not a false negative but a spurious sequencedistance mechanism to limit the transformations attack-
To avoid this type of sequences, we added to our seman-£rS can perform (Section 4.4). For example, in e
tic model a variable, denotest, that counts the number ~ ftpd attack the lasRETVcannot be replaced with@GWD
of STORE in a sequence. We usstio ensure thatone SO We forbade this replacement. Based on the restric-
STOREcommand appears in any sequence GARD pro- tions we imposed, we did not find other false negatives.
vides. Not surprisingly, in the next sequence, GARD
replaced &RETVwith aCWIZ(Round 3 in Table 4); this 53 Summary of GARD Evaluation
sequence also does not implement the attack. Hence,

we added thet variable that count®RETVcommands We analytically showed that ofitp-cwdsession sig-
and used it to ensure that a sequence containREBV nature is more accurate than its Snort and contextual
commands. counterparts. To the best of our knowledge, we are the
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{Ta.QR S {T,.QRS} paper, we took the first step toward this goal. We present
My ) a methodology to construct, evaluate, and improve sig-
natures.

We intend to continue this work as follows. First,
although our initial results indicate that the operational
cost of session signature is comparable to current signa-
tures (Table 2), we intend to perform a thorough inves-
tigation of this issue. Second, since session signatures
use HSMs, it seems possible to share machines between
() Original loging, M type, pattern. This machine should accept all signatures and improve the ability of a NIDS to handle
and only FTP sessions after login and with representatiodenset many signatures simultaneously. Last, it is necessary to

to ASCII. However, when the default mode is BINARY, the satpes .
(Ta, L) results in a false positive (Section 5.2.2). When the defaul deveIOp semantic models for other pl’OtOCOlS.

ASCII, the sequencél) results in a false negative (Section 5.2.3). Acknowledgments.We deeply thank the anonymous
referees for their useful comments that have helped us
{Q refine the concepts presented in this paper.
{Ta LRS}H

{Tp.Ta QRS
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\Var.| Values Semantic Comments

z1| {0,1} A USERcommand was issued.

z2| {0,1} A PASScommand was issued.

xz3| {0,1} Victim has indicated a successful login. Alias to FTPogin (Section 3.2)

z4| {U=0,A=0,B= | Holds session representation type (ile{PE Alias to FTPype (Section 5.2.2). A=ASCII,
1,E=2} B=BINARY, E=EBCDIC, U=undefined.

z5| {U=0,S=0,B = | Holds session transmission mode (iMODI S=STREAM,B=BLOCK, C=COMPRESSED
1,C=2} U=undefined.

ze| {0,1} A session is in passive mode.

z7| {0,...,MAX} Counts number of files uploaded in this session.

zg| {0,...,MAX} Counts number of files downloaded in this session.

Table 5. State variables for the FTP semantic model.

Event 'Toke Lexemé Flow | Description PreconditionPostconditior
USER U (" "USER")q A— V| Specifying a user trying to login. 1 =0 x1 =1
PASS P (" “PASS"), A— V| Specifying a user’s password. r1 =1 ro=1
CWD C (""CWD" )4 A— V| Change directory. - -
CQUIT Q1 (" “QUIT" \n)q A— V| Client terminates the session. - Va; =0
REIN Q2 ("*REIN"\n)q A— V| Userlogged out, session can be restarted. - Va; =0
PASV \%4 (" "PASV"\n), A— V| Enter passive mode. 3 =1 z6 =1
(TYPE), Ta ("“TYPE"[SP“A” \n), |A— V| Change representation type to ASCII. r3 =1 re=A
(TYPE); Ty ("“TYPE"[SR“B” \n)a |A— V| Change representation type to BINARY. 3 =1 x4 =B
(TYPE)e Te (C“TYPE”[SP“E” \n)a |A—V| Change representation typeE&CDIC. r3 =1 T4 =
(MODE), M, | ("“MODE” [SP"S"\n), |A— V| Change transmission mode$3d REAM 3 =1 x5 =S
(MODE), My | (C“MODE” [SB“B” \n)a |A— V| Change transmission modeBbOCK x3 =1 x5 =B
(MODE). M. | ("“MODE” [SB“C" \n)s, |A— V| Change transmission mode@OMPRESSED 3 =1 x5 =C
RETR R (" “RETR")q A— V| Retrieve a file from the server. r3=1 |zg=x8+1
STOR S ("“STOR")4 A— V| Store afile on the server. z3=1 |zr=a7+1
APPE A (" “APPE" ) IAP— V| Append a file on the server. r3=1 |z7=a7+1
DELE D (" “DELE” )4 A—V| Delete afile from the server. z3=1 |zr=a7—1
LIST LS (CULIST" )q A— V| Listfiles on the server. - -
SLOGIN L (" 230" (\w)*\n)wv V — A| User has successfully logged in. - 3 =1
VQUIT Qs | (21421 (\w)*\n)y |V — A| Victim voluntarily terminates session - Vz; =0
ARG A ([SR < str > \n)a A—V| Anargument of an FTP command. b -
INVALID RE-| IR C["1-9)a V' — A| A non-FTP response (any valid response must start - -
SPONSE with a digit between 1 to 5).

astr denotes a string according to the FTP specification [22notes match only at the beginning of a lie: denotes alphanumeric plus’:
bMust be precede with a command that requires an argumenbr&dity, we do not add the state variables required to traekytpe of the last
command.

Table 6. Events and their transitions for the FTP semantic mo del.

Rule Description
1 | E — token A single token is a valid expression.
2 | E—=(E)|(E)t Closure of a valid expression is a valid expression.
3 | E——(E) Negation of a valid expression is a valid expression.
4 | E— (Eop1 E) Concatenation, intersection, and union of two valid exgitess is a valid expression.
5 | op1 —-[N|U
6 | E — (token suctthat R) A restricted event: a valid expression restricted witlis a valid expression.
7 | R— (data€raw_expr) A regular restriction imposed on thiata attribute of a of an token.
8 | R— (lengthop2 INT) A regular restriction imposed on thength  attribute of a of an token.
9 | op2—<[>]=|#
10 | R—(Rop3s R) A logical combination of two restrictions is a valid restion.
11 op3z —V ‘ N

Table 7. Grammar for construction regular expressions over events.
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